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In this work, we will study black brane solutions that are not translationally invariant in the spatial
directions along which it extends. Instead, we require homogeneity, which still allows points along the
spatial directions to be related to each other by symmetries. We find Einstein–Maxwell–anti-de Sitter black
hole solutions of which the near-horizon geometry corresponds to solv (Bianchi V1−1), nil (Bianchi II), or
SL2ðRÞ (Bianchi VIII). Interestingly, we observe that at intermediate temperatures our solutions have an
scaling regimewhere different spacetime directions scale differently. We also compute the dc conductivities
for these charged solutions and study how they scale in this intermediate regime.
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I. INTRODUCTION

Quantum critical points and novel phases of matter
with unconventional scalings are systems of which the
degrees of freedom are believed to be in a strongly coupled
regime. Then, holography is a good playground with many
tools to study the dynamics of such systems. Moreover,
there is an effort to classify phase structures, in particular,
in the deep IR regime. The result of such efforts was
the appearance of novel renormlization group (RG) flow
geometries with intermediate scalings, which are useful to
model the behavior of conformal field theories around
quantum critical points. In this work, we will show new
intermediate regimes in a class of Einstein-Maxwell the-
ories that break translational invariance in a particular way
that still preserves homogeneity.
In the context of the AdS=CFT approach to studying

condensed matter physics, there has been significant recent
interest in the construction of black hole solutions dual to
conformal field theories (CFTs) deformed by operators that
break translational invariance. This is because these sys-
tems allow momentum to dissipate, giving room to study
more realistic transport properties. The breaking of trans-
lational invariance in holography is a complicated issue
because typically this drives us to solve partial differential
equations [1–3].

One way1 to bypass this complication for theories in
d ¼ 4 dimensions is to generalize the generators of the
translational symmetry to a Bianchi symmetry, in which
they do not commute, and then exploit this new symmetry
to get ordinary differential equations (ODEs) [9–14]. The
Thurston geometrization conjecture gives a classification of
geometries that are allowed to be the near-horizon limit of a
black hole solution. There are just eight of such geometries
[Euclidean space E3, the 3-sphere S3, the hyperbolic space
H3, the products S1 ×H2 and S1 × S2, nil geometry, solv
geometry, and lastly the universal cover SL2ðRÞ], and the
remaining ones must be isometric to one of them. In the
present work, we are going to elaborate on the direction of
Ref. [13], and we will study black holes in which the
horizons have Bianchi VI−1 (solv), Bianchi II (nil), or
Bianchi VIII [SL2ðRÞ] symmetries,

solv∶ ds̄2 ¼ e2kzdx2 þ e−2kzdy2 þ dz2

nil∶ ds̄2 ¼ dx2 þ dy2 þ ðdz − kxdyÞ2;

SL2ðRÞ∶ ds̄2 ¼ 1

k2x2
ðdx2 þ dy2Þ þ

�
dzþ dy

kx

�
2

; ð1Þ

that we will generically write as

ds̄2 ¼
X3
i¼1

ω2
i : ð2Þ

For the solv geometry, ω1 ¼ ekzdx, ω2 ¼ e−kzdy, and
ω3 ¼ dz; for the nil solutions, ω1 ¼ dx, ω2 ¼ dy, and
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1Another powerful way to incorporate the effect of momentum
dissipation and still work with ODEs is to effectively add the
effect of inhomogeneities by giving a mass to the graviton [4–8].
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ω3¼dz−kxdy; and for the SL2ðRÞ, we have ω1 ¼ dx=kx,
ω2 ¼ dy=kx, and ω3 ¼ dzþ dy=kx.
In this setup, we will obtain solutions of the Einstein–

Maxwell–anti-de Sitter (AdS) action in five dimensions,

S̃ ¼
Z

d5x
ffiffiffiffiffiffi
−g

p �
R − 12 −

1

4
FμνFμν

�
þ S̃bdy; ð3Þ

where S̃bdy corresponds to some boundary action, solving
the following equations of motion:

DμFμν ¼ 0;

Rμν −
1

2
Rgμν − 6gμν ¼ −

1

4
FαβFαβgμν þ FμαFα

ν: ð4Þ

This action corresponds to the universal sector of many
holographic models. In this context, we will build charged
black hole solutions that will be dual to a finite temperature
CFT at a finite chemical potential living in the spacetimes
defined in (1).
This paper will elaborate on the solutions found in

Ref. [13] by relaxing the ansatz for the metric. This will
allow us to find solutions that are isotropic in the UV,
giving a more natural framework for a holographic inter-
pretation. We can now think of our solutions as the dual of a
four-dimensional CFT deformed by placing the theory on a
Bianchi manifold.
As recently reported in Refs. [2,15,16], breaking trans-

lational symmetry gives rise to new scalings at the IR or at
intermediate scales. We will study these new scalings by
constructing a family of black hole solutions by varying
how badly the translational symmetry is broken. We will
see that for neutral black holes new scalings will appear
near the horizon of low reduced temperature T=k black
holes. In these new scalings, different spatial coordinates
will typically scale differently. When considering charged

solutions, these new scalings become intermediate scalings,
and our near-horizon solutions look like AdS2 × Thurston.
Recently, it was argued [17] that many properties of

strange metals could be explained from a simple scaling
theory. Then, it is interesting to understand the mechanisms
that make a theory develop nonconventional scalings.
In this context, we show evidence that breaking the trans-
lational invariance on the universal sector of any theory
with a gravity dual forces the theory to develop new
scalings at low or intermediate temperatures.
Having the translational symmetry broken, the dual field

theories will have finite dc transport coefficients. We can
read such coefficients directly from the horizon metric
following the method developed in Ref. [18]. We see that
the dc conductivities also reflect the intermediate scalings
at intermediate temperatures [19].
This paper is organized as follows. In each of the

following sections, we show solutions to the Einstein-
Maxwell equations with different Thurston geometry hori-
zons. Then, we proceed to compute the thermoelectric
transport coefficients in the direction in which the trans-
lational symmetry is broken. In Sec. II, we deal with solv
horizons; in Sec. III, we deal with nil horizons; and in
Sec. IV, we deal with SL2ðRÞ horizons. Finally, in Sec. V,
we summarize our results and discuss possible future
directions.

