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Abstract. It is the aim of this work to give a characterization of the 2-step
nilpotent Lie algebras carrying abelian hypercomplex structures. In the special
case of trivial extensions of irreducible H-type Lie algebras this characteriza-
tion is given in terms of the dimension of the commutator subalgebra. As a
consequence, we obtain the corresponding theorem for arbitrary H-type Lie
algebras, extending a result in [1].

1. Preliminaries

We start by giving the basic definitions. An abelian complex structure on a real
Lie algebra g is an endomorphism of g satisfying

(1) J2 = −I, [Jx, Jy] = [x, y], ∀x, y ∈ g.

The above conditions automatically imply the vanishing of the Nijenhuis tensor,
that is, J is integrable. By an abelian hypercomplex structure we mean a pair
of anticommuting abelian complex structures. Our main motivation for studying
abelian hypercomplex structures comes from the fact that such structures provide
examples of homogeneous HKT-geometries (where HKT stands for hyper-Kähler
with torsion, cf. [4]).

It was proved in [1] that if dim [g, g] ≤ 2 then every hypercomplex structure
on g must be abelian. To complete the classification of the Lie algebras g with
dim [g, g] ≤ 2 carrying hypercomplex structures (cf. [1]) it remained to give a
characterization in the case when g is 2-step nilpotent and dim [g, g] = 2: this is
obtained by taking m = 2 in Corollary 1.2 below.

It is a result of [3] that the only 8-dimensional non-abelian nilpotent Lie algebras
carrying abelian hypercomplex structures are trivial central extensions of H-type
Lie algebras. We show that this does not hold for higher dimensions: there exist
2-step nilpotent Lie algebras which are not of type H carrying such structures.

Let (n, 〈 , 〉) be a two-step nilpotent Lie algebra endowed with an inner product
〈 , 〉 and consider the orthogonal decomposition n = z⊕v, where z is the center of n
and [v, v] ⊆ z. Define a linear map j : z → End (v), z 7→ jz, where jz is determined
as follows:

(2) 〈jzv, w〉 = 〈z, [v, w] 〉, ∀v, w ∈ v.

Observe that jz, z ∈ z, are skew-symmetric so that z → jz defines a linear map
j : z → so(v). Note that Ker(j) is the orthogonal complement of [n, n] in z. In
particular, [n, n] = z if and only if j is injective. Conversely, any linear map j :
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Rm → so(k) gives rise to a 2-step nilpotent Lie algebra n by means of (2). It follows
that the center of n is Rm ⊕ (∩z∈RmKer jz) and [n, n] ⊆ Rm where equality holds
precisely when j is injective. We say that (n, 〈 , 〉) is irreducible when v has no
proper subspaces invariant by all jz, z ∈ z.

We show in the following lemma that a two-step nilpotent Lie algebra carrying an
abelian complex structure amounts to a linear map j : z → u(k) (where dim v = 2k
and u(k) denotes the Lie algebra of the unitary group U(k)).

Lemma 1.1. Let n be a 2-step nilpotent Lie algebra carrying an abelian complex
structure J . Then, for any Hermitian inner product 〈 , 〉 on n, the endomorphisms
jz, z ∈ z, defined as in (2), commute with J .

Proof. Given a Hermitian inner product 〈 , 〉 on n decompose n = z ⊕ v where v
is the orthogonal complement of z. It follows from (1) that J leaves z stable and
therefore, since J is orthogonal, also v is J-stable. We show next that the restriction
of J to v commutes with the endomorphisms jz, z ∈ z:

〈Jjzv, w〉 = −〈jzv, Jw〉 = −〈z, [v, Jw]〉
= 〈z, [Jv, w]〉 = 〈jzJv, w〉

for all v, w ∈ v, z ∈ z, and this implies Jjz = jzJ for every z ∈ z. ¤

As a consequence of the above lemma we obtain the following corollary, where
we denote by sp(k) the Lie algebra of the symplectic group Sp(k):

Corollary 1.2. Every injective linear map j : Rm → sp(k) (m ≤ k(2k + 1)) gives
rise to a two-step nilpotent Lie algebra n with dim[n, n] = m carrying an abelian
hypercomplex structure. Conversely, any two step nilpotent Lie algebra carrying an
abelian hypercomplex structure arises in this manner.

