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8-Hydroxyquinoline platinum(II) Loaded Nanostructured Lipid 
Carriers: Synthesis, Physicochemical Characterization and 

Evaluation of Antitumor Activity  

Boztepe T. a, Scioli-Montoto S. b, Ruiz M.E. b, Alvarez V.A. c, Castro G.R. a, León I.E. d * 

The incidence of cancer and the death rate increases every year in the world. The drug 8-hydroxyquinoline platinum(II) 

[PtCl(8-O-quinoline)(dmso)] (8HQ-Pt) has been identified as a promising antitumor complex. Nanostructured lipid carriers 

(NLC) are the second-generation drug nanocarrier systems that present superior advantages over other kinds of colloidal 

carrier systems. 8HQ-Pt compound loaded NLC formulations of cetyl esters (SS) were synthesized by ultrasonication in 

presence of two different liquid oils; capric triglyceride, or olive oil. The physicochemical and microscopic characterizations 

of NLC were analyzed by dynamic light scattering (DLS), transmission electron microscopy (TEM), fourier transformed 

infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and X-ray diffraction 

analysis (XRD). In vitro drug release and cytotoxicity, cell uptake and apoptosis assays against the human colon cancer HT -

29 were investigated. The results showed that NLCs indicated a narrow size distribution in the range of 136-159 nm mean 

particle diameter. The thermal characteristics analysis confirmed the stability of NLCs up to 185 °C. Encapsulation efficiencies 

of the 8HQ-Pt compound in NLCs were about 80% and 8HQ-Pt compound in the formulations showed controlled release 

profile during 72 h. The release profile of these two different formulations and the antitumor effect on HT-29 cell line were 

compared with the free 8HQ-Pt compound. The cellular uptake of two different NLC groups was proved by fluorescence 

microscopy and the presence of capric triglyceride liquid oil in the formulation increased the capacity of drug delivery to 

intracellularly when compared with olive oil.

Introduction 

Cancer is the main cause of death worldwide, grew to 18.1 million 

novel cases and 9,6 million deaths in 2018. Lung, breast, colorectal, 

prostate and stomach cancers are leading types of cancer globally. 

Colorectal cancer (CRC) is the third of the most common cancers 

worldwide with approximately 1.8 million people diagnosed in 2018 

and is ranked as the second leading cause of death (880.000 deaths 

in 2018) after lung cancer 1. Genetic and lifestyle factors such as 

unhealthy nutrition, obesity, smoking, alcohol and lack of physical 

activity raise the risk of CRC 2.  

Platinum-based metallodrugs have been used in the treatment of 

various solid tumors for decades, although they show a high level of 

toxicity and low bioavailability 3. Cisplatin, carboplatin and oxaliplatin 

are well-known platinum(II) compounds that are anticancer drugs 

approved by the Food and Drug Administration (FDA, USA) for 

chemotherapy in the clinic 4. Cisplatin is also called as cis-

diamminedichloroplatinum(II) was used for bladder, testicular, 

ovarian, cervical, head, neck, colorectal and lung cancers 5,6. Due to 

an active species of cisplatin, the drug is able to interact with purine 

nucleotide bases of DNA and induces DNA distortion, leading to 

cancer cell apoptosis 7. Although carboplatin and oxaliplatin have a 

similar mechanism of action as cisplatin and exhibit some advantages 

over cisplatin, the drawback of dose-limiting toxicities and intrinsic 

or acquired resistance remain 8. In order to reduce the side effects 

and overcome the resistance of cisplatin, it has been investigated on 

new platinum drugs with elevated antitumor efficiency and more 

tolerable toxicological profile 9. 
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Figure 1: Chemical structure of [PtCl(8-O-quinoline)(dmso)] ( 8HQ-Pt) compound 
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Clioquinol has been used for medical applications such as the 

treatment of Alzheimer’s disease because it is able to interact with 

metals like zinc or copper 10. Clioquinol interaction of metals with 

DNA causes high cytotoxicity and induces apoptosis of cancer cells 11. 

The drug 8-hydroxyquinoline platinum(II) [PtCl(8-O-

quinoline)(dmso)] (8HQ-Pt) (Figure 1) was derived from clioquinol 

and showed antitumor activity without generating resistance and 

side effects up today when it is compared with cisplatin 12. 

