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a b s t r a c t

Numerical simulation results of mass transfer to and from drops with applications to liquid–liquid
extraction processes are considered. Multiple solute components (specifically 2 solute components) are
assumed to be present in the drop. The system is described using the theory of multi-component mass
transfer, in which a flux of one component can be coupled to a concentration gradient in the other. The
nominal strength of this coupling is determined by the off-diagonal elements of a diffusivity matrix.
Naively it might be thought that, if the off-diagonal matrix elements are small compared to the diagonal
ones, then the influence of coupling between components is essentially negligible. It is shown however
that this is not always the case. Particular focus is given to the case where one solute component has
an imposed concentration difference between the drop interior and the drop surface, whilst the other
solute has no such difference imposed. Mass transfer is still observed for the latter component, which is
a clear indication of coupling due to multi-component diffusion effects. The mass fraction of the compo-
nent with no imposed concentration difference evolves first by deviating from its initial value, but later
returns back to this initial value. It is possible to place a bound on the extent of this deviation in terms
of the elements of the diffusivity matrix and any concentration difference imposed on the other compo-
nent. Circulation flow, if present within the drop, is found only to have a weak influence on the maximum

extent of the aforementioned deviation. It has however a role in speeding up the rates of deviation and
subsequent return of component mass fraction compared to a non-circulating rigid drop case. Circulation
also determines the order in which individual pointwise locations in the drop experience this deviation
and subsequent return: only points near the drop surface experience a rapid evolution in the absence
of circulation, whereas points either near the surface or near the axis evolve rapidly in the presence of
circulation.
. Introduction

Mass transfer by liquid–liquid extraction is important in
any chemical engineering operations [1–5]. During liquid–liquid

xtraction, one or more solutes transfers to or from dispersed drops

f one solvent phase to a surrounding continuous phase of an
mmiscible solvent. The mass transfer process is driven by diffusion
rom one phase to the other immiscible phase. One complicating
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feature however is that when more than one solute is present, it is
possible to have multi-component mass transfer in which a concen-
tration gradient of one component drives a flux of another [6–17].
In order to analyse this complicating feature it is sufficient to con-
sider a ternary system, with two solutes and one solvent present
(and this is what will be studied here), although it should be empha-
sised that the multi-component mass transfer theory applies more
generally to a system with an arbitrary number of components.

Coupling between concentration gradients and fluxes of
different components can have serious consequences for the
liquid–liquid extraction process. The nominal strength of the cou-
pling is measured by off-diagonal elements of a diffusivity matrix
[16]. When these off-diagonal elements are large, strong coupling

between solute components is expected, and multi-component
effects certainly cannot be ignored. The converse however is not
true. Even in the case where off-diagonal elements are small
(compared to diagonal ones), it might not be possible to neglect

dx.doi.org/10.1016/j.colsurfa.2011.04.021
http://www.sciencedirect.com/science/journal/09277757
http://www.elsevier.com/locate/colsurfa
http://dx.doi.org/10.1016/j.colsurfa.2010.11.058
mailto:subal@santafe-conicet.gov.ar
mailto:paul.grassia@manchester.ac.uk
mailto:Carlos.Harrison@k-wac.com
mailto:walter.korchinsky@manchester.ac.uk
dx.doi.org/10.1016/j.colsurfa.2011.04.021


2 ysico

m
c
a
d
t
c
t
t
t
I
a
e
i
o
l
m
a
p
t
t
t

t
[
r
t
r
a
s
c
d

[
o
a
a
i
q
‘
w

t
A
s
c
t
t
4
m
a

2

b

T

t
2
(
t
t

52 S. Ubal et al. / Colloids and Surfaces A: Ph

ulti-component effects altogether. Suppose, for example in the
ase where two solutes are present, that solute 1 is the one we
re trying to transfer and solute 2 is a contaminant present in both
ispersed drop and surrounding immiscible continuous phases. If
he transfer of solute 1 also drives transfer of solute 2, then the
oncentration of solute 2 in either solvent phase will change over
ime, even if the concentration (or more generally chemical poten-
ial [16,18]) of solute 2 is initially equal in both phases, meaning
hat there is no mass transfer driving force for solute 2 on its own.
t is possible that the level of the contaminant solute 2 might be
cceptable initially (for some desired target product purity) but
volves over time to become unacceptable. Even very small changes
n the level of solute 2 might need to be determined via the the-
ry of multi-component mass transfer if the initial concentration
evel is near to some critical purity. It therefore needs to be deter-

ined under what circumstances these multi-component effects
re important, and under what circumstances a simpler single com-
onent theory might be acceptable. This may depend not only on
he size of the off-diagonal diffusivity matrix elements, but also on
he initial and boundary conditions applied to the solute concen-
rations: such a case will be studied here.

Apart from multi-component effects, another complicating fea-
ure of mass transfer in liquid–liquid extraction is circulation
19–27]. It has been described [24–26] how circulation drives mate-
ial around an internal stagnation point located typically quite close
o the equatorial plane and at a radial coordinate about 0.7 of the
adius of the drop. Circulation speeds up mass transfer compared to
rigid (non-circulating) drop by advecting material from the drop

urface to the drop interior. In particular, transferred material is
arried by the circulation from near the drop surface to along the
rop axis.

However if the streamline pattern within the drop is laminar
26], which is often the case [24,25,28,29], the system still relies
n diffusive mass transfer to take material from the surface-and-
xis towards the internal stagnation point. This problem has been
nalysed in detail [26], but it was claimed that the systems stud-
ed (although formally multi-component ones) actually behaved
uite similar to single component ones. It is the wish to observe

true’ multi-component effects including the presence of circulation
hich has prompted the present work.