II. SOLV BLACK HOLES WITH
INTERMEDIATE SCALING

In this section, we will work with black holes with solv
geometry horizons.

A. Solutions

We will consider the following ansatz for the gauge and
metric fields:

A ¼ AtðrÞdt;

ds2 ¼ −r2f2ðrÞgðrÞdt2 þ 1

r2gðrÞ dr
2 þ r2h2ðrÞðe2kzdx2 þ e−2kzdy2Þ þ r2

h4ðrÞ dz
2: ð5Þ

Explicitly, the equations of motion (4) read

g0 −
4

r
þ 2k2h4

3r3
þ A02

t

3rf2
þ
�
4

r
þ 2rh02

h2

�
g ¼ 0;

3r4fh00 þ
�
12þ 3g −

A02
t

g2

�
r3h0 − 2k2ðh5 þ rh4h0Þ − 3r4gh02

h
¼ 0;

h2f0 − 2rfh02 ¼ 0;

A00
t þ

�
3

r
−
f0

f

�
A0
t ¼ 0; ð6Þ

with primes denoting radial derivative 0 ¼ ∂r and where we drop the r dependence of the metric and gauge
functions.
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We will look for black hole solutions to these equations by integrating out the fields from the near horizon,

AtðrÞ ≃ at1ðr − rhÞ −
at1ð12f20h40k2r2hða2t1 − 12f20Þ þ 3r4hða2t1 − 12f20Þ2 þ 4f40h

8
0k

4Þ
2rhðr2hða2t1 − 12f20Þ þ 2f20h

4
0k

2Þ2 ðr − rhÞ2 þ…;

fðrÞ ≃ f0 þ
8f50h

8
0k

4

rhðr2hða2t1 − 12f20Þ þ 2f20h
4
0k

2Þ2 ðr − rhÞ þ…;

gðrÞ ≃
r2hð12 −

a2t1
f2
0

Þ − 2h40k
2

3r3h
ðr − rhÞ þ…;

hðrÞ ≃ h0 −
2f20h

5
0k

2

r3hða2t1 − 12f20Þ þ 2f20h
4
0k

2rh
ðr − rhÞ þ…; ð7Þ

towards the boundary

gðrÞ ≈ 1 −
h4∞k2

3r2
þ g∞4

r4
þ 2h8∞k4 log r

r4
þ…;

hðrÞ ≈ h∞ −
h5∞k2

6r2
þ h∞4

r4
þ h9∞k4 log r

9r4
þ…;

fðrÞ ≈ f∞ −
f∞h8∞k4

r4
þ…;

AtðrÞ ≈ μþ ρ

r2
−
2ρf∞h8∞k4

108f∞r6
þ…: ð8Þ

The parameters at1 , f0, and h0 are the independent
coefficients of the functions expanded around the horizon,
and h∞, h∞4 , g∞, g

∞
4 , and f∞ are the corresponding ones

when the expansion is around the UV. These boundary
conditions imply that our black hole solutions have the
same scaling for the metric (towards the boundary) in all
the directions, which is an important difference with respect
to previous works [11–13]. The log terms are associated
with an anomalous scaling of physical quantities due to the
conformal anomaly. As expected, they go to zero when
considering k → 0.

The thermodynamics of the black hole are given by its
temperature T and entropy density s,

T ¼ 1

4π

�
g0ttffiffiffiffiffiffiffiffiffiffiffi
grrgtt

p
�

r¼rh

¼
�
a2t1
3f0

− 4f0
�
rh þ 2f0h40k

2

3rh

4π
;

s ¼ 2πAh ¼ 2πr3h; ð9Þ

with Ah denoting the area of the black hole horizon. We
find a family of solutions that we characterize by the
dimensionless parameters T=k and μ=k.
For simplicity, let us begin by studying solutions with

μ ¼ 0, corresponding to neutral black holes. Integrating the
equations of motion, we find a family of solutions with
different T=k. In the right panel of Fig. 1, we show how the
entropy of the corresponding solutions scales with respect
to the temperature. As we can see, for high enough
temperatures, we see the expected CFT4 related scaling
s=k3 ∼ ðT=kÞ3. On the other hand, for low enough temper-
atures, we find a new scaling, s=k3 ∼ ðT=kÞ2. To better
understand the nature of this new scaling, we must study in
detail the behavior of the metric fields.
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FIG. 1. Left: Typical profile for fðrÞ (blue), gðrÞ (orange), and hðrÞ (green). The combination rf0=f, where f corresponds to any of the
aforementioned functions, was chosen to make manifest the emergence of new scalings towards the IR. The plot corresponds to a
solution with T=k ¼ 0.00367 and μ=k ¼ 0. Right: Ts0=s as a function of the reduced temperature T=k.
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In the left panel of Fig. 1, we show a typical plot for the
metric fields as a function of the radial coordinate, when
considering a solution with low enough T=k. From the
numerics, we extract that the fields g and h of the metric
get a new scaling at small r=rh, such that g ∼ h ∼ r1=2.
Plugging this again into the metric, one can extract the
following scalings:

t → λt; x → λx; y → λy; z → z: ð10Þ
This means that we have anisotropic scalings, but these

are not of the standard Lifshitz type, since it is one of the
spatial directions that scales differently to the other spatial
directions.
It seems tempting to associate the intermediate scaling

geometry with

A ¼ 0;