Nanosystems were developed to reduce and eliminate some 

disadvantages of many drugs with administration problems like 

cancer drugs, for instance, dosage-related side effects, drug 

resistance and poor aqueous solubility. These systems may provide 

improved drug performance by controlled release, i.e. preventing 

sudden increases in blood levels and leading to a decrease in the side 

effects of the active substance 13. Furthermore, the use of non-toxic 

lipids without organic solvents in the synthesis ensures 

biocompatible, biodegradable and non-irritating nanoparticles 14,15.  

Among nanosystems, nanostructured lipid carriers (NLC) are one of 

the most promising carriers for drug delivery. NLCs are second-

generation solid lipid nanoparticles that consist of a mix of solid and 

liquid lipids stabilized with a biocompatible active compound 16. NLCs 

were developed to overcome some drawbacks of solid lipid 

nanoparticles (SLN), such as drug instability and low drug loading 

capacity 17. NLCs have a high capacity to load drugs and increase the 

solubility of drugs, especially hydrophobic molecules 18.  

The current study aims to improve the availability of the [PtCl(8-O-

quinoline)(dmso)] under physiological environments by an efficient 

encapsulation in presence of two different types of liquid oils: capric 

triglyceride and olive oil, in order to achieve a sustained drug release 

profile and enhanced antitumor effects. Drug encapsulation 

efficiency, cytotoxicity, cell uptake and apoptosis analysis of 

nanoparticles were performed. Physicochemical characterization of 

the formulations was carried out by dynamic light scattering (DLS), 

transmission electron microscopy (TEM), Fourier transformed 

infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), 

differential scanning calorimetry (DSC) and X-ray diffraction (XRD).  

 

Results and discussion 

Formulation development and nanoparticle morphology  

All the formulations were produced with the same type and amount 

of solid lipid and surfactant, changing only the liquid oil (NLCA: capric 

triglyceride, NLCB: olive oil). For both 8HQ-Pt compound loaded 

formulations, the initial amount of drug was constant, and the 

encapsulation efficiency were 82.1 ± 0.9 and 81.5 ± 3.72 for (8HQ-

Pt)-NLCA (8HQ-Pt)-NLCB, respectively. 

The morphological structure and size distribution of nanoparticles 

were analyzed by TEM (Figure 2). Both NLC systems exhibited 

spherical morphology and the size of both formulations are smaller 

than 200 nm. TEM images revealed the size of NLCA was smaller than 

NLCB. These results were confirmed by DLS analysis.  

The mean particle size and polydispersity index (PdI) of the 

formulations were determined by DLS. The average (± sd) particle 

size of NLCA, (8HQ-Pt)-NLCA, NLCB and (8HQ-Pt)-NLCB were 136.0 ± 

1.1, 136.3 ± 0.5, 159.0 ± 2.0 and 144.0 ± 2.0 nm respectively (Table  

Table 1: Average size and PdI of NLCs by DLS. No significant differences were found among 

formulations (ANOVA, p>0.05). Zav - Average size (nm), PdI – Polydispersity index. 

 

1). The PdI values for all the formulations were determined around 

0.2 which indicates monodisperse particle sizes 19.  

 

Physicochemical characterization by FTIR, TGA, DSC and XRD 

analysis 

FTIR analysis was performed to identify the surface functional groups 

and their interaction with the matrix. Cetyl esters (SS) showed 

characteristic peaks in the range of 2915 cm-1 and 2847 cm-1 (alkane 

C-H stretching) and 1731 cm-1 (aldehyde C=O stretching). These 

peaks were observed in the spectra of NLCA, (8HQ-Pt)-NLC-A, NLCB 

and (8HQ-Pt)-NLCB nanoparticles (Figure 3) 20. 

The FTIR spectra of surfactant Poloxamer 188 showed characteristic 

peaks of the alkane group (C-H peak at 2873 cm-1), the alcohol group 

(O-H stretching peak at 1340 cm-1) and the secondary alcohol group 

(C-O stretching peak at 1096 cm-1) 21. 

The liquid oil capric triglyceride that was incorporated in the 

formulations NLCA and (8HQ-Pt)-NLCA showed absorption bands at 

2923 cm-1, 1739 cm-1 and 1148 cm-1 which are related with alkane C-

H stretching, aldehyde C=O stretching and aliphatic ether C-O 

stretching, respectively. Olive oil contained in the formulations NLCB 

and (8HQ-Pt)-NLCB exhibited some peaks at 2923 cm-1 (alkane C-H 

stretching), 1741 cm-1 (esters C=O stretching) and 1160 cm-1 (tertiary 

alcohol C-O stretching) 22,23. 