Proof. Given j : Rm → sp(k), fix 0 ≤ s ≤ 3 with s + m ≡ 0 (mod 4), set n =
Rs ⊕ Rm ⊕ R4k (orthogonal direct sum) with the canonical inner product on each
summand and define the Lie bracket on n by

〈z, [v, w] 〉 = 〈jzv, w〉, ∀v, w ∈ R4k, z ∈ Rm

and 〈z, [n, n] 〉 = 0 for z ∈ Rs (Rs ⊕ Rm is central). Let Jα, α = 1, 2 be the
anticommuting complex endomorphisms of R4k defining sp(k), that is, sp(k) =
{T ∈ so(4k) : TJα = JαT, α = 1, 2}. Extend Jα to all of n with arbitrary
(orthogonal) anticommuting endomorphisms on Rs⊕Rm satisfying J2

α = −I. This
defines an abelian hypercomplex structure on n. Observe that [n, n] = Rm since j
is injective.

Conversely, if n is a two-step nilpotent Lie algebra carrying an abelian hyper-
complex structure J1, J2, then there exists an inner product 〈 , 〉 on n which is
hyperhermitian, that is, Hermitian with respect to both, J1 and J2. Let v denote
the orthogonal complement of z in n and consider the linear map j defined by (2).
It follows that j is injective on [n, n] and, from the above lemma, its image is con-
tained in sp(k) = {T ∈ so(4k) : TJα = JαT, α = 1, 2}, where dim v = 4k. In
particular, dim [n, n] ≤ dim sp(k) = k(2k + 1). ¤
Remark 1.3. Using the same idea as in the above corollary it is possible to con-
struct hypercomplex structures on certain solvable Lie algebras. In fact, given a two
step nilpotent Lie algebra (n, 〈 , 〉) set s = Ra⊕ n with [a, z] = z, ∀ z ∈ z, [a, v] =
1
2v, ∀ v ∈ v, where the inner product on v is extended to s by decreeing a ⊥ v and
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〈a, a〉 = 1. This solvable extension of n has been studied by various authors ([2]).
In the special case when dim z ≡ 3 (mod 4), dim v = 4k and the the endomor-
phisms jz, z ∈ z, defined as in (2), belong to sp(k), it can be shown that s carries
a hypercomplex (hyperhermitian) structure. The procedure is analogous to that
in the preceding corollary (one can easily check the integrability conditions using
results of [1]). It should be noted that these structures cannot be abelian and the
corresponding metrics are not hyper-Kähler (since they are not flat).

2. A special class of two-step nilpotent Lie algebras

Let (n, 〈 , 〉) be a two-step nilpotent Lie algebra with the orthogonal decomposi-
tion n = z⊕ v as before and the endomorphisms jz, z ∈ z, as in (2). Then (n, 〈 , 〉)
is said to be an H-type algebra (or a Lie algebra of Heisenberg type, cf. [6]) if
for any nonzero z in z we have that j2

z = −〈z, z〉I. In this case, the linear map
j : z → End (v) extends to an algebra homomorphism j : Clm → End (v), where
m = dim z and Clm denotes the real Clifford algebra associated to (z, 〈 , 〉). The
extended homomorphism j is a unitary representation of Clm on v, in other words,
v becomes a Clm-module with the elements of unit length in z acting as orthogonal
transformations of v. Conversely, any unitary representation of the Clifford algebra
Clm on a real vector space v gives rise to an H-type Lie algebra in the obvious way
([7]).

We say that two H-type algebras are isomorphic if there is an orthogonal Lie
isomorphism between them.

Let (n, 〈 , 〉) be a trivial central extension of an H-type algebra, that is, (n, 〈 , 〉)
is a two step nilpotent Lie algebra such that [n, n] ⊕ v is of type H. The follow-
ing theorem shows that, when (n, 〈 , 〉) is irreducible, the existence of an abelian
complex or hypercomplex structure on (n, 〈 , 〉) depends on m = dim [n, n].

Theorem 2.1. Let (n, 〈 , 〉) be a trivial central extension of an H-type algebra and
let m = dim [n, n]. Assume that (n, 〈 , 〉) is irreducible.

(i) (n, 〈 , 〉) carries an abelian complex structure such that 〈 , 〉 is Hermitian if
and only if dim z ≡ 0 (mod 2) and m ≡ 1, 2, 3, 4 or 5 (mod 8).

(ii) (n, 〈 , 〉) carries an abelian hypercomplex structure such that 〈 , 〉 is hyper-
hermitian if and only if dim z ≡ 0 (mod 4) and m ≡ 2, 3 or 4 (mod 8).