This paper is laid out as follows. In the next section (i.e. Sec-
ion 2), the theory of multi-component mass transfer is introduced.
fter that a special case of multi-component mass transfer is con-
idered (Section 3), whereby one of the components has no imposed
oncentration difference: this leads to some simplifications in
he formulation, and also some insightful physical interpreta-
ions of the resulting multi-component coupling terms. Section

briefly describes the numerical methodology used to solve the
ulti-component mass transfer equations. Numerical results are

nalysed in Section 5, whilst Section 6 offers conclusions.

. Multi-component theory of mass transfer

The equation that governs multi-component mass transfer can
e written [16,26] as:

∂w

∂t
= −Pe u · ∇w + �∇2w. (1)

he various terms in this equation can be defined as follows.
The term w is a vector of solute mass fractions, so that with

wo solutes present w1 denotes solute 1 and w2 denotes solute

. The terms ∇ and ∇2 are the gradient and Laplacian operators
made dimensionless with respect to the drop radius R). Meanwhile
denotes time. This has been made dimensionless on a diffusive

ime scale, R2/〈 D 〉, where R is the drop radius, and 〈D 〉 is a typical
chem. Eng. Aspects 382 (2011) 251–260

diffusivity scale, comprised of the average of the infinite dilution
diffusivities of all the various components in the system.

The term Pe is the Peclet number, which is defined as RUdrop/〈 D 〉,
where Udrop is the drop translation speed relative to the continuous
phase. Physically Pe represents the ratio between the diffusive time
scale and the streamline circulation time scale. A typical value of
Pe is of the order of tens of thousands [26], i.e. diffusion is slow and
circulation is rapid, but high Pe simulations are numerically stiff
and hence expensive to solve. Moreover, for much of a drop’s evo-
lution, any high Pe simulation results asymptote towards a ‘master
curve’ [26]. Thus useful intuition can be gained with less numerical
expense for Pe = 1000 or even Pe = 100.

The field u is the velocity field within and around the drop. It is
made dimensionless on the scale Udrop. For simplicity (and by con-
trast with a number of other studies [30–33]) we will assume that
the velocity field u is steady over time, and that stresses on the drop
surface associated with the velocity field are insufficient to deform
it out of spherical. Subject to these assumptions, the field u can be
determined by (numerical) solution of the Navier–Stokes equations
(see e.g. [28,29]) given the drop Reynolds number Re, and also the
ratios between internal and external viscosity, and between inter-
nal and external density. It has also been shown that truncated
Galerkin expansions [24–26,34,35] give acceptable approximations
to the velocity fields. In what follows, we shall employ the same
truncated Galerkin velocity field as in [26], which corresponds to
Re = 30 with equal internal and external viscosities, and equal inter-
nal and external densities. A sketch of the resulting streamline
pattern is shown in Fig. 1. Notice that the field u is axisymmetric,
and hence the mass fraction field w is likewise.

The term � is the multi-component diffusivity matrix [16]
(made dimensionless on the scale 〈D 〉). In the case where there
are two solutes, it is a 2 × 2 matrix, with elements �11, �12, �21,
�22. The off-diagonal elements �12 and �21 describe the multi-
component couplings between the concentration gradient of one
solute and the mass flux of another. The off-diagonal elements can
be either positive or negative, depending on the direction in which a
gradient of one solute drives a flux of the other. Moreover, if the off-
diagonal elements vanish, the two solutes behave as independent
single component systems.

The elements of the matrix � can be predicted via the so called
Maxwell–Stefan theory [10,16,36–39]. These matrix elements are
found to be functions of mass fraction. However it has been shown
that during the course of a given liquid–liquid extraction operation,
the variation of � is quite weak [40]. Thus � can be assumed to be
a constant during the course of any given extraction operation. This
has already been anticipated in Eq. (1) as the diffusivity � has been
taken outside the Laplacian operator. More details regarding � will
be given presently.

Eq. (1) needs to be solved with appropriate sets of initial condi-
tions and boundary conditions. One has a choice of solving either
[27] a coupled/‘conjugate’ problem (both inside and outside the
drop, with mass fluxes and chemical potentials matched on the
drop surface), or an external problem (i.e. outside the drop only)
or an internal problem (i.e. inside the drop only). Technically it is
the (more complicated) coupled problem which should be solved,
whereas the external and internal problems are merely approxima-
tions. The external problem tends to be most relevant for extraction
from a gas bubble [15,41] rather than the liquid drop case (on the
grounds that mass transport tends to be extremely rapid in the gas
phase, implying the transport in the external liquid phase is the
rate-limiting step). It has been claimed however [26] that the inter-
nal problem may be a reasonable approximation to the full coupled

liquid–liquid problem, especially in the limit of large Pe. The reason
is as follows. Liquid inside the drop circulates around many times
as mass transfer proceeds, whereas (in the frame of reference of
the drop) liquid outside the drop flows past the drop surface once
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tion to diagonalize �, solve for the evolution of decoupled
‘pseudo-component’ concentrations, and then invert the matrix
transformation to recover the ‘true’ components. We have

1 It is not necessary that solutes be present in a mass fraction much smaller than
ig. 1. Streamline pattern determined from a truncated Galerkin expansion for a
irculating drop with Reynolds number Re = 30. Fluid viscosities are assumed equal
nside and outside, as are fluid densities.

nly. Fluid elements outside the drop therefore have less time to
xchange mass amongst themselves (and so exchange mass over a
maller distance) than those inside the drop. If concentration dif-
erences tend to be realised over smaller distances outside the drop
han inside it, this means the concentration differences must also
e smaller outside to keep the fluxes matched. Hence, in the inter-
sts of simplicity, we will solve only internal problems, for which
nitial uniform solute mass fractions wo

1 and wo
2 are specified, and

or which steady boundary mass fractions wR
1 and wR

2 are given.
The internal problem must be solved for all times t ≥ 0, and

in spherical polar coordinates) dimensionless radial coordinates
≤ r ≤ 1 and polar angles 0 ≤ � ≤ �. The azimuthal angle is irrel-
vant because both u and w are axisymmetric. Initial conditions
pplicable at t = 0 for all dimensionless radial coordinates 0 ≤ r < 1
nd polar angles 0 ≤ � ≤ � are
1 = wo
1, w2 = wo

2, (2)

here wo
1 and wo

2 are considered uniform over the entire drop.
eanwhile boundary conditions applicable at the drop surface r = 1
chem. Eng. Aspects 382 (2011) 251–260 253

for all t > 0 and 0 ≤ � ≤ � are

w1 = wR
1, w2 = wR

2, (3)

where wR
1 and wR

2 are considered steady over time and uniform with
respect to polar angle.