TGA and DSC analysis were used to analyze the thermal 

characteristics of the nanoparticles. According to the TGA results, 

NLCA, (8HQ-Pt)-NLCA, NLCB and (8HQ-Pt)-NLCB exhibited a biphasic 

thermal behavior. The first thermal degradations appeared in the 

range of 186-338 ºC with a weight loss of 37.3%, 33.9%, 33.2% and 

Formulations Zav (nm) PdI 

NLCA 136.0 ± 1.1 0.218 ± 0.016  

NLCB 159.0 ± 2.0 0.226 ± 0.010  

(8HQ-Pt)-NLCA 136.3 ± 0.5 0.218 ± 0.050  

(8HQ-Pt)-NLCB 144.0 ± 2.0 0.210 ± 0.013  

Figure 2: TEM images of NLCs; 8HQ-Pt compound loaded (left), empty (right). 
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30.3%, respectively and are related to the cetyl esters (SS). All the 

formulations preserved their consistencies up to 185 ºC. That allows 

the NLCs to endure in release media. The second thermal 

degradations appeared in the range of 338 – 421 ºC with a weight 

loss of 62.5%, 65.9%, 66.0% and 68.7% respectively. TGA graph 

showed that NLCB formulations were more stable than NLCA 

formulations (Figure SM1). This fact can be attributed to the 

presence of high content of unsaturated fatty acids (i.e. about 85%) 

in olive oil in the NLCB formulation allowed to interact better with the 

drug 23.  

DSC curves of the free 8HQ-Pt compound, NLCA, (8HQ-Pt)-NLCA, 

NLCB, (8HQ-Pt)-NLCB, cetyl esters (SS) and Poloxamer 188 were 

shown in Figure SM2. All formulations displayed two endothermic 

peaks. The first peaks were observed in the range of 44 – 48 ºC and 

it can be attributed to the melting point temperature of solid lipid 

cetyl esters (SS) which is approximately 44 ºC 15. The second peaks 

were observed in the range of 46 – 52 ºC that could be associated 

with the melting point temperature of Poloxamer 188 

(approximately 53 ºC). The free 8HQ-Pt compound did not show 

degradation up to 100 ºC which indicates its good stability under the 

operational conditions. 

Crystalline structures of the NLCs with or without 8HQ-Pt compound 

(NLCA, (8HQ-Pt)-NLCA, NLCB and (8HQ-Pt)-NLCB were analyzed by XRD 

to identify the polymorphism of the lipid matrix. Fats can crystalize 

in α (unstable), β’ (metastable) and β (stable) polymorphic forms 24. 

The assignment of XRD peaks indicates a mixture of β and β’ forms 

of the lipids. All the NLC formulations showed comparable patterns. 

The patterns equivalent to NLC formulations displayed peaks 

correlative to cetyl esters SS (19.10°, 21.32° and 23.25°) and confirm 

the solid crystalline structure of NLCs (Figure 4) 15. Short spacing (d) 

of crystal lattices is utilized to characterize the polymorphic forms. 

NLC formulations exhibited short spacing at 0.46 nm (β form), 0.42 

nm (β’ from) and 0.38 nm (β or β’ form) where the peaks were 

observed at 19.10°, 21.32° and 23.25°, respectively 25. Polymorphic 

behavior due to the crystalline structure of lipid nanoparticles is 

crucial for stability during storage and the release properties of the 

loaded drug from the nanoparticles. β or β’ forms display higher-

order packing and highest thermodynamic stability. Thus, 

undesirable drug expulsions could be prevented 20,26. 

 

In vitro drug release assay 

In vitro drug release assay was performed at pH 4.4 in 200 mM 

acetate buffer by the dialysis method. 2.0 mL of each formulation as 

well as a free-drug suspension were placed into dialysis bags and the 

release profiles were analyzed (Figure 5). Free 8HQ-Pt reached 100% 

release in the first 3 h. In comparison with free 8HQ-Pt compound 

suspension, both formulations displayed slow drug release rate, with 

approximately 75% (8HQ-Pt)-NLCA and 90% (8HQ-Pt)-NLCB released 

in 72 h. Figure 5 showed hyperbolic curves for 8HQ-Pt compound 

release kinetic from the nanoparticles. When studying the drug 

release from the nanoparticles, it was found that the date better 

Figure 3: FTIR spectra of Cetyl esters (SS), Poloxamer 188, liquid oils; capric triglyceride 

and olive oil and NLCA, (8HQ-Pt)-NLCA, NLCB and (8HQ-Pt)-NLCB nanoparticles. 
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adjust to a first-order release kinetic 27. (Eq. 1), according to all the 

statistical goodness of fit measures considers (R2, R2-adj, AIC, MSE 

and residual structure). 