The above complex structures arise naturally by extending certain endomor-
phisms which belong to the algebra Km = {T ∈ End(v) : TS = ST ∀S ∈ Clm}.
We devote the next section to the study of this algebra (see, for example, [9] Chapter
I, §5).

Remark 2.2. The Lie algebras obtained from an injective linear map j : Rm →
sp(1) with m ≤ 3, as in Corollary 1.2, are trivial extensions of H-type algebras. This
follows from the identification of sp(1) with the space of pure imaginary quaternions
(see also [3]).

Remark 2.3. Let dm denote the dimension of any irreducible Clm-module and take
k such that 4k is not a multiple of dm and k(2k + 1) ≥ m. Then the Lie algebras
arising from any injective linear map j : Rm → sp(k) such that ∩z∈RmKer jz = {0}
are not trivial extensions of H-type algebras. For example, take m = 10 and k = 2
(in this case d10 = 64; see Table 1).
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2.1. The algebra Km. We start by recalling the definition of the Clifford algebra
Clm = Cl(E, 〈 , 〉), where E is an m dimensional real vector space endowed with an
inner product 〈 , 〉. Fix an orthonormal basis e1, . . . , em of E and define Clm as the
algebra generated by 1, e1, . . . , em with relations

eiej + ejei = 0, i 6= j, e2
i = −1, i = 1, . . . , m.

Let T (E) be the tensor algebra of E and = the two-sided ideal of T (E) generated
by the elements x⊗ x + 〈x, x〉1 for e ∈ E. Then the Clifford algebra Clm is defined
to be the quotient T (E)/= and dim Clm = 2m (see [5] or [9] for details).

Let v be an irreducible Clm-module. We want to study the algebra Km = {T ∈
End(v) : TS = ST ∀S ∈ Clm}. We observe that, being a real division associative
algebra, Km must be isomorphic to either R, C or H.

Recall from [9] that when m 6≡ 3 or 7 (mod 8) there is exactly one irreducible
Clm-module v up to isomorphism. If m ≡ 3 or 7 (mod 8) there are two equivalence
classes of irreducible Clm-modules v1, v2 which give rise to isomorphic (irreducible)
H-type algebras, so for our purposes we may assume v = v1.

2.1.1. m 6≡ 3 or 7 (mod 8). Assume first that m 6≡ 3 or 7 (mod 8). It follows from
[9] that Clm is the real algebra Mn(F) of n × n F-matrices for some n, where
F = R, C or H, and v = Fn (see Table 1). The action of Clm on v is given by
matrix multiplication, viewing Fn as n × 1 matrices. It then follows that when
F = R then Km is the centralizer of Mn(R) in Mn(R), hence Km = R. It follows
from [9] that this happens precisely when m ≡ 6 or 8 (mod 8).

We next study the cases F = C or H. Consider the inclusions Mn(C) ↪→ M2n(R)
and Mn(H) ↪→ M4n(R) given as follows:

(3) A + iB 7→
(

A −B
B A

)
, A + iB + jC + kD 7→




A −B −C −D
B A −D C
C D A −B
D −C B A




where A, B, C, D are real n× n matrices. It then follows that when F = C (resp.
F = H) Km is the centralizer of Mn(C) (resp. Mn(H)) in M2n(R) (resp. M4n(R)).
It can be shown by direct calculation that this centralizer equals C (resp. H) when
F = C (resp. F = H). We observe that F = C precisely when m ≡ 1 or 5 (mod 8)
and F = H when m ≡ 2 or 4 (mod 8) (cf. [9]).

2.1.2. m ≡ 3 or 7 (mod 8). If m ≡ 3 (mod 8) then Clm = Mn(H) ⊕ Mn(H) for
some n (Table 1) and we can take v = Hn ⊕ 0 with the obvious action. It follows
that Km = H.

On the other hand, when m ≡ 7 (mod 8) then Clm = Mn(R)⊕Mn(R) for some
n (Table 1) and we can take v = Rn ⊕ 0. It follows that Km = R.

The above paragraphs can be summarized as follows (see also Table 1):

Proposition 2.4. Let v be an irreducible Clm-module. Then

Km =




R if m ≡ 6, 7 or 8 (mod 8),
C if m ≡ 1 or 5 (mod 8),
H if m ≡ 2, 3 or 4 (mod 8).
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2.1.3. The inner product on v. It follows from the irreducibility of the Clm-
module v that it admits a unique inner product (up to a positive multiple) such
that the elements of unit length in E act by orthogonal transformations. This inner
product is given as follows (cf. [10]):

〈v, w〉 =
{

vtw if F = R,
<e(vtw̄) if F = C or H

where v = Fn is thought of as n × 1 matrices, vt denotes the transpose of v ∈ Fn

and w̄ is the conjugate of w ∈ Fn. Let O(v) denote the orthogonal group of
endomorphisms of v relative to 〈 , 〉 and set C = {J ∈ End (v) : J2 = −1}. The
aim is to obtain a parametrization of the intersection Km ∩ O(v) ∩ C, which could
be empty (in fact, this is the case when F = R). We study first Km∩O(v) (see also
[9], Chapter I, §5.16).