Specifically we will consider two sets of conditions, one consis-
tent with previous work [26,40]

wo
1 = 0.2, wR

1 = 0.3, wo
2 = 0.6, wR

2 = 0.4, (4)

and one sharing the same ‘mid-range’ mass fractions (wo
1 + wR

1)/2
and (wo

2 + wR
2)/2

wo
1 = 0.2, wR

1 = 0.3, wo
2 = 0.5, wR

2 = 0.5. (5)

For both Eqs. (4) and (5) we say that a concentration difference is
imposed for component 1, i.e. wo

1 /= wR
1. In Eq. (4) there is likewise an

imposed concentration difference for component 2, i.e. wo
2 /= wR

2. In
Eq. (5) however wo

2 = wR
2, meaning that no concentration difference

is imposed for component 2.
Return now to consider the dimensionless diffusivity matrix

�. The elements of the matrix � are treated as constant during
the course of any given extraction operation, although their values
depend on the regime of parameter space in which the operation
is taking place. The following values have been computed [26,40]
at the ‘mid-range’ mass fraction and appropriate to the case where
component 1 is acetone with w1 = 0.25, component 2 is methanol
with w2 = 0.5, and they are both in a benzene solvent1 with mass
fraction 1 − w1 − w2 = 0.25

� =
(

�11 �12

�21 �22

)
=
(

0.905 0.112
−0.041 0.362

)
. (6)

It should be noted that – in this particular system – �11 and
�22 are both significantly larger than �12 and �21. Indeed, if �12
and �21 were identically zero, then Eq. (1) would describe two
completely independent single component transfers, and clearly
with small �12 and �21 we are ‘close’ to that situation.

This then begs the question whether there are any cases for
which a system with � given by Eq. (1) cannot be approximated by
independent single component transfers. As will be demonstrated
there is one important case where inherently multi-component
effects must be retained, namely one where a concentration dif-
ference of component 1 say is imposed, but no concentration
difference of component 2 is imposed: see e.g. the boundary and
initial conditions of Eq. (5). A single component transfer for compo-
nent 2 would predict no transfer whatsoever. A multi-component
system would predict transfer of component 2 (even though the
initial state and, if transfer is allowed to proceed for sufficiently
long, the final state would be the same). If we are concerned about
component 2 deviating too far from some target purity level during
the course of its evolution, solving the multi-component system is
essential.

3. Multi-component effects without an imposed
concentration difference of a particular component

The usual approach [6–8,26,40] to solving the coupled
multi-component equation (1) is to use a matrix transforma-
the solvent, and indeed for this case they are not. The Maxwell–Stefan tvfheory is
sufficiently general that one component can be arbitrarily designated solvent, and
all other components solute. Moreover, if that designation is changed, the matrix �
transforms in a well-defined way [16].
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This simulation results section is organised into five parts. Sec-
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mployed such an approach in our simulations. However in the case
here there is no imposed concentration difference of a particular

omponent (component 2 say), it is possible to perform some use-
ul analysis in terms of the ‘true’ components, without needing to
ransform to the ‘pseudo-component’ system.

The basis of this analysis is as follows. If there is no imposed
oncentration difference of component 2, then we noted above that
ransfer of component 2 is very dependent on that of component
. The converse however is not true. Component 1 evolves due to

ts own imposed concentration difference, largely independently
f component 2.

Mathematically this can be explained as follows. In Eq. (1), the
ffect of component 2 upon component 1 is represented by the
erm �12∇2w2. As was stated previously, the coupling coefficient

12 is relatively small. The gradient of w2 (and hence ∇2w2) is
ikewise small, since w2 is only driven away from its initial value wo

2
also assumed equal to wR

2 here) by the term �21∇2w1, again with
he coupling coefficient �21 being relatively small. Component 2
hereby has only a negligible second order effect on component 1.

The equations to be solved therefore are:

∂w1

∂t
= −Pe u · ∇w1 + �11∇2w1, (7)

∂w2

∂t
= −Pe u · ∇w2 + �21∇2w1 + �22∇2w2. (8)

hese describe a single component evolution of component 1, fol-
owed by an evolution of component 2 driven by a source or sink
erm �21∇2w1. (In our case, �12 < 0 and wR

1 > wo
1, and the term in

uestion corresponds to a sink.2)
Eqs. (7)–(8) still preclude analytic solution on the grounds that

is a complicated spatial flow field. Analytic progress can be made
n the limit of a rigid drop Pe → 0. Analytic solutions derived in
his limit can give useful intuition even about the Pe 	 1 case, by
emembering that radial gradients in the rigid drop Pe → 0 case map
o gradients across streamlines [26,27] in the Pe 	 1 case.

Eq. (7) with Pe → 0 is amenable to a Fourier series solution
26,40,42–44]. Additional simplification is possible if one consid-
rs the limits of early time, for which gradients are confined to a
hin layer near the drop surface. Via Eq. (8), a bound can then be
laced on the value that w2 deviates from its initial value. This turns
ut to be (for full details see Appendix A)

w2 − wo
2| ≤

∣∣∣�21

�11
(wR

1 − wo
1)
∣∣∣ (9)

n the case when �22 
 �11 and

w2 − wo
2| ≤

∣∣∣�21

�22
(wR

1 − wo
1)
∣∣∣ (10)

n the case when �22 	 �11. For our system, see Eq. (6), �22 is con-
iderably smaller than �11 and Eq. (9) turns out to be a reasonable
ound. This bound is physically useful since it allows a chemical
ngineer to estimate whether or not multi-component effects allow
omponent 2 to remain within a target purity.