 

  𝑭𝒕 =
𝑴𝒕

𝑴∞
× 𝟏𝟎𝟎 = 𝑭𝒎𝒂𝒙(𝟏− 𝒆−𝒌∙𝒕)   Eq. 1 

 

In the equation, Ft is the percentage released at time t, Mt and M∞ 

are the cumulative amounts of the compound released at time t and 

infinite time, respectively; Fmax and k are the parameters to be 

estimated, also known as the scale and shape parameters, 

respectively. The results of the modelling analysis are shown in Table 

SM1, along with some goodness of fit measures. 

A first-order kinetic means that the device releases the drug in a way 

that is proportional to the amount of drug remaining in its interior. 

Despite that is difficult to conceptualize this model in a theoretical 

basis 28, it is informative to compare the value of the kinetic constant 

k (scale parameter) among the formulations since it contains the 

information about the influence of the formulation on the drug 

release. As it can be seen in Table SM1, while the free 8HQ-Pt 

compound on the dialysis bag shows a k=0.7, the nanoparticles 

possess values of 0.23 and 0.12 (for NLCA and NLCB, respectively). In 

other words, the nanoparticles were able to control the release 

speed by decreasing the kinetic constant more than a half, in 

comparison with the free 8HQ-Pt compound. 

 

Cytotoxicity assay 

The human intestinal cell line HT-29 was isolated from colon 

adenocarcinoma cells 29. 95% of colorectal tumors are 

adenocarcinoma which becomes malignant from epithelial cells of 

the colorectal mucosa and related with the glands 30. HT-29 cell line 

is one of the most used in vitro models in the anticancer studies. It is 

reported that HT-29 cell line showed resistance to chemotherapy 

drugs 31,32. model to clarify the mechanism of acquired resistance in 

preclinic cancer investigations 33.  

Cell cytotoxicity assay was performed for NLCs and free 8HQ-Pt 

compound on HT-29 colon carcinoma cell line by MTT analysis (Figure 

6). Cells were treated with 5, 10 and 25 μM concentration of 8HQ-Pt 

compound for 24 h. The results showed that unloaded NLCs were 

non-toxic while (8HQ-Pt)-NLCA and (8HQ-Pt)-NLCB showed a 

cytotoxic effect in HT-29 cells correlated with drug concentration. 

The cell viability values dropped to 45.0% (free drug), 44.4% ((8HQ-

Pt)-NLCA), 78.5% ((8HQ-Pt)-NLCB) for 5 μM, 12.0%, 17.9%, 54.4% for 

10 μM and 11.0%, 10.1%, 16.5% for 25 μM, respectively. Moreover, 

the type of liquid oil has a different effect on cell viability. (8HQ-Pt)-

NLCA synthesized with capric triglyceride exhibited more cytotoxicity 

than (8HQ-Pt)-NLCB synthesized with olive oil but showed similar 

cytotoxic effect with the free 8HQ-Pt compound. This result can be 

attributed to 8HQ-Pt compound was released in a time-dependent 

controlled manner from the nanoparticle in 24 h. On Figure 5 is 

displayed that the release of 8HQ-Pt from NLCA and NLCb roughly is 

75% compared to 100% of free drug so which means that 8HQ-Pt-

NLCA is possess approximately 25% more cytotoxic effect than the 

free drug. This advantage could be significant considering a potential 
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iv administration in where the injected formulation is circulating in 

the blood flow to reduce undesirable secondary effects. 

 

Figure 6: Cell cytotoxicity 8HQ-Pt loaded NLC formulations in HT-29 cell line. 

Concentration-dependent cytotoxicity of free 8HQ-Pt compound and 8HQ-Pt loaded 

NLCs in HT-29 cells for 24 h. 

Cellular uptake of NLCs 

Cellular uptake of NLCs into HT-29 cells was performed to evaluate 

the internalization of the nanoparticles. Firstly, the NLCs were 

labelled with fluorescent probe DiOC18 and then, the cells were 

incubated with the empty labelled nanoparticles using three 

different concentrations of NLCs (equivalent amount for 5, 10 and 25 

μM (8HQ-Pt)-NLCs for 6 h. Subsequently, the fluorescent signals 

were followed by flow cytometry. It was observed that the cellular 

uptake of NLCs increased directly correlated with their 

concentrations. Furthermore, the results showed that NLCA was 

more capable to penetrate to the HT-29 cells than NLCB (Table 2). 