4

3
ds2 ¼ −r2dt2 þ 1

r2
dr2 þ r2ðe2kzdx2 þ e−2kzdy2Þ

þ 2k2

3
dz2: ð11Þ

This is an exact solution to the Einstein-Maxwell equations
of motion. These exact solutions were previously studied in
Refs. [11–13]. Here, we show how these solutions emerge
naturally in the IR regime when studying black hole
solutions with solv geometry horizons that are asymptoti-
cally isotropic.
If we now turn to charged black hole solutions, the IR

scaling becomes an intermediate scaling, and the geometry
flows into AdS2 × solv in the deep near-horizon regime, as
expected for a charged black hole. In Fig. 2, we show
typical profiles for the fields and the scaling of the entropy
for a family of solutions with fixed μ=k ¼ 0.01.
It is important to notice that the value of the chemical

potential in units of k must be small enough to have
intermediate scaling solutions. If it is not, then the AdS2 ×
solv geometry will appear at larger values of the radius and

will ruin the intermediate scaling. In other words, we need
μ=k small enough so that the intermediate scaling has
enough room to appear. The same argument will hold for
the nil and SL2ðRÞ cases of the next sections.

B. Finite conductivities from solv horizons

Consider a system at equilibrium at finite chemical
potential and temperature. Adding a small electric field
Ei or thermal gradient∇iT will induce an electric current Ji

and a heat current Qi ¼ Tti − μJi, where Tij is the stress
tensor of the dual field theory. At linearized order, the
response is controlled by the Ohm/Fourier law�

J

Q

�
¼
�

σ αT

ᾱT κ̄T

��
E

−∇T=T

�
; ð12Þ

defining the electric conductivity σ, the thermoelectric
conductivities α and ᾱ, and the thermal conductivity κ̄.
Systems with translation invariance and finite charge

density have an infinite dc conductivity. Nonetheless, in the
directions in which the translation invariance is broken, we
expect a finite dc conductivity. That will be the z direction
in our solv geometry charged black holes or the x direction
in our nil geometry and SL2ðRÞ charged black holes. We
will read then the coefficients of the matrix (12) from
horizon data, following the method developed in Ref. [18].
The holographic dictionary gives us the expressions for

the electric and heat current in the dual field theory [20,21]

J ¼ ffiffiffiffiffiffi
−g

p
Fri;

Q ¼ ffiffiffiffiffiffi
−g

p
Gri þ JAt; ð13Þ

where the tensor Gμν reads

Gμν ¼ ∇μkν þ 1

3
k½μFν�σAσ; ð14Þ

k ¼ ∂t, and the index i denotes the direction in which the
electric field is applied.
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FIG. 2. Left: Typical profile for fðrÞ (blue), gðrÞ (orange), hðrÞ (green), and AtðrÞ (red). The combination rf0=f, where f corresponds
to any of the aforementioned functions, was chosen to make manifest the emergence of new scalings towards the IR. The plot
corresponds to a solution with T=k ¼ 0.0003185 and μ=k ¼ 0.01. Right: Ts0=s as a function of the reduced temperature T=k.
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1. Computing σ and ᾱ

Let us begin with the computation of the electric
conductivity and one of the thermoelectric conductivities
ᾱ. To do that, we will study the linear response under the
fluctuations of the metric and gauge field

δA ¼ ð−Etþ δazðrÞÞdz
δds2 ¼ htzðrÞdtdzþ hrzðrÞdrdz; ð15Þ

where the constant E is the applied (dc) electric field. From
the Maxwell equations, we obtain the following expression
for the electric current J:

J ¼ rh4ðhtzA0
t þ 2f2r2ga0zÞ
2f

: ð16Þ

To have clean expressions, we will not write the r
dependence of the functions. It is easy to check that the
equation of motion for δaz is equivalent to ∂rJ ¼ 0. This
allows us to evaluate the current at any value of the radial
coordinate; in particular, we want to express the transport
coefficients as function of IR data, i.e., the position of the
horizon of the black hole.
Using the Einstein equations, we obtain that the heat

current can be written as

Q ¼ rh4ð2AthtzA0
t þ rf2ðgð4rAta0z þ rh0tz − 2htzÞ − rhtzg0Þ − 2r2fghtzf0Þ

4f
: ð17Þ

Again, we can see that ∂rQ ¼ 0, and then we can evaluate
it on r ¼ rh. The remaining Einstein equation is

hrz ¼ −
r2EA0

t

k2f2gh4
: ð18Þ

For a free-falling observer, the horizon of a black hole is
a regular place; then, the electromagnetic field must be
regular there. Using Eddington-Finkelstein coordinates

dv ¼ dtþ
ffiffiffiffi
grr
gtt

q
dr and asking for regularity of the fluctua-

tions at r ¼ rh, we can obtain the near-horizon behavior of
htz and δaz. Using the expansions (7) and the near-horizon
limit of (18), we can express the electric current and the
heat kernel as function of IR data as

J ¼ 1

2
r3hE

�
−2h40 þ

a2t1
f20k

2

�
;

Q ¼ −
at1r

2
hEðr2hð12 −

a2t1
f2
0

Þ − 2h40k
2Þ

12k2
: ð19Þ

From this, we can compute the conductivities σ and ᾱ,

σ ¼ ∂J
∂E ¼ 1

2
r3h

�
2h40 þ

a2t1
f20k

2

�
;

ᾱ ¼ 1

T
∂Q
∂E ¼ πat1r

3
h

f0k2
: ð20Þ

In Fig. 3, we show these conductivities for the family of
solutions presented in Fig. 2. From the plot, we see that at
high temperatures we have σ=k ∼ ᾱ ∼ T=k, which agrees
with the expectations for a CFT4. In the low-temperature

regime, we have σ ≈ ðT=kÞ0.14 and ᾱ ≈ 0.005. Interestingly,
for intermediate temperatures, we see that the conductiv-
ities develop a power law scaling, in agreement with the
intermediate scaling discussed previously. To be precise,
we find that for intermediate temperatures we have σ=k ∼
ðT=kÞ1.88 and ᾱ ∼ ðT=kÞ0.39.