It is evident that the right hand sides of both (9) and (10)
epend explicitly on the initial/boundary conditions for the ‘trans-

erring’ component 1, but not explicitly on mass fraction of the
non-transferring’ (or more precisely ‘weakly transferring’) com-
onent 2. At first sight this is curious if one considers the case

2 It is worth mentioning also the case of an arbitrary number of solutes, with
oncentration differences imposed for all but the last solute component. There are
hen effectively multiple sources or sinks acting on the last solute component. These
ources or sinks can either cooperate or compete, depending on the signs of the
elevant off-diagonal elements of the diffusivity matrix, and on the signs of the
arious concentration differences imposed.
chem. Eng. Aspects 382 (2011) 251–260

where component 2 represents a contaminant present in relatively
small but equal amounts in both drop and surrounding continuous
phases, and the objective is to ensure its concentration in neither
one nor the other phase ever rises above a critical limit. Lack of
any explicit dependence on w2 on the right hand sides of (9) and
(10) suggests that the amount that the contaminant mass fraction
deviates from its initial (and final) mass fraction is independent of
that initial/final value: if the contaminant were present only in very
tiny trace amounts, it could (temporarily) experience large relative
changes in its mass fraction as the system evolves. This however
ignores the fact that �21 and �11 have implicit dependence on the
regime of component mass fractions being considered. In particu-
lar as w2 → 0, it is possible to demonstrate that �21 → 0 also, and
this is what then limits the deviations predicted by (9) and (10)
when the contaminant component 2 is present only in tiny trace
amounts. The particular boundary and initial conditions investi-
gated here (Eqs. (4) and (5)) obviously indicate component 2 being
present in substantially more than trace amounts, but as was stated
above, these have been selected for consistency with previous work
[26].

4. Methodology

Eq. (1) has been solved via the same simulation technique as in
[26]. The same set of parameter values was also used, i.e. Peclet
numbers Pe = 100, Pe = 1000 and Pe = 10,000, with the Reynolds
number held fixed3 at Re = 30. The substantial difference is that
here boundary and initial conditions given by Eq. (5) are explored,
instead of merely Eq. (4), so that ‘true’ multi-component effects
could be investigated, not merely systems which behave like two
‘almost’ independent single components.

Full details of benchmarking and convergence tests of the sim-
ulation technique have already been reported [26]. Briefly the
equations in dimensionless form were solved with the commer-
cial finite element package Comsol Multiphysics using a mesh with
up to 220,800 degrees of freedom, with element edge lengths down
to 0.001. Mesh elements tended to be smaller near the drop surface
and drop axis (where more resolution is required), and larger near
the internal stagnation point (where less resolution is required).
Time steps were adaptive with a maximum permitted time step
0.2/Pe. Mesh refinement and time-step refinement studies were
performed, with differences only in the fourth significant figure.
Total CPU time of the code for the most expensive simulation runs
with Pe = 10,000 was up to several hours.

As an additional check, the Comsol results were benchmarked
against a completely independent in-house finite difference code
[26,35]. The finite difference code had lower resolution (128 radial
intervals and 64 angular intervals respectively) and a non-adaptive
time step of 0.02/Pe. Differences between the Comsol finite ele-
ment and in-house finite difference code were only seen in the third
significant figure.

5. Results
tion 5.1 examines the evolution of the mass fraction of component
1. This evolution is found to be relatively insensitive, at least in

3 The rationale for fixing Reynolds number whilst varying Peclet number – which
physically would necessarily correspond to considering an array of different solvent
and solute materials – has been explained in [26]. After a few circulations around
the drop, mass fraction data are expected to collapse onto a ‘master curve’ which is
independent of the rate at which fluid elements orbit streamlines – i.e. is indepen-
dent of Pe – but which remains sensitive to streamline layout – which depends on
Re. By fixing Re, better collapse onto the ‘master curve’ is attained.
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ig. 2. Bulk w1 vs time t. Data for the circulating drop (at various Peclet numbers
e) and for the rigid drop are shown. Some data have an imposed concentration
ifference for component 2, whilst other data do not.

ualitative terms, to whether or not a concentration difference of
omponent 2 is imposed. This leads to the conclusion that multi-
omponent effects are comparatively weak in this system, and will
nly become most clearly evident for a component with no imposed
oncentration difference. The focus in the remaining four parts is
hen on component 2 with no imposed concentration difference.
ection 5.2 deals with bulk (i.e. volume-averaged) concentration
alues, whilst Sections 5.3–5.5 deal with pointwise concentration
ata, for the rigid drop in Section 5.3, and for the circulating drop
t Pe = 100 (Section 5.4) and Pe = 1000 (Section 5.5).

.1. Bulk mass fractions for component 1

Fig. 2 shows bulk mass fractions of component 1 vs dimension-
ess time t, for a rigid drop and also a circulating drop with Pe = 100
nd Pe = 1000. Results are shown both in the case where there is
n imposed concentration difference of component 2 (initial and
oundary conditions given by Eq. (4)), and in the case where there

s no imposed concentration difference of component 2 (initial and
oundary conditions given by Eq. (5)).

In Fig. 2 we see that the circulating drop cases evolve somewhat
aster than the rigid drop case. The explanation has been given
reviously [26]: in the presence of circulation, mass tends to be
dvected along streamlines [19] and only needs to diffuse from the
urface and axis to the internal stagnation point, rather than from
he surface to the drop centre. The required diffusion distance is
ess in the presence of circulation, so the mass transfer is faster.