This data confirmed the cytotoxicity assay result. Neves et al. 

compared cellular uptake properties of NLC and SLN and emphasized 

that NLCs exhibited higher internalization to the colon carcinoma 

cells due to the presence of liquid oil 34. 

 

Table 2: Cell uptake of DiOC18-loaded cetyl esters (SS) NLCs in HT-29. Flow cytometry 

was utilized to detect the cell uptake of labelled NLCs. The cells were incubated for 6 h 

at the concentrations that equivalent amount for 5, 10 and 25 μM Pt-NLCs. 

Concentration (μM) NLCA NLCB 

5 54.7 22.5 

10 72.1 30.7 

25 88.1 55.0 

 

In addition to the presence of liquid oil, our study also revealed the 

importance of the type of liquid oil. The NLCs with capric triglyceride 

achieved more cellular uptake efficiency than the NLCs with olive oil. 

Safwat et al. analyzed the effect of 3 types of liquid oils (Labrafil®, 

Labrasol® and Labrafac lipophile®) to the antitumor activity of NLC. 

Simvastatin loaded NLCs with Labrasol® showed the highest cellular 

uptake and cytotoxic effect on MCF-7 cancer cells 35. Lan et al. 

reported that lipid-coated cisplatin showed enhanced cellular uptake 

in CAL 27, SCC 15 and FaDu cancer cell lines when compared with 

free cisplatin 36.  

 

Apoptosis 

Antitumor drugs have effectiveness to prevent cell proliferation and 

generate cell apoptosis. During apoptosis process, 

phosphatidylserine residues translocate to the outer of the cell 

membrane. Annexin V–FITC is a fluorescent dye that binds to 

phosphatidylserine receptor. Thus, the apoptotic cells become 

detectable by fluorescence assays 37. 

HT-29 cells were stained with Annexin V–FITC/PI apoptosis detection 

kit after 48 h treatment. Antitumor activity of the free 8HQ-Pt 

compound and (8HQ-Pt)-NLCA were confirmed by flow cytometry. 

Figure 7 shows the percentage of vital (V-/PI-), the early apoptotic 

(V+/PI-), the late apoptotic (V+/PI+) and the necrotic (V-/PI+) 

subpopulations in the dot plot. The results demonstrated that free 

8HQ-Pt compound and (8HQ-Pt)-NLCA induced 13.0% and 12.6% for 

1.0 μM, 53.8% and 33.3% for 2.5 μM, 71.4% and 70.3% of cells in late 

apoptosis (V+/PI+), respectively. These results confirmed the cell 

viability assays that the late apoptotic cells values increased in a 

concentration-dependent manner in cells treated with free 8HQ-Pt 

compound and (8HQ-Pt)-NLCA. On the other hand, empty 

nanoparticles exhibited very low apoptosis level. Ruiz et al. reported 

the antiproliferative effect of 8HQ-Pt by measuring mitochondrial 

transmembrane potential. They also proved that its apoptotic effect 

is in a concentration-depended manner in the MG-63 cell line 12. 

Platinum-based drugs show limited plasma stability and low delivery, 

although their apoptotic effects 38. Drug stability is increased by 

nanoencapsulation due to the interaction of the drug with the lipid 
18. Cacicedo et al. demonstrated that the antitumor activity of 

Metvan was enhanced by NLC encapsulation. This result was 

attributed to the drug protection property of NLC and therefore, 

higher drug accumulation occurred in the tumor cells and caused 

more apoptosis 39. Thus, NLCs are encouraging nanosystems to 

overcome the problems of antitumor drugs and improve their 

therapeutic activities. 

 

Experimental 

Materials 

Cetyl esters (SS) and capric triglyceride lipids were kindly donated by 

Croda (Argentina). Poloxamer 188 and 3,3’-

dioctadecyloxacarbocyanine perchlorate (DiOC18) were purchased 

from Sigma–Aldrich (Buenos Aires, Argentina). DMEM (Dulbecco’s 

Modified Eagles Medium) and TrypLE™ were purchased from Gibco 

(Gaithersburg, MD, USA), and FBS (fetal bovine serum) was bought 

from Internegocios S.A. (Argentina). Annexin V, Fluorescein 

isothiocyanate (FITC)/PI and tetrazolium salt MTT (3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium-bromide) from 

Invitrogen Co. (Buenos Aires, Argentina). Other reagents were of 

analytical grade from available commercial sources and used as 

received from Merck (Darmstadt, Germany) or similar brand. 
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Preparation of 8HQ-Pt compound 

The [PtCl(8-O-quinoline)(dmso)] was synthesized and characterized 

according to Martín Santos C, et al. 11. The product was obtained 

following the general procedure as a yellow-orange solid (78% yield) 

without further purification.  