2. Computing α and κ̄

Now, we move to compute the remaining conductivities,
the thermoelectric coefficient α, and the thermal conduc-
tivity κ̄. To do that, we implement the following perturba-
tions in the metric and gauge field:

δA ¼ ð−tδf1ðrÞ þ δaxðrÞÞdx;
δds2 ¼ ð−tδfðrÞ þ htxðrÞÞdxdtþ hrxðrÞdxdr: ð21Þ

Following as in the previous section, we obtain expres-
sions for J and Q that do not depend on the radial direction

J ¼ rh4ðhtxA0
t þ tδfA0

t þ 2r2f2gða0x − tδf01ÞÞ
2f

;

Q ¼ −JAt −
1

4
r5h4f3g2

��
htx

r2f2g

�0
þ t

�
δf

r2f2g

�0�
: ð22Þ

We can erase the temporal dependence, fixing

δf1ðrÞ ¼ Eþ ζAt;

δfðrÞ ¼ 2ζr2f2g: ð23Þ

The remaining Einstein equation reads

δhrx ¼
rð2ζf2ð3r2gh02 þ 6rghh0 þ 6ðr2 − gÞh2 − k2h6Þ − rh2A0

tðζrA0
t þ 6ζAt þ 6EÞÞ

6k2f2gh6
: ð24Þ
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Using the Eddington-Filkenstein coordinates and the expansions (7) and asking regularity at the horizon, we can
express J and Q as

J ¼ 1

12
r2h

�
at1rhðζrhða2t1 − 12f20Þ þ 6at1EÞ

f20k
2

þ 2h40ðat1ζ þ 6rhEÞ
�
;

Q ¼
rhðr2hð12 −

a2t1
f2
0

Þ − 2h40k
2Þðζr2hða2t1 − 12f20Þ þ 6at1rhEþ 2ζf20h

4
0k

2Þ
72k2

: ð25Þ

The transport coefficients then read

α ¼ πat1r
3
h

f0k2
;

κ̄ ¼ −
πr2hða2t1r2h þ 2f20ðh40k2 − 6r2hÞÞ

6f0k2
: ð26Þ

We see that α ¼ ᾱ, as it should be, because the transport
matrix is symmetric. This is a nontrivial check on our
computations. A quantity of interest is the thermal con-
ductivity at zero electric current, which reads

κ ¼ κ̄ −
αᾱT
σ

¼ −
πf0h40r

2
hða2t1r2h þ 2f20ðh40k2 − 6r2hÞÞ
3ða2t1 þ 2f20h

4
0k

2Þ :

ð27Þ

In Fig. 4, we plot the thermal conductivities κ̄ and κ
for a family of black holes at fixed chemical potential
μ=k ¼ 0.01. For large temperatures, we see that both
these quantities scale as κ̄ ∼ κ ∼ ðT=kÞ2. For low temper-
atures, on the other hand, we have that κ̄ ∼ T=k, while
κ ∼ ðT=kÞ3=2. In the intermediate regime, we find that
κ̄ ∼ κ ∼ ðT=kÞ1.66.
Dramatic differences between these two conductivities

are indicators of the breakdown of the quasiparticle
picture [22]. Moreover, in systems that behave as Fermi

liquids, the ratio κ=ðσTÞ is constant and has a value of
π2=ð3ðkB=eÞ2Þ, with e being the electric charge and kB
being the Boltzmann constant. Deviations from this
constant value tell us that we are in a strong coupling
regime. As we can see, κ and κ̄ scale differently in the
low-temperature limit but get closer together as we
increase the temperature.

0.001 0.010 0.100 1 10

T

k

0.1

100

105

FIG. 4. Plot for the conductivities κ̄ (blue) and κ (orange) as
functions of the reduced temperature T=k for a family of solutions
with fixed μ=k ¼ 0.01. The straight lines correspond to fits in the
intermediate scaling regime.
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FIG. 3. Plot for the conductivities σ and ᾱ as functions of the reduced temperature T=k for a family of solutions with fixed μ=k ¼ 0.01.
The straight lines correspond to fits in the intermediate scaling regime.
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III. NIL BLACK HOLES WITH
INTERMEDIATE SCALING

Wewill now consider charged black holes solutions with
nil horizon geometry.