For our present purposes, it is more important to compare and
ontrast the effect of using different initial and boundary conditions
q. (4) vs using Eq. (5). Both for rigid and circulating drops, the
resence of an imposed concentration difference of component 2
auses a slight slowing down in the evolution of component 1.

This can be explained as follows. According to Eq. (4), the
mposed concentration difference of component 2 causes compo-
ent 2 to flow out of the drop. Since the matrix element �12 is
ositive, this makes a small contribution to component 1 flux out

f the drop. This is opposed to the main flux of component 1 which
s into the drop and associated with the imposed concentration
ifference for that component.4

4 It is worth noting that the coupling which causes a slight slow-down in the evo-
ution of component 1 relies on having both a non-zero off-diagonal matrix element
nd having a non-zero imposed concentration difference of component 2. Were
e to solve using Eq. (4) (i.e. an imposed concentration difference of both compo-
chem. Eng. Aspects 382 (2011) 251–260 255

The slow-down in the evolution of component 1 (in the
presence of an imposed gradient of component 2) can also be
expressed in terms of the matrix theory [6–8,26,40] where coupled
component concentrations are re-expressed in terms of decou-
pled ‘pseudo-component’ concentrations. The system described
by Eq. (4) upon decoupling contains a mixture of a ‘fast’ pseudo-
component (rapid approach to equilibrium) and another ‘slower’
one (slower approach to equilibrium). At long times the final
approach to equilibrium is dominated entirely by the ‘slow’ pseudo-
component mode. In the system described by Eq. (5) by contrast,
(virtually) none of the ‘slow’ pseudo-component is excited in the
first place, and the ‘fast’ mode is therefore dominant. Thus quite
different timescales to equilibrate the drop are seen depending on
whether Eq. (4) or (5) is used.

Nevertheless the overall impact on component 1 of switch-
ing between Eqs. (4) and (5) is not massive, especially when the
(sometimes considerable [35]) uncertainties in diffusivity values
are taken into account. Qualitatively the two behaviours arising
from (4) and (5) look the same. In other words, the evolution
of the mass fraction of component 1 is only weakly affected by
the presence of component 2, and to a reasonable first approxi-
mation, component 1 undergoes mass transfer similar to a single
component. This then confirms the claim [26] that (even though
this is formally a multi-component problem), if significant con-
centration differences of both component 1 and component 2 are
initially imposed, then components 1 and 2 evolve very roughly
independently of one another. This follows because the off-diagonal
components of the diffusivity matrix �21 and �12 are signficantly
smaller than the diagonal components �11 and �22. In such a sys-
tem, the only way to see a ‘true’ multi-component effect is (in a
two solute system) to impose a concentration difference on one
component, but not the other: multi-component effects are then
observed for the latter component. In all of what follows we impose
a concentration difference as per Eq. (5) on component 1 but not
on component 2, and we consider the evolution of component 2.

5.2. Bulk mass fractions for component 2

In the case wo
2 = wR

2 = 0.5, Fig. 3 shows the evolution of bulk
(i.e. volume-averaged) mass fraction w2 vs time t. Mass fraction ini-
tially falls with time t, reaches a minimum and subsequently rises
back to the initial value (which is consistent with the claim that the
term �21∇2w1 represents a mass sink). Interestingly the minimum
value of bulk w2 is fairly similar for the rigid drop case and the cir-
culating drop cases: it just occurs at earlier time in the circulating
drop case. Thus the rigid drop case shows the slowest evolution,
whereas the circulating drop cases (shown for Pe = 100, Pe = 1000
and Pe = 10,000) evolve faster. After a certain delay time (associ-
ated with the O(1/Pe) time required to execute one streamline orbit
around the drop) all the circulating drop data fall onto what might
be termed a ‘master curve’. Based on the findings of earlier work
[26,27], the mass fraction of w2 is then expected to be uniform along
streamlines, but non-uniformities still persist in the cross-stream
direction, and diffusion remains active in that direction.

Also shown for completeness on Fig. 3 are predictions with
Pe = 10,000 of a model of Uribe-Ramirez and Korchinsky [24–26].

This model assumes good mixing in the drop interior, rather
than mass fraction being tied to streamlines. The (unwarranted)
assumption of good mixing causes the Uribe-Ramirez and Korchin-

nents 1 and 2) but suppressing the off-diagonal terms of the � matrix, we would
obtain essentially indistinguishable data as far as component 1 is concerned as using
Eq. (5) (i.e. no imposed concentration difference of component 2) but retaining the
off-diagonal terms of the � matrix.
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ig. 3. Bulk w2 vs time t. Data for the circulating drop (at various Peclet numbers
e) and for the rigid drop are shown. No concentration difference for component 2
s imposed.

ky model to evolve too quickly, a feature which has already been
iscussed in the literature [26].

Fig. 3 also indicates a lower bound on the value of w2. This is
iven in Eq. (9) and is derived in Appendix A. None of the bulk
2 data shown approach remarkably closely to the lower bound.
his is not surprising. The lower bound as derived in Appendix A
pplies pointwise at any given position in the drop. However not
ll positions in the drop approach the bound at the same time. The
ulk mass fraction which is an average over various positions at a
iven time is not expected to approach too closely to the bound.

Based on the lower bound an engineer could predict confidently
n this system that mass fraction of component 2 – initially equal
o 0.5 – could not fall below 0.495. If the purity specification is
tricter than that (e.g. if component 2 is required to have a mass
raction at least 0.499) then the engineer would need to design
he liquid–liquid extraction system such that the drop residence
ime is, according to Fig. 3, at least 0.2 dimensionless units (for a
irculating drop5) and even longer than that for a rigid drop.

.3. Rigid drop pointwise data

To date we have only considered bulk (i.e. volume-averaged)
ass fraction data. It is instructive however to examine data points

t individual positions in the drop to see their evolution over time
and also to see how closely they approach to the aforementioned
ower bound). In the first instance rigid drop data are examined:
ee Fig. 4.