1H NMR (300 MHz, CD2Cl2) δ 9.41 (dd, J = 10.7, 1.2 Hz, 1H), 

8.38 (dd, J = 8.4, 1.1 Hz, 1H), 7.58-7.40 (m, 2H), 7.02-7.06 (m, 2H), 

3.61 (s, 6H). 13C NMR (75 MHz, CD2Cl2) δ 148.6, 148.3, 140.3, 140.2, 

131.5, 131.0, 121.7, 115.6, 114.6. 46.6. 195Pt NMR (64.5 MHz, 

CD2Cl2) δ: -2760.7. HRMS (FAB+): calcd for C11H12ClNO2PtS (M+): 

452.9915; found: 452.9928. Anal. calcd. for C11H12ClNO2PtS: 

C, 29.18; H, 2.67; N, 3.09; found: C, 29.00; H, 2.67; N, 2.94. 

 

Figure 7: Apoptotic effects of free 8HQ-Pt compound and (8HQ-Pt)-NLCA at 1.0 μM, 2.5 μM and 5.0 μM after 48 h incubation with HT-29 cells. 
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Preparation of 8HQ-Pt compound loaded NLCs 

[PtCl(8-O-quinoline)(dmso)] compound loaded NLCs were prepared 

by ultrasonication technique 20,40. Briefly, 400 mg of solid lipid cetyl 

esters (SS) (2.0%, w/v) was melted in a water bath at 70 °C and mixed 

with 2.0 mg of the 8HQ-Pt compound. [PtCl(8-O-quinoline)(dmso)] 

was dissolved in 200 μL capric triglyceride or olive oil (1.0%, v/v). 

After 15 min, 20 mL of the hot aqueous solution of Poloxamer 188 

(4.5%, w/v) was added to the lipid phase. Instantly, the mixture was 

ultrasonicated at 65% amplitude for 30 min equipped with 6 mm 

titanium tip (ultrasonic processor Cole Parmer, USA, 130 Watts). 

After sonication, the formulation was cooled down at room 

temperature and stored at 4 °C. Two different groups of lipid 

formulations were synthesized. The first group contained capric 

triglyceride: (8HQ-Pt)-NLCA and its control NLCA without the drug. 

The second one was similarly prepared and contained olive oil (74% 

oleic acid, 13% palmitic acid and small amount other fatty acids): 

(8HQ-Pt)-NLCB and its control NLCB. 

 

Measurement of encapsulation efficiency 

Encapsulation efficiency (EE, %) was calculated by measuring the 

concentration of the free drug in solution. Briefly, 500 μL of final 

suspension was transferred to an ultrafiltration centrifugal device 

(MWCO 10.000, Microcon®, Millipore, MA, USA) and centrifuged at 

12000 ×g for 30 min. After centrifugation, the supernatant containing 

the free drug was measured by HPLC. The EEs (%) of the NLCs were 

estimated following equation 2 (Eq. 2): 

 

              EE (%) = (wi – wfd) ∕ wi × 100             Eq. 2       

where wi is the initial amount of Pt compound added to the 

formulation and wfd is the amount of free Pt compound after the 

ultrafiltration process. 

 

HPLC analysis of Pt compound 

Chromatographic analysis was performed using HPLC (Gilson SAS, 

Villiers-Le-Bel, France) with UV detection. Chromatographic 

separation was performed in a Lichrosphere® 100 RP-18 (250 mm x 

4.6 mm, 5 μm, Merck KGaA, Darmstadt, Germany) column. The 

mobile phase was methanol and 0.1% phosphoric acid solution 

(60:40). The system was operated isocratically at 1.0 ml/min flow 

rate and the detection was performed at 262 nm. Samples were 

diluted with mobile phase and centrifuged (15.000 xg for 5 min at 4 

°C) prior to their injection (20 μL). 

The method was validated in terms of linearity, precision, and 

specificity, over the range of expected concentrations (0.1 – 200 μM). 