A. Solutions

Let us then consider the ansatz

A¼ AtðrÞdt;

ds2 ¼ −r2gðrÞfðrÞ2dt2 þ 1

r2gðrÞdr
2 þ r2h2ðrÞðdx2 þ dy2Þ

þ r2

h4ðrÞ ðdz− kxdyÞ2; ð28Þ

for which the equations of motion read

2r2ð12 − A0
t
2

f2 Þ − k2

h8

6r3
− g0 þ g

�
−
2rh02

h2
−
4

r

�
¼ 0;

h00 −
2r3h0ðA0

tðrÞ2−3f2ðgþ4ÞÞ
f2 þ 6r4gh02

h þ k2rh0
h8 − 2k2

h7

6r4g
¼ 0;

f0 −
2rfh02

h2
¼ 0;

A00
t −

A0
tðrf0 − 3fÞ

rf
¼ 0: ð29Þ

We will look for black hole solutions to these equations
by integrating out the fields from the near horizon,

AtðrÞ ≃ at1ðr − rhÞ −
at1ð12h160 r4hða2t1 − 12f20Þ2 þ 12f20h

8
0k

2r2hða2t1 − 12f20Þ − 5f40k
4Þ

2rhð2h80r2hða2t1 − 12f20Þ þ f20k
2Þ2 ðr − rhÞ2 þ…;

fðrÞ ≃ f0 þ
8f50k

4

rhð2h80r2hða2t1 − 12f20Þ þ f20k
2Þ2 ðr − rhÞ þ…;

gðrÞ ≃
r2hð24 −

2a2t1
f2
0

Þ − k2

h8
0

6r3h
ðr − rhÞ þ…;

hðrÞ ≃ h0 þ
2f20h0k

2

2h80r
3
hða2t1 − 12f20Þ þ f20k

2rh
ðr − rhÞ þ…; ð30Þ

towards the boundary

AtðrÞ ≃ μþ ρ

r2
−

ρk4

216h16∞r6
þ…;

fðrÞ ≃ f∞ −
f∞k4

72h16∞r4
þ…;

gðrÞ ≃ 1 −
k2

12h8∞r2
þ g∞4

r4
þ k4 log r
18h16∞r4

þ…;

hðrÞ ≃ h∞ þ k2

12h7∞r2
þ h∞4

r4
−
k4 log r
18h15∞r4

þ…; ð31Þ

where we will shoot for finding solutions with f∞ ¼
h∞ ¼ 1. Again, this boundary condition implies that our
black hole solutions have the same scaling for the metric
(in all the directions) when we move towards the boundary.
The thermodynamics of the black hole are given by

T ¼
a2t1 rh
3f0

þ f0k2

6h8
0
rh
− 4f0rh

4π
; ð32Þ

s ¼ 2πAh ¼ 2πr3h: ð33Þ

As in the previous section, we will characterize the family of
solutions with the dimensionless parameters T=k and μ=k.

For simplicity, let us begin by studying solutions with
μ ¼ 0, corresponding to neutral black holes. Integrating the
equations of motion, we find a family of solutions with
different T=k. On the right panel of Fig. 5, we show how the
entropy of the corresponding solutions scales with respect
to the temperature. Again, for high enough temperatures,
we see the expected CFT4 related scaling s=k3 ∼ ðT=kÞ3.
On the other hand, for low enough temperatures, we find a
new scaling, s=k3 ∼ ðT=kÞ30=11. To better understand the
nature of this new scaling, we must study in detail the
behavior of the metric fields.
On the left-hand side of Fig. 5, we show the scalings

related to the profiles of the metric functions for a low T=k
solution. Far away from the horizon, we see that the metric
behaves as demanded in (31). On the other hand, we find
that near the horizon the metric functions behave differ-
ently, h ∼ r−1=4 and g ∼ r1=8. Plugging these scalings back
into the metric gives quite a peculiar scaling,

t → λ11=8t; ω1 → λω1; ω2 → λω2; ω3 → λ3=2ω3;

ð34Þ

which gives the correct scaling for the entropy as a function
of the temperature [23]. Unfortunately, we do not know of
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a deformed theory from which we can extract exactly this
kind of solutions.
Let us now study the charged solutions. In Fig. 6, we

show typical profiles for the fields and the scaling of the
entropy for a family of solutions with fixed μ=k ¼ 0.01.
Again, the neutral IR scaling becomes an intermediate
scaling, and the charged solutions flow to AdS2 × nil at
the IR.

B. Finite conductivities from nil horizons

In this subsection, we will compute the transport
coefficients for this Einstein-Maxwell solutions and show
how they scale along the RG flow. To express the transport
coefficients as functions of horizon data, we must follow
the same steps we used in the previous section; so, we are
not going to repeat the procedure, and we are just going to
highlight the final results.
In this case, the fluctuations must be along the x

direction,

δA ¼ ð−Etþ δaxðrÞÞdx;
δds2 ¼ htxðrÞdtdxþ hrxðrÞdrdx; ð35Þ

with the constant E being the applied (dc) electric field.
From the Einstein-Maxwell equations, we compute the
conserved current and charge J and Q, and the remaining
equation for hrx reads

hrx ¼ −
4Eh8A0

t

k2f2g
: ð36Þ

Using the near-horizon data and asking for regularity, we
obtain

J ¼ 2a2t1h
6
0r

3
hE

f20k
2

−
rhE
h20

;

Q ¼ −
at1h

6
0r

2
hE
�
r2h
�
24 −

2a2t1
f2
0

�
− k2

h8
0

�
6k2

; ð37Þ
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FIG. 6. Left: Typical profile for fðrÞ (blue), gðrÞ (orange), hðrÞ (green), and AtðrÞ (red). The combination rf0=f, where f corresponds
to any of the aforementioned functions, was chosen to make manifest the emergence of new scalings towards the IR. The plot
corresponds to a solution with T=k ¼ 0.0003185 and μ=k ¼ 0.01. Right: Ts0=s as a function of the reduced temperature T=k.
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FIG. 5. Left: Typical profile for fðrÞ (blue), gðrÞ (orange), and hðrÞ (green). The combination rf0=f, where f corresponds to any of the
aforementioned functions, was chosen to make manifest the emergence of new scalings towards the IR. The plot corresponds to a
solution with T=k ¼ 0.00147 and μ=k ¼ 0. Right: Ts0=s as a function of the reduced temperature T=k.
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and from this, we can compute the conductivities σ
and ᾱ as