Lemma 2.5.

Km ∩O(v) =




Z2 if F = R,
U(1) if F = C,
Sp(1) if F = H.

Proof. Let I denote the identity n × n matrix and CB(A) the centralizer of A in
B. Using the inclusions (3) and the inner product on v, it is not hard to verify the
following equalities:

CMn(R)(Mn(R)) ∩O(v) = {±I} ∼= Z2,

CM2n(R)(Mn(C)) ∩O(v) =
{(

aI −bI
bI aI

)
: a, b ∈ R, a2 + b2 = 1

}
∼= U(1),

CM4n(R)(Mn(H)) ∩O(v) =








aI bI cI dI
−bI aI −dI cI
−cI dI aI −bI
−dI −cI bI aI


 :

a, b, c, d ∈ R,
a2 + b2 + c2 + d2 = 1




∼= Sp(1).

¤

Corollary 2.6.

Km ∩O(v) ∩ C =




∅ if F = R,
Z2 if F = C,
the 2-sphere S2 if F = H.

Proof. We must intersect the sets obtained in the previous lemma with C. We thus
obtain

CMn(R)(Mn(R)) ∩O(v) ∩ C = ∅,

CM2n(R)(Mn(C)) ∩O(v) ∩ C =
{
±

(
0 −I
I 0

)}
∼= Z2,

CM4n(C)(Mn(H)) ∩O(v) ∩ C =








0 bI cI dI
−bI 0 −dI cI
−cI dI 0 −bI
−dI −cI bI 0


 : b, c, d ∈ R,

b2 + c2 + d2 = 1




∼= S2.

¤
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Table 1

m (mod 8) n Clm v Km Km ∩O(v) Km ∩O(v) ∩ C
1 16q Mn(C) Cn C U(1) Z2

2 16q Mn(H) Hn H Sp(1) S2

3 16q Mn(H)⊕Mn(H) Hn H Sp(1) S2

4 2(16)q Mn(H) Hn H Sp(1) S2

5 4(16)q Mn(C) Cn C U(1) Z2

6 8(16)q Mn(R) Rn R Z2 ∅
7 8(16)q Mn(R)⊕Mn(R) Rn R Z2 ∅
8 16q+1 Mn(R) Rn R Z2 ∅

Table 1 summarizes the above results. The integer q is obtained from m = 8q+r
where 1 ≤ r ≤ 8.

Proof of Theorem 2.1. (i) Assume J is an abelian complex structure on (n, 〈 , 〉)
such that 〈 , 〉 is Hermitian. Since J leaves z stable, it follows that dim z ≡ 0
(mod 2). Lemma 1.1 says that J ∈ Km ∩O(v) ∩ C, which is nonempty if and only
if m ≡ 1, 2, 3, 4 or 5 (mod 8) by Corollary 2.6. This proves the if part of (i). For
the only if part, fix an endomorphism J ∈ Km ∩ O(v) ∩ C, which always exists
when m ≡ 1, 2, 3, 4 or 5 (mod 8), and extend J to all of n with any orthogonal
endomorphism of z satisfying J2 = −I.

(ii) It follows from Corollary 2.6 that there exists a pair of anticommuting en-
domorphisms in Km ∩ O(v) ∩ C if and only if m ≡ 2, 3 or 4 (mod 8). This proves
the if part of (ii). For the only if part, extend a pair of anticommuting endomor-
phisms J1, J2 ∈ Km ∩ O(v) ∩ C with anticommuting orthogonal endomorphisms of
z satisfying J2

α = −I, α = 1, 2.

3. General H-type algebras

Let (n, 〈 , 〉) be an H-type algebra with center z, dim z = m, and let v0 denote an
irreducible Clm-module. It is well known that v, the orthogonal complement of z,
is formed by taking several copies of v0 (cf. [8]). The precise situation is as follows.