Data points nearest the surface are found to depart from wo
2

ooner than points further from the surface, but also begin to return
o wo

2 earlier, which is in line with predictions in Appendix A. Overall
t is seen that points nearer the surface deviate less from wo

2 than
oints further from away from it. This is interesting because the
somewhat simplified) predictions in Appendix A imply that the

aximum deviation over time is independent of point position.
ome possible explanations of this discrepancy are as follows.
The position-independent bound on how much w2 deviates,
ndicated on Fig. 4, has been derived assuming that �22 
 �11,

hereas in reality the ratio �22/�11 is only about 0.4: this may

5 Using the data for drop radius R and diffusivity 〈D〉 quoted in [26], this corre-
ponds to about 60 s of dimensional time, longer than the 10 s residence time that
s currently typical in liquid–liquid extractors [26]. A reduction in drop radius by a
actor of three will however ensure that the specified purity is achieved well within
0 s.
Fig. 4. Time evolution of w2 at various positions in a rigid drop.

be a source of discrepancy. If |Z| denotes the dimensionless dis-
tance between an arbitrary point and the drop surface, approach
to the bound is only theoretically applicable (see Appendix A) for
times Z2/�11 
 t 
 Z2/�22, which corresponds to a very small time
interval as |Z| decreases. Physically this can be understood as fol-
lows. The role of a small but finite �22 (as opposed to infinitesimal
�22 whereby �22 
 �11) must be to smear out the effect of the
mass sink – presumably over a distance

√
�22t. If the distance |Z|

to the drop surface is less than
√

�22t, then the smearing zone
incorporates the drop surface, and the point Z is aware of and dom-
inated by the boundary condition w2 = wR

2 ≡ wo
2 imposed on the

surface, rather than deviating to the extent that Eq. (9) permits. If
|Z| is small, this dominance by the surface boundary condition is
felt at very early times.

There is also the fact that the analysis of Appendix A assumes
a Cartesian rather than a spherical geometry. The effects of spher-
ical geometry can be qualitatively explained as follows. The drop
is a unit sphere in dimensionless coordinates. Consider a subdo-
main within the unit sphere between the centre and an arbitrary
radial location r. The mass transfer rate into the subdomain is the
product of the incoming flux �∂w/∂r and the surface area 4�r2.
This mass transfer rate can be equated to the product of the sub-
domain volume (4/3)�r3 and the rate of change of average mass
fraction within the subdomain (denoted ∂〈w〉/∂t say). The smaller
the subdomain (i.e. the smaller the r value chosen) the larger the
surface to volume ratio and the more susceptible the average mass
fraction becomes to a given incoming flux. Indeed the point at the
centre of the drop very nearly achieves the lower bound equation
(9) whereas the bulk w2 does not. This reflects the small contribu-
tion that the neighbourhood of the drop centre makes to the bulk
w2.

There is yet another possible physical effect which is excluded
from the current model, but which may cause (bulk) w2 to approach
closer to the lower bound. This is the change in drop volume
induced by the flux of component 1. In the present case, compo-
nent 1 is entering the drop (Fig. 2) so the drop volume should grow.
This will lead to a reduction of mass fraction w2 additional to what
has been calculated here. The effect is temporary as eventually the
drop must equilibrate with the surrounding medium in spite of its
volume change.
5.4. Pe = 100 pointwise data

Fig. 5 is similar to Fig. 4 except for a circulating drop with Pe = 100
instead of for a rigid drop. Again the fastest response is seen near
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Fig. 6. Time evolution of w2 at various positions in a circulating drop with Pe = 1000.

disparity is observed between the the advective time scale (short;
applicable to the evolution of mass fraction for points on stream-
lines passing near the surface and along the axis) and the diffusive

6 Specifically the velocity differs slightly in the limit as radial coordinate r → 0
ig. 5. Time evolution of w2 at various positions in a circulating drop with Pe = 100.

he surface (see e.g. the point with radial coordinate r2 = 0.99 on the
quatorial plane). However, analogously to [26], a fast response is
lso now seen on the drop axis, owing to advection of material
rom near the surface along the axis. Specifically three axis points
re shown: the drop centre, and a point with axial coordinate z = 0.5
above the centre), and one with axial coordinate z = −0.5 (below
he centre). Although all three axis points evolve relatively quickly,
he point above (below) the centre evolves slightly slower (faster)
han the centre point itself, as the different travel times for fluid
lements that start near the surface and advect material to those
xis points must be taken into account [26].

Out of all the various points considered, the slowest evolu-
ion is seen for the point r = 0.5 on the equatorial plane. This is
nsurprising, given that this point is not too far from the internal
tagnation point (with r ∼ 0.7) and diffusion proceeds from stream-
ine to streamline [26] in the circulating drop case.

The equatorial data for r = 0.5 also show a larger deviation from
o
2 than any of the other points considered. As for the rigid drop

ase, this may just be associated with a longer time period between
hen w2 starts to decrease significantly and when it starts to return

ack to its initial value again. Alternatively, again as in the rigid drop
iscussion, it may be a geometric effect: there is a lot more drop vol-
me enclosed by streamlines that pass near the drop surface and/or
xis, than enclosed by streamlines that pass the neighbourhood of
he internal stagnation point.

Note that there are some oscillations superposed on the data for
= 0.5 on the equatorial plane. These are not a numerical artifact,
ut rather are associated with the fact that different streamlines
ave different orbit periods, and so advect mass along at differ-
nt rates. For the first few orbit periods before uniformity of mass
raction along streamlines is achieved, this produces a complicated
oncentration field with oscillations superposed [26,27].

.5. Pe = 1000 pointwise data

Fig. 6 shows data for Pe = 1000. Note the different scale on the
raph: compared to Fig. 5 circulations are 10 times faster, and the
cale plotted is 10 times shorter.