σ ¼ ∂J
∂E ¼ 2a2t1h

6
0r

3
h

f20k
2

þ rh
h20

;

ᾱ ¼ 1

T
∂Q
∂E ¼ 4πat1h

6
0r

3
h

f0k2
: ð38Þ

In Fig. 7, we show these conductivities for the family
of solutions presented in Fig. 6. From the plot, we see
that the conductivities show that at high temperatures we
have that σ ∼ ᾱ ∼ T=k, which agrees with the expectations
for a CFT4. In the low-temperature regime, we have
σ ∼ 0.22 and ᾱ ∼ 0.44. Interestingly, form intermediate
temperatures, we see that the conductivities develop a

power law scaling, σ ∼ ðT=kÞ1.38 and ᾱ ∼ ðT=kÞ−0.44.
Another interesting feature of the conductivity σ is
that it is not monotonous with the temperature, giving a
metallic behavior at low T=k and an insulator one at high
temperatures [24].
Now, to compute the remaining conductivities, we

perturb the Einstein-Maxwell solutions as

δA ¼ ð−tδf1ðrÞ þ δaxðrÞÞdx;
δds2 ¼ ðtδfðrÞ þ htxðrÞÞdxdtþ hrxdxdr: ð39Þ

Following as in the previous section, we obtain expres-
sions for J and Q that do not depend on the radial direction
and can be just expressed as a function of IR data,

J ¼
rh
�
2at1h

8
0
r2hðζrhða2t1−12f20Þþ6at1EÞ

f2
0
k2 þ at1ζrh þ 6E

�
6h20

;

Q ¼ −
rhð2h80r2hða2t1 − 12f20Þ þ f20k

2Þð2h80rhðζrhða2t1 − 12f20Þ þ 6at1EÞ þ ζf20k
2Þ

72f20h
10
0 k2

; ð40Þ

where we erased the temporal dependence, fixing

δf1ðrÞ ¼ Eþ ζAtðrÞ;
δfðrÞ ¼ 2ζr2fðrÞ2gðrÞ; ð41Þ

and we use that

δhrx ¼ −
2rh8A0

tðζrA0
t þ 6ζAt þ 6EÞ þ ζf2ð12r2h6ð−r2gh02 þ rghh0 þ 2ðg − 1Þh2Þ þ k2Þ

3k2rf2g
; ð42Þ
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FIG. 7. Plot for the conductivities σ and ᾱ as functions of the reduced temperature T=k for a family of solutions with fixed μ=k ¼ 0.01.
The straight lines correspond to fits in the intermediate scaling regime.
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Then, the remaining transport coefficients read

α ¼ 4πat1h
6
0r

3
h

f0k2
;

κ̄ ¼ −
πr2h
�
2h8

0
r2hða2t1−12f20Þ

k2 þ f20
�

3f0h20
: ð43Þ

Again, we obtain the expected result α ¼ ᾱ. The
thermal conductivity at zero electric current is written in
this case as

κ ¼ κ̄ −
αᾱT
σ

¼ −
2πf0h80r

4
hða2t1 − 12f20Þ þ πf30k

2r2h
3h20ð2a2t1h80r2h þ f20k

2Þ : ð44Þ

In the left panel of Fig. 8, we plot the thermal
conductivities κ and κ̄ for a family of black holes at fixed
chemical potential μ=k ¼ 0.01. For large temperatures, we
see that κ̄ ∼ ðT=kÞ2. For low temperatures, we have that
κ̄ ∼ 0.54, while κ ∼ ðT=kÞ1.45. In the intermediate regime,
we find that κ̄ ∼ ðT=kÞ0.63, while κ ∼ ðT=kÞ0.71. Again, the
qualitative difference between κ and κ̄ signals the break of
the quasiparticle picture at low enough temperatures.

IV. SL2ðRÞ BLACK HOLES WITH
INTERMEDIATE SCALING

Finally, let us consider black brane solutions correspond-
ing to foliations of an SL2ðRÞ metric.

A. Solutions

We will work with the ansatz

A ¼ AtðrÞdt;

ds2 ¼ −r2gðrÞfðrÞ2dt2 þ 1

r2gðrÞ dr
2 þ r2h2ðrÞ

k2x2
ðdx2 þ dy2Þ þ r2

h4ðrÞ
�
dzþ dy

kx

�
2

: ð45Þ

The equations of motion read

2r2ðA0
t
2

f2 − 12Þ þ 12gðr2h02h2 þ 1Þ þ ð4h6þ1Þ
k2h8

6r
þ g0 ¼ 0;

h00 −
2r3h8A0

t
2h0 þ 6r4f2gh7h02 − 6r3f2gh8h0 þ 4k2rf2h6h0 þ k2rf2h0 − 24r3f2h8h0 − 2k2f2h7 − 2k2f2h

6r4f2gh8
¼ 0;

f0 −
2rfh02

h2
¼ 0; A00

t −
A0
tðrf0 − 3fÞ

rf
¼ 0: ð46Þ

We will numerically integrate these equations from the near horizon,

AtðrÞ ≃ at1ðr − rhÞ −
1

2
at1

�
3 −

f1
f0

�
ðr − rhÞ2 þ…;

fðrÞ ≃ f0 þ
8f50ðh60 þ 1Þ2k4

rhð2h80r2hða2t1 − 12f20Þ þ f20ð4h60 þ 1Þk2Þ2 ðr − rhÞ þ…;

gðrÞ ≃
 
r2hð24 −

2a2t1
f2
0

Þ − ð4h6
0
þ1Þk2
h8
0

6r3h

!
ðr − rhÞ þ…;

hðrÞ ≃ h0 þ
2f20h0ðh60 þ 1Þk2

2h80r
3
hða2t1 − 12f20Þ þ f20ð4h60 þ 1Þk2rh

ðr − rhÞ þ…; ð47Þ
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FIG. 8. Conductivities κ̄ (blue) and κ (orange) as functions of
the reduced temperature T=k for a family of solutions with fixed
μ=k ¼ 0.01.
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towards the boundary