Linear regression for the Pt compound (p< 0.0001) was observed in 

the concentration range of 0.2 – 110 μM, with a coefficient of 

determination R2 = 0.997. The 95% confidence interval of the 

intercept was [-1.2322 – 0.6447]. The precision of the method was 

established at three concentration levels: 0.2, 44 and 110 μM, and in 

all cases RSD values were below 3%. The method was specific for 

8HQ-Pt compound and no interfering peaks were observed. 

 

Particle size and polydispersity index (PdI)  

The average diameter and size distribution of lipid nanoparticles 

were measured by dynamic light scattering (DLS) (Nano ZS Zetasizer, 

Malvern Instruments Corp, UK) at 25 °C in polystyrene cuvettes with 

a thickness of 10 mm. Measurements were performed in 10 mm path 

length capillary cells, using deionized water (Milli-Q®, Millipore, Ma., 

USA). The PdI value was also determined. All the measurements were 

carried out in triplicate.  

 

Transmission electron microscopy (TEM) 

TEM analysis was performed using Jeol-1200 EX II-TEM microscope 

(Jeol, MA, USA). The NLC dispersion was 1:10 diluted with ultra-pure 

Milli-Q® water, and 10 μL of the dispersion was spread onto a 

collodion-coated Cu grid (400-mesh). Liquid excess was removed 

with filter paper and for contrast enhancement a drop of 

phosphotungstic acid as added to the NLCs dispersion.  

 

Fourier transformed infrared spectroscopy (FTIR) 

Fourier transform infrared spectroscopy (FTIR) was performed by 

using a Nicolet 6700 (Thermo Scientific, Inc., Waltham, MA, USA) 

spectrometer. Attenuated total reflectance (ATR) mode was used to 

record spectra over the range 600 – 4.000 cm-1 are the solution of 2 

cm-1. 

 

Thermogravimetric analysis (TGA) 

TGA was achieved with the aim to analyze the thermal stability of 

cetyl esters (SS), free (8HQ-Pt) compound, NLCA, (8HQ-Pt)-NLCA, 

NLCB, (8HQ-Pt)-NLCB particles. TGA Q500 apparatus (TA Instruments, 

New Castle, DE, USA) was used to obtain TGA data. Samples of 2.0 - 

9.0 mg were accurately weighed in a platinum pan and 

measurements conducted from room temperature to 600 ºC at a 

heating rate of 10 ºC/min under nitrogen atmosphere to avoid the 

thermo-oxidative oxidation.  

 

Differential Scanning Calorimetry (DSC) analysis 

The thermal properties of cetyl esters (SS), free (8HQ-Pt) compound, 

NLCA, (8HQ-Pt)-NLCA, NLCB, (8HQ-Pt)-NLCB particles were determined 

by differential scanning calorimetry (DSC Q5000, TA Instruments, 

USA) under nitrogen atmosphere. Scans were run at 0 to 200°C range 

with heating rate of 10°C/min. 

 

X-ray diffraction (XRD) 

The X-ray diffraction patterns were obtained with a PANalytical 

X’Pert PRO diffractometer equipped with an X-ray source (Phillips 

PW 1830, PANalytical BV, the Netherlands) using CuKα radiation at 

40 kV and 40 mA, over a 2θ range of 5° – 60° with an acquisition time 

of 1s/s at each step of 0.02°. 

 

In vitro drug release assay 

Release assays were performed using dialysis membranes (MWCO 10 

kDa). The membrane was soaked in distilled water for overnight and 

filled with 2.0 ml of each formulation followed by immersion in 15.0 

mL of 200 mM acetate buffer (pH = 4.4) at 37 ºC, with continuous 

shaking at 200 rpm. Samples of 200 μL were withdrawn at regular 

intervals for 72 hours, and drug concentration was measured in 

HPLC. 
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Cell cytotoxicity assay 

HT-29 (human colon carcinoma cells) cell line was obtained from 

ATCC® (HTB-38™). Cells were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM; Gibco, Invitrogen Corporation, USA) supplemented 

with 10% FBS (Internegocios, Buenos Aires, Argentina) and 

antibiotics (100 U/ml penicillin and 100 μg/ml streptomycin; Gibco, 

Invitrogen Corporation, USA) at 37ºC and under 5% CO2 atmosphere. 

Cell viability was examined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) 41. HT-29 cells were seeded in a 

96-well plate for 24 h to be attached to the plate surface. Then, the 

cells were treated with different concentrations of free (8HQ-Pt) 

compound, NLCA, (8HQ-Pt)-NLCA, NLCB, (8HQ-Pt)-NLCB particles in 

serum-free DMEM for 24 h. The medium was removed, and the cells 

were incubated with MTT reagent (0.5 mg/mL MTT in supplemented 

DMEM medium) for 3 h. Later, the absorbance was read at 570 nm 

in a microplate reader (multiplate reader multiskan FC, thermo 

scientific). Cell viability was indicated as the percentage (%) of the 

untreated control value (100% survival). 