The data make it clear that concentrations on the axis evolve on
he circulation time scale. Note that weak high frequency oscilla-
ions are seen in the on-axis data. These appear to be an artifact of

he numerical scheme as they have a period of just a few time steps.
here was no smoothing via e.g. upwinding [45,46] implemented
n the numerical scheme and the Galerkin expansion expression
mployed here for the flow-field (following [24–26,34]) actually
Fig. 7. Longer time scale evolution of w2 at various positions in a circulating drop
with Pe = 1000.

has a mild singularity in the neighbourhood of the drop centre.6

These numerical oscillations should not be confused with e.g. phys-
ical oscillations on the time scale of one drop circulation which
are seen e.g. for the evolution at the point r = 0.5 on the equa-
torial plane. As has already been discussed, such oscillations are
associated with different streamlines having different orbit times.
Moreover in order to see the complete evolution of the point r = 0.5
on the equatorial plane, it is necessary to look on a diffusive (not
an advective) time scale. This can be seen in Fig. 7 still for the
case Pe = 1000. Oscillations are suppressed after several streamline
orbits, and the equatorial plane data at r = 0.5 return to the value
wo

2 on a time scale remarkably similar to what is observed when
Pe = 100 (Fig. 5).

It is possible to examine analogous data to Figs. 5–7 for the case
Pe = 10,000. Qualitatively the findings are similar, but an even bigger
depending on the polar angle �. It is curious that this singularity has never been noted
previously in the literature, but some past analyses using this particular flow-field
– e.g. that of [24,25] – focused exclusively on mass transfer in the neighbourhood of
the drop surface r = 1 where the flow-field singularity is irrelevant.
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ime scale (long; applicable to the evolution of mass fraction for
ocations near the internal stagnation point).

. Conclusions

Numerical simulation results for multi-component mass trans-
er in drops have been considered. Specifically a system with two
olute components in a solvent has been studied. The theory of
ulti-component mass transfer implies that the mass fluxes and

oncentration gradients should be coupled between one solute and
he other. The strength of this coupling is measured by off-diagonal
erms in a diffusivity matrix. Coupling will be strong when these
ff-diagonal matrix elements are comparable with the diagonal
nes. However in the particular case studied here (correspond-
ng to the system acetone–methanol–benzene), the off-diagonal
erms are actually quite weak. In that case, naively it might be
hought that, to a reasonable approximation, multi-component
ffects might be dispensed with altogether. However this is found
ot to be always the case. Whether or not multi-component effects
eed to be retained depends on the set of initial and boundary
onditions imposed on the component mass fractions.

In order to illustrate this point, two sets of initial and boundary
onditions have been considered, one where a concentration differ-
nce between the (initial) interior of the drop and the drop surface
s imposed for both components, and the other where a concen-
ration difference is imposed for one component but not the other.
ince (as was pointed out above) off-diagonal elements in the dif-
usivity matrix are relatively weak compared to diagonal ones, the
ase where both components have imposed concentration differ-
nces can be understood at least very approximately/qualitatively
s two independent single component mass transfer processes.

True multi-component effects are nevertheless seen if a concen-
ration difference is imposed for one component but not the other.

ass transfer occurs even for the component with no imposed con-
entration difference, whereas none whatsoever would take place
or an independent single component process. The component with
n imposed concentration difference is virtually uninfluenced by
he presence of the one with no imposed difference. The role of the
ormer component is then to provide a mass source or sink for the
atter.

Knowledge about the strength of this source or sink is impor-
ant. If left to transfer mass for an arbitrarily long time, the
omponent with no imposed concentration difference has the
ame final concentration as its initial one. The strength of the
ource or sink provides an upper bound on the amount that
he concentration can deviate from this initial/final concentra-
ion during the course of its evolution. This bound can then be
sed to check whether or not component concentration is likely
o deviate outside some specified target purity. For consistency
ith previous work [26], we have considered a case where the

non-transferring’ or ‘weakly transferring’ component is present in
ubstantial amounts. However the bound on purity may be partic-
larly important/relevant when this component is a contaminant
resent in just small trace amounts. Estimating the bound on purity
nly requires knowledge of initial and boundary conditions for the
ass fractions of various solutes, as well as predictions of the ele-
ents of a diffusivity matrix in the mass fraction parameter range

f interest (which are available via the Maxwell–Stefan theory
16]).

Results have been presented both for a rigid drop and for a cir-
ulating drop. The maximum amount that the volume-averaged

omponent concentration deviates from its initial/final value is
nsensitive to whether the drop is rigid or circulating. However
he rate of deviation and return is slower for a rigid drop than

circulating one (which will be relevant to designing a liquid-
chem. Eng. Aspects 382 (2011) 251–260

liquid extraction system if it is necessary to wait for the component
concentration to return to within some specified target purity).
Moreover the order in time at which concentration at different
locations within the drop evolves is sensitive to the presence or
absence of circulation. Deviations are seen earliest near the surface
for the rigid drop, and latest near the centre. Meanwhile deviations
are seen earliest near the surface and axis for the circulating drop,
and latest near the internal stagnation point. In both the rigid and
circulating drop cases, points which show earlier deviation away
from the initial/final value also show a more rapid return back to
that initial/final value.
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Appendix A.