AtðrÞ ≃ μþ ρ

r2
−
ρð1þ h6∞Þ2k4
216h16∞r6

þ…;

fðrÞ ≃ f∞ −
f∞ð1þ h6∞Þ2k4

72h16∞r4
þ…;

gðrÞ ≃ 1 −
ð1þ 4h6∞Þk2

12h8∞r2
þ g∞4

r4
þ ð1þ h6∞Þ2k4 log r

18h16∞r4
þ…;

hðrÞ ≃ h∞ þ ð1þ h6∞Þk2
12h7∞r2

þ h∞4
r4

þ…; ð48Þ

through a shooting method. A typical solution is shown
in Fig. 9.
The black hole thermodynamics is dictated by

T ¼
f0
�
r2h
�
24 −

2a2t1
f2
0

�
− ð4h6

0
þ1Þk2
h8
0

�
24πrh

;

s ¼ 2πr3h: ð49Þ

We are now ready to construct a family of solutions
that is characterized by the parameter T=k and μ=k. Again,
we first look for solutions with μ ¼ 0, and we find that
for low enough T=k the metric profiles develop a scaling in
the deep IR near the black hole horizon. This scaling is
shown in Fig. 9, in which we see for a particular solution
that near the horizon f ∼ ðr=rhÞ2 and h ∼ ðr=rhÞ−1. This
implies that the dual field theory will have an IR scaling
dictated by

t → λ1t; ω1 → ω1; ω2 → ω2; ω3 → λ1ω3: ð50Þ

This scaling is also reflected in the fact that the entropy
scales as s=k3 ∼ T=k at low temperatures.
When we turn on the chemical potential, the IR scalings

become intermediate scalings, and the near-horizon
geometry becomes AdS2 × SL2ðRÞ. A typical family of
solutions and a typical profile is shown in Fig. 10. In the
following subsection, we will use this family of solutions to
study the dc transport properties of the dual field theory.
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FIG. 9. Left: Typical profile for fðrÞ (blue), gðrÞ (orange), and hðrÞ (green). The combination rf0=f, where f corresponds to any of the
aforementioned functions, was chosen to make manifest the emergence of new scalings towards the IR. The plot corresponds to a
solution with T=k ¼ 0.00225 and μ=k ¼ 0. Right: Ts0=s as a function of the reduced temperature T=k.
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FIG. 10. Left: Typical profile for fðrÞ (blue), gðrÞ (orange), hðrÞ (green), and AtðrÞ (red). The combination rf0=f, where f
corresponds to any of the aforementioned functions, was chosen to make manifest the emergence of new scalings towards the IR. The
plot corresponds to a solution with T=k ¼ 0.0001892 and μ=k ¼ 0.01. Right: Ts0=s as a function of the reduced temperature T=k.
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B. Computing the transport coefficients

Let us start with the fluctuations along the x direction,

δA ¼ ð−Etþ δaxðrÞÞdx
δds2 ¼ htxðrÞdtdxþ hrxðrÞdrdx; ð51Þ

with E being the constant electric field. From the Einstein
and Maxwell equations, we obtain the conserved current and
charge J and Q, and the remaining equation for hrx reads

hrx ¼ −
4Eh8A0

t

k2f2gð2h6 þ 1Þ : ð52Þ

Using the near-horizon data (47) and asking for regularity,
we have that the conserved quantities read

J ¼ 2a2t1h
6
0r

3
hE

f20ð2h60 þ 1Þk2 þ
rhE
h20

;

Q ¼
at1h

6
0r

2
hE
�
r2h
�
24 −

2a2t1
f2
0

�
− ð4h6

0
þ1Þk2
h8
0

�
6ð2h60 þ 1Þk2 : ð53Þ

From this, we compute the conductivities σ and ᾱ, which
have the following expression:

σ ¼ ∂J
∂E ¼ 2a2t1h

6
0r

3
h

f20ð2h60 þ 1Þk2 þ
rh
h20

;

ᾱ ¼ 1

T
∂Q
∂E ¼ 4πat1h

6
0r

3
h

k2ð2f0h60 þ f0Þ
: ð54Þ

In Fig. 11, we plot these coefficients for the family of
solutions presented in Fig. 10. From the plot, we see that at
large temperatures the coefficients scale as σ=k ∼ ᾱ ∼ T=k.
This is again the expected result for CFT4. As we lower the
temperature, we find that in the intermediate scaling regime
the conductivities also follow power laws. For σ=k, we
observe that still goes linearly with the reduced temper-
ature, while ᾱ remains constant. In the low-temperature
regime, we find σ=k ∼ ðT=kÞ1=4 and ᾱ ∼ 0.052.
Now, let us continue with the computation of the

remaining conductivities. To do that, we perturb the
Einstein-Maxwell solutions shown in Fig. 10 by

δA ¼ ð−tδf1ðrÞ þ δaxðrÞÞdx;
δds2 ¼ ðtδfðrÞ þ htxðrÞÞdxdtþ hrxdxdr: ð55Þ

Following as in the previous sections, we obtain expres-
sions for J and Q that do not depend on the radial direction
and can be just expressed as a function of IR data,