 

Cellular uptake assay 

Cellular uptake was evaluated using empty nanoparticles labelled 

with the green fluorescent probe DiOC18 (λabs/λem= 484/501 nm). 

Concisely, 1.0 mg of DiOC18 was mixed with the melted lipid phase 

(at 70 °C) and protected from light. The formulation was prepared as 

previously described by the addition of aqueous phase and 

sonication at 65% potency for 30 min. As a result, the DiOC18 was 

100% encapsulated into the nanoparticles. The cellular uptake of 

fluorescent-labelled nanoparticles was evaluated by flow cytometry.  

HT-29 cells were plated in 12 well plate at the density of 20 ×104 cells 

per well. After 24 h, cells were treated with serum-free DMEM 

containing three different concentrations of empty NLCs (equivalent 

amount for 5, 10 and 25 μM (8HQ-Pt)-NLCs and incubated for 6 h. At 

the end of the treatment, cells were washed once with PBS. Then, 

cells were treated with 300 μL of trypLe and next, 600 μL of the 

serum-containing medium was added to each well. Later, cells were 

collected from each well to Eppendorf tubes and centrifuged at 2,500 

×g for 5 min. Supernatants were removed and cells were dispersed 

in 200 μL of PBS. Fluorescence was analyzed by FACSCalibur (Becton–

Dickinson, Franklin Lakes, NJ, USA) and the resulting values were 

evaluated by FlowJo 7.6 software. 

 

Apoptosis 

Cells were treated with the three different concentrations (1.0, 2.5, 

5.0 μM) and incubated for 48 h prior to analysis. For the staining, cells 

were washed with PBS and were diluted with 1X binding buffer, 

Annexin V-FITC and PI and incubated for 20 min at room temperature 

prior to analysis. Cells were collected using flow cytometry (BD 

FACSCalibur™) and the results were analyzed using FlowJo 7.6 

software. Four subpopulations were defined in the dot plot: the 

undamaged vital (Annexin V−/PI−), the vital mechanically damaged 

(Annexin V/PI+), the early apoptotic (Annexin V+/PI−), and the late 

apoptotic (Annexin V+/PI+) subpopulations. 

 

Statistical analysis 

Experiments were carried out with a minimum of 3 independent 

replicas. Comparisons of the means were performed by analysis of 

variance (ANOVA) with a significance level of 5.0% (α= 0.05) followed 

by Fisher’s least significant difference test. 

 
Conclusions 

In the present study, two novel, stable and smart NLC 
formulations were successfully synthesized by ultrasonication 
technique in the presence of capric triglyceride or olive oil: 
(8HQ-Pt)-NLCA and (8HQ-Pt)-NLCB. 
According to TEM and DLS results that the nanoparticles 
displayed spherical shape and narrow size distribution with low 
PdI (lower than 0.25) which are indicatives of the incorporation 
of 8HQ-Pt compound into the NLCs. Besides, an efficient 
encapsulation higher than 80% were founded for both formulations 
In addition, the physicochemical characterization of the 
formulations by FTIR, TGA, DSC and XRD proved the thermal 
properties, surface composition and crystalline structures of the 
free 8HQ-Pt compound, loaded and empty formulations. 
Compared to the free drug, both nanoparticles showed a slower 
and more sustained release profile during 72 h, which 
guarantee the biodistribution of the nanoparticles as such, at 
the same time that they release their cargo. The cytotoxicity 
effect, cell uptake and apoptosis assays of 8HQ-Pt compound 
loaded nanostructured lipid carrier (NLC) formulations were 
evaluated in a dose-dependent manner on human colon 
adenocarcinoma cell line HT-29. (8HQ-Pt)-NLCA showed similar 
effects with free 8HQ-Pt compound on HT-29 cells but without 
the deleterious effects of the free drug, and with enhanced 
biocide activity over cancer cells. Additionally, the nanosystems 
may provide other advantages over the free drug: protection 
from in vivo degradation, improved biodistribution profile and 
decreased undesirable side effects. Finally, our study suggests 
that 8HQ-Pt compound loaded NLCs could be a promising drug 
delivery system for colorectal cancer treatment with enhanced 
therapeutic efficacy. 
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