If m 6≡ 3 or 7 (mod 8) then the general H-type algebra is, modulo isomorphisms,
n = (v0)r ⊕ z with bracket

[v, w] = [v1, w1] + · · ·+ [vr, wr]

for v = (v1, . . . , vr), w = (w1, . . . , wr) ∈ (v0)r, where the bracket on each copy of
v0 is given by the Clm-module structure on v0.

If m ≡ 3 or 7 (mod 8) then the general H-type algebra is, modulo isomorphisms,
n = (v0)p ⊕ (v0)q ⊕ z with bracket

[(v, x), (w, y)] = [v1, w1] + · · ·+ [vp, wp]− [x1, y1]− · · · − [xq, yq]

for v = (v1, . . . , vp), w = (w1, . . . , wp) ∈ (v0)p, x = (x1, . . . , xq), y = (y1, . . . , yq) ∈
(v0)q, where two pairs of exponents p, q and r, s give isomorphic algebras if and
only if {p, q} = {r, s}.

Table 2 is obtained from the results in the previous section.

We now state the general theorem about existence of abelian complex and hyper-
complex structures on trivial central extensions of H-type Lie algebras. The proof,
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Table 2

m (mod 8) v Km Km ∩O(v)
1 or 5 (v0)r gl(r,C) U(r)
2 or 4 (v0)r gl(r,H) Sp(r)
6 or 8 (v0)r gl(r,R) O(r)

3 (v0)p ⊕ (v0)q gl(p,H)⊕ gl(q,H) Sp(p)× Sp(q)
7 (v0)p ⊕ (v0)q gl(p,R)⊕ gl(q,R) O(p)×O(q)

which is analogous to that of Theorem 2.1, follows from Table 2. Observe that
when m ≡ 2, 3 or 4 (mod 8) (case (ii) below) then there is no obstruction (except
for the obvious ones) for the existence of such structures. The integers p, q and r
below are those introduced at the beginning of this section (see also Table 2).

Theorem 3.1. Let (n, 〈 , 〉) be a trivial central extension of an H-type algebra and
let m = dim [n, n].

(i) If m ≡ 1 or 5 (mod 8) then (n, 〈 , 〉) carries an abelian complex structure
such that 〈 , 〉 is Hermitian if and only if dim z ≡ 0 (mod 2). It carries an abelian
hypercomplex structure such that 〈 , 〉 is hyperhermitian if and only if dim z ≡ 0
(mod 4) and r ≡ 0 (mod 2).

(ii) If m ≡ 2, 3 or 4 (mod 8) then (n, 〈 , 〉) carries an abelian complex structure
such that 〈 , 〉 is Hermitian if and only if dim z ≡ 0 (mod 2). It carries an abelian
hypercomplex structure such that 〈 , 〉 is hyperhermitian if and only if dim z ≡ 0
(mod 4).

(iii) If m ≡ 6 or 8 (mod 8) then (n, 〈 , 〉) carries an abelian complex structure
such that 〈 , 〉 is Hermitian if and only if dim z ≡ 0 (mod 2) and r ≡ 0 (mod 2).
It carries an abelian hypercomplex structure such that 〈 , 〉 is hyperhermitian if and
only if dim z ≡ 0 (mod 4) and r ≡ 0 (mod 4).

(iv) If m ≡ 7 (mod 8) then (n, 〈 , 〉) carries an abelian complex structure such
that 〈 , 〉 is Hermitian if and only if dim z ≡ 0 (mod 2), p ≡ 0 (mod 2) and
q ≡ 0 (mod 2). It carries an abelian hypercomplex structure such that 〈 , 〉 is
hyperhermitian if and only if dim z ≡ 0 (mod 4), p ≡ 0 (mod 4) and q ≡ 0
(mod 4).

Remark 3.2. The hyperhermitian metrics just considered, which are obtained as
the riemannian product of the euclidean metric by a metric of Heisenberg type, are
not flat. Therefore, these metrics are not hyper-Kähler.

Remark 3.3. Let (n, 〈 , 〉) be a trivial central extension of an H-type algebra and
N the corresponding connected, simply connected nilpotent Lie group with Lie al-
gebra n endowed with the left invariant metric induced by 〈 , 〉. It is well known
that N admits a discrete cocompact subgroup Γ (cf. [8], [10]). Any invariant
complex or hypercomplex structure on N induces one on the compact nilmanifold
Γ\N . Theorem 3.1 thus extends Corollary 1.4 in [1], yielding a rich family of com-
pact hyperhermitian nilmanifolds (which are not hyper-Kähler, by the preceding
remark).
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