J ¼ f20k
2rhð6ð2h60 þ 1ÞE − at1ζð4h60 þ 1ÞrhÞ − 2at1h

8
0r

3
hðζrhða2t1 − 12f20Þ þ 6at1EÞ

6f20h
2
0ð2h60 þ 1Þk2 ;

Q ¼ rhð2h80r2hða2t1 − 12f20Þ þ f20ð4h60 þ 1Þk2Þð2h80rhðζrhða2t1 − 12f20Þ þ 6at1EÞ þ ζf20ð4h60 þ 1Þk2Þ
72f20h

10
0 ð2h60 þ 1Þk2 ; ð56Þ

where we erased the temporal dependence, fixing

δf1ðrÞ ¼ Eþ ζAt;

δfðrÞ ¼ 2r2ζf2g; ð57Þ
and we used that one of the Einstein equations is

δhrx ¼ −
2k2rh8A0

tðζrA0
t þ 6ζAt þ 6EÞ þ ζf2ð12r2h6ð−r2gh02 þ rghh0 þ 2ðg − 1Þh2Þ þ 1

k2Þ
3rf2g

: ð58Þ
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FIG. 11. Plot for the conductivities σ and ᾱ as functions of the reduced temperature T=k for a family of solutions with fixed
μ=k ¼ 0.01. The straight lines correspond to fits in the intermediate scaling regime.
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Then, the remaining transport coefficients read

α ¼ 4πat1h
6
0r

3
h

k2ð2f0h60 þ f0Þ
;

κ̄ ¼ πr2hð−2h80r2hða2t1 − 12f20Þ − f20ð4h60 þ 1Þk2Þ
3h20k

2ð2f0h60 þ f0Þ
: ð59Þ

We recover the expected result α ¼ ᾱ. The thermal con-
ductivity at zero electric current is written for this gravity
solution as

κ ¼ κ̄ −
αᾱT
σ

¼ 2πf0h80r
4
hð12f20 − a2t1Þ− πf30ð4h60 þ 1Þk2r2h

6a2t1h
10
0 r2h þ 3f20ð2h60 þ 1Þh20k2

:

ð60Þ

In Fig. 12, we compare these two quantities and
their behavior as functions of the reduced temperature.
Again, we recover the expected κ ∼ κ̄ ∼ ðT=kÞ2 at high

temperatures. As we lower the temperature and enter into
the intermediate regime, we see that κ and κ̄ start to scale
differently, κ ∼ ðT=kÞ3.19 and κ ∼ ðT=kÞ1.28. In the low-
temperature regime,we find κ ∼ ðT=kÞ2.53 and κ ∼ ðT=kÞ0.97.

V. SUMMARY AND FUTURE DIRECTIONS

We constructed a class of black holes that implements a
RG flow which passes through intermediate scaling sol-
utions within Einstein-Maxwell-AdS theory. These inter-
mediate scalings are anisotropic and are triggered by the
fact that the theory lives in a curved geometry associated to
a Bianchi geometry (1). An interesting characteristic of our
solutions is that in the intermediate regime different spatial
directions scale differently, giving a generalized idea of
Lifshitz scaling. We summarize the scalings of the space-
time for charged solutions in the Table I.
In the lattice induced scalings presented in

Refs. [2,15,16], all spatial directions have the same scal-
ings. We believe that this might be a consequence of
considering square lattices, and it would be nice to check
if different lattice shapes will induce anisotropic scalings
like the ones we present here.
The dc conductivities also reflect the fact that there exist

new scaling solutions at intermediate temperatures. In the
following Table II, we summarize the powers of T=k
obtained for the different conductivities and black hole
solutions.
Let us finish by discussing some possible future direc-

tions. A first direction would be to check the generality of
our results by studying other possible boundary geometries.
In Ref. [14], the authors studied the Einstein equations with
a Bianchi VII0 deformation and found boomerang RG
flows. It would be interesting to see wether one can find
also intermediate scalings in the large helical deformation
regime. Another promising geometry to explore would be
the squashed sphere Bianchi type IX.
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FIG. 12. Conductivities κ̄ (blue) and κ (orange) as functions of
the reduced temperature T=k for a family of solutions with
fixed μ=k ¼ 0.01.

TABLE I. Scalings for the invariant one forms in the different energy scales.

t ω1 ω2 ω3

UV Inter. IR UV Inter. IR UV Inter. IR UV Inter. IR

Solv 1 1 1 1 0 0 1 1 0 1 0 0
Nil 1 11=8 1 1 1 0 1 1 0 1 3=2 0
SL2ðRÞ 1 1 1 1 0 0 1 0 0 1 1 0

TABLE II. Scalings for the transport coefficients in the different energy scales.

σ=k α κ κ̄

UV Intermediate IR UV Intermediate IR UV Intermediate IR UV Intermediate IR

Solv 1 1.88 0.14 1 0.39 0 2 1.66 1.5 2 1.66 1
Nil 1 1.38 0 1 −0.44 0 2 0.71 1.45 2 0.63 0.65
SL2ðRÞ 1 1 0.25 1 0 0 2 3.19 2.53 2 1.28 0.97
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Another interesting direction would be to explore the
effect of Uð1Þ symmetry breaking in the scalings. In this
direction, a holographic superconductor living on an helical
background was studied in Ref. [25]. There, the helix is
supported by a Proca field. It would be an interesting
exercise to repeat their study within the simpler Einstein-
Maxwell context.
Finally, it would be interesting to see how these scalings

appear in the weak coupling limit by studying a theory with

simple field content living in one of the spaces studied
above. It would be nice to find in some toy model how the
anisotropic scalings appear in perturbation theory.
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