We consider the case of multi-component mass transfer in a
rigid drop in the limit of early times (when the geometry can
be approximated as Cartesian) with two solutes and with no
concentration difference imposed on solute component 2. Solute
component 1 then evolves independently of component 2 accord-
ing to

∂w1

∂t
= �11

∂2w1

∂Z2
. (A.1)

Here we have defined a (dimensionless) distance coordinate Z in
terms of the dimensionless radial coordinate r via Z = r − 1. Since
we focus on internal problems, we are interested in the domain
Z < 0. The solution for w1 is

w1 = wo
1 + (wR

1 − wo
1)

(
1 + erf

Z

2
√

�11t

)
, (A.2)

where wo
1 is the initial value and wR

1 is the boundary value.
The equation governing the evolution of w2 is

∂w2

∂t
= �22

∂2w2

∂Z2
+ �21

∂2w1

∂Z2
. (A.3)

Physically this states that the rate of change of w2 depends on dif-
fusion of w2 and also a mass source or sink term �21∂2w1/∂Z2.
Since �21 < 0 in Eq. (6) and since wR

1 > wo
1 in Eq. (5), we are dealing

with a mass sink. The initial value for w2 is wo
2 (and this is also the

boundary value).
Rather than giving a general solution to Eq. (A.3), we consider

two extreme limits either �22 
 �11 or �11 
 �22. Remember
throughout that since �11 and �22 are quantities that have been
made dimensionless based on 〈D 〉 (the average infinite dilution dif-
fusivity over the entire system), the larger value out of �11 or �22
must be a quantity of order unity. The actual values of �11 and �22
are reported in Eq. (6) for the system acetone–methanol–benzene.
Clearly this particular system (as considered here, with an imposed
concentration difference for acetone, but no imposed difference
for methanol) is closer to the limit �22 
 �11. However were
we to consider an alternative case (with a concentration differ-

ence imposed for methanol, but not acetone), then (after suitable
relabelling of subscripts) we would be closer to a system with
�22 
 �11. Thus both extremes are considered here for complete-
ness.
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.1. Limiting case: �22 
 �11

As a first approximation the term �22∂2w2/∂Z2 in Eq. (A.3) can
e dropped, and a so called ‘outer’ solution can be obtained

2 − wo
2 = �21

�11
(w1 − wo

1). (A.4)

hus changes in w2 are directly proportional to changes in w1. At
ny given time, points which have |Z| = O(

√
�11t) will have seen

ignificant changes in w1 and hence in w2. In principle w2 can devi-
te from wo

2 by a magnitude of up to |�21(wR
1 − wo

1)/�11| (hence

he bound reported in Eq. (9)). Points which have |Z| 	 O(
√

�11t)
ill have not yet seen a change in w1 and hence will have not yet

een a change in w2. At a distance |Z| from the drop surface, the
ime scale on which w2 starts to change is O(Z2/�11).

Eq. (A.4) cannot be a full solution for w2 as it fails to satisfy a
oundary condition that w2 = wo

2 in the limit Z → 0. The solution
A.4) must be therefore be matched [47] onto an inner solution
hich applies for |Z| ≤ O(

√
�22t).

Remarkably the inner solution can be obtained by solving simply

∂w2

∂t
= �22

∂2w2

∂Z2
, (A.5)

.e. the mass sink term plays no role. This is because the sink term
anishes both when |Z| 	 O(

√
�11t) and when |Z| 
 O(

√
�11t)

o it certainly vanishes when |Z| = O(
√

�22t) 
 O(
√

�11t). The
olution is

2 = wo
2 − (wR

1 − wo
1)

�21

�11
erf

Z

2
√

�22t
. (A.6)

t is easy to check that the Z → − ∞ limit of the inner solution
atches the Z → 0 limit of the outer solution. Based on the inner

olution, it is seen that the time scale on which a point at distance |Z|
rom the drop surface begins to return to w2 ≈ wo

2 is O(Z2/�22). Thus
oints further from the drop surface both deviate from w2 ≈ wo

2
ater and also return to w2 ≈ wo

2 later.

.2. Limiting case: �11 
 �22

The mass sink is still confined to a region |Z| = O(
√

�11t) but
he diffusive terms �22∂2w2/∂Z2 can now influence component 2
oncentration far beyond the extent of the sink, out to distances
Z| = O(

√
�22t) 	 O(

√
�11t).

As far as this ‘far field’ |Z| = O(
√

�22t) solution is concerned, it
oes not matter whether the mass is removed over a distributed
ink of extent O(

√
�11t) or alternatively by imposing an equiva-

ent flux boundary condition at some arbitrary point Z = Zsink (with

sink < 0 but |Zsink| = O(
√

�11t) 
 O(
√

�22t)). The resulting solu-
ion is

2 = wo
2 +
(

�21(wR
1 − wo

1)√
�11�22

)(
1 + erf

Z − Zsink

2
√

�22t

)
. (A.7)

t is relatively easy to demonstrate for this solution that the diffusive
ux of w2 at the point Z = Zsink matches the rate of consumption of
ass integrated over the sink.
The problem with this solution is that it does not satisfy the

oundary condition that w2 = wo
2 at Z = 0. This can be achieved by

dding an equal strength image source term outside the drop at
= Zsource with Zsource > 0 and in fact Zsource = − Zsink. The net far field

olution is then

2 = wo
2 + Zsource√

�11t

�21(wR
1 − wo

1)
�22

2√
�

exp − Z2

4�22t
. (A.8)

[

[
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Observe that, since �11 
 �22 here, w2 predicted by Eq. (A.8) (sink
plus image source) is smaller in magnitude than Eq. (A.7) (sink
only). Physically this means that almost all of the effect of the mass
sink is compensated for by w2 diffusing into the drop at the Z = 0
boundary, with only a weak effect surviving into the far field.

Under these circumstances it is then possible to derive a
‘near field’ solution (applicable for the region |Z| = O(

√
�11t) 


O(
√

�22t)) with a (quasi)steady flux balance between diffusive and
sink terms. The result is

w2 = wo
2 − �21

�22
(w1 − wR

1). (A.9)

By matching the Z → 0 limit of the far field solution to the
Z → − ∞ limit of the near field solution, it is possible to deduce
that Zsource/

√
�11t = √

�/2. For a given Z, deviation from w2 ≈ wo
2

starts when t becomes O(Z2/�22) (deduced via the far field solu-
tion) and ceases when t exceeds O(Z2/�11) (deduced via the near
field solution). The magnitude of the deviation is bounded by
|�21(wR

1 − wo
1)/�22|, which is the bound reported in Eq. (10).
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