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We give a complete description of the anti-involutions of the algebtaof N
X N-matrix differential operators on the circle, preserving the principgitadation.
We obtain, up to conjugation, two families. ,, with 1<ms=<N, getting two fami-
lies DN m Of simple Lie subalgebras fixed byat,m We also give a geometric
reallzanon ofo. , concluding thatD" |, is a subalgebra oP" of type o(m,n)
and DN mis a subalgebra obN of type osp(m n) (ortho-symplectic Finally, we
study the conformal algebras associated \m&] andDN . © 2001 American
Institute of Physics.[DOI: 10.1063/1.1380252

I. INTRODUCTION

Certain subalgebras of the Lie algeliPaof differential operators on the circle were consid-
ered in Ref. 1, where they showed that there are two, up to conjugation, anti-invatution D,
which preserve the principal gradation, and they obtained in this way two different Lie subalge-
bras fixed by— ... The main goal of the present paper is to extend the results in Ref. 1 to the
matrix case, where the picture seems to be rather more complicated and richer.

We give a complete description of the anti-involutions of the algebta(whose central
extension is usually denoted Bi)',.), of NxN-matrix differential operators on the circle,
preserving the principal. gradatlon We obtain, up to conjugation, two families . with 1
<m=N, getting two familiesD" m Of Lie subalgebras fixed by o . ,, and we show that these
subalgebras are simple. Then, we give a geometric reallzatle)n(mc concluding thatD
a subalgebra oDV of type o(m,n) and DN is a subalgebra ob\ of type osp(m,n) (ortho-
symplectig.

Finally, we study the conformal algebra associated \mihm Following the notation in Ref.

2, recall thatDN is a formal distribution algebra with the family of pairwise local formal distri-
butions F={J\(2) = 8(t—2)(— ¢)"®A:ne Z, ,Ae MatyC} (see Ref. 2, Example 2.1,0and the
associated associativgespectively, Li¢ conformal algebra is Cege:F (respectively,gcy).
When we try to extend the anti-involutions, ., on DN to the associative conformal algebra

Cend, we find some problems. If we apply, . to the fieIdsJ,'i, we have thao, (F)EF,
except in the degenerated cawe=0. Using the notion ofl -twisted andI'-formal distribution
algebras(I" is a group introduced in Refs. 3 and 4, we are able to characterize the conformal
subalgebras of cy associated W|tI‘D andDN . In the case o'(D+ m» We get the conformal
orthogonal subalgebiacy of gcy Wlth aZz gradatlon and in the other cagel) ,,, the associated
conformal algebra igcy with a Z,xX7, action given by aZ,-gradation and an action of,
(multiplicative) by semilinear automorphisms.

In Ref. 5, the representation theory of the central extensicih’\fQWT +) Was studied and it
may be interesting to develop the representation theory for this new family of simple Lie subal-
gebras(see Ref. 1 for the special cabe=1).

The paper is organized as follows. In Sec. Il we review the Lie alg@&btand classify the
anti-involutions of DN preserving the principal-gradation ofDN. In Sec. lIl, we describe the Lie
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subalgebra@f,m. In Sec. IV we prove thaD’;/,m are simple. In Sec. V, we obtain a geometric
realization ofo, . In Sec. VI we study the conformal subalgebra associated anl, and in

Sec. VI, the conformal subalgebra associated \ﬂDﬁlﬂm.

We are very grateful to Victor Kac for useful discussions and suggestions about this paper, and
for introducing us to this subject, particularly what we have learned about the symbol map and the
identificationgc,=MatC[ d,x] from his lectures at MIT in Spring’98, used in Sec. VI and VII.

[l. ANTI-INVOLUTIONS OF DV

Let N be a positive integer. Denote wys the associative algebra of all regular matrix
differential operators ofi*, i.e., the operators ofi"[t,t "] of the form

E=e () df+e 1 (1)aF 1+ +egt),
where g(t) e MatyC[t,t~1]. (2.1

Here and in the following we denote by M& the associative algebra of &lIX N matrices over

an algebraR. It is more convenient to write the differential operators as linear combinations of
elements of the fornt*f(D)A, wheref is a polynomial,D=td,, ke Z, and Ae MatyC. The
product inDL. is then given by

(t'f(D)A)(t5g(D)B) =t"*f (D +s)g(D)AB. (2.2)

Let DN denote Lie algebra obtained froﬂlg's. The bracket irDN may be conveniently calculated
by the following formula:

[t'f(D)A,t5g(D)B]=t""S(f(D+s)g(D)AB—f(D)g(D +r)BA). (2.3

The elementskDmEij (keZ,meZ, ,i,j=1,..N) form a basis ofP". Here and in the fol-
lowing E;; is the standard basis of Mgt. Define theweightwt on DN by

wt t*f(D)Ej; =kN+i—j. (2.4

This gives us therincipal Z-gradation ofD};andDV:DV=e;_,D}', and so we have the trian-
gular decomposition

DN=DN, o DNoe D"_,

whereDN, =& _.yDY;.

An anti-involution o of DY is an involutive antiautomorphism dby, i.e., o?=1, o(aX
+bY)=ao(X)+ba(Y) anda(XY)=a(Y)o(X), for all a,be C,X,Y e D..

In order to classify the anti-involutions GDQS preserving its principal gradation, we shall need
the following notation. Define for eaam=1,...N, the permutationr,, in Sy given by

1 2 .. m—1 m m+l ... N-1 N
l l ! ! ! ! il : (2.5
m m-1 .. 2 1 N ... m+2 m+1

Let us fixm=1,..N, fe Candc={c; j}, ¢ je C,i>], we definec =0 ; ;. n by the follow-
ing formulas:
o(Ej)=E

L ORSOR

o(DE;j)=(=D+f=6-mEx; (i) (i)
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o(tEi)=*=tE, i) (i) (2.6)
CiiEn (i) T mTm()<N—i+]j
o L
(i>]) O'(El,J) tCi,jEwm(j),wm(i) if N—i+j<7Tm(i)’
e By 1T () =<] i
(i<j) o(Ej=3 — . L
" Ci,ilem(i),wm(i) if (i)>]—i

where

1 if i>m,
%=m=o i i=m.
Theorem 1:Letm=1,...N, feC, andc={c; j}, cIJeL i>j. Theno=0- ;. defined on
generators by2.6) extends to an anti-involution oR; which preserves the prmup%tgradaﬂon
if and only if

Cij=Cii-1Ci-1j-2---Cj+1j> (2.79
and

Ci,jc’ﬂm(j),‘ﬂm(i):l if ’7Tm(i)$N—i+j,

—+1 if w(i)>N—i+]. .79

Ci,jcwi<i>,wm<j>

Moreover, any anti-involutiorr of D s Which preserves the principélgradation is one of
them.

The proof of this Theorem is certainly more difficult than the one given in Ref. Nferl,
and it will be given in several steps. We mainly use the relations between the gen&igtarsd
the involutive property ofr.

Proof: Step 1 Since o should preserve the principal-gradation, we haveo(E; )
—EN 1Qi j(D)E;j ;. But o(E;;)=0(E E;)= 2 -1(Qi, ](D))ZEJ iy Therefore, ifQ; ;(D)#0,
then Q J(D) 1. Note thatQ; ; is independent oD Now, E; j= (EI )= EkJ 1Qi,iQj kB ks
then & = 2] 1QijQ; k- So, for each there exist a uniqug; such thatQ; i QJ =1, thenQ, i
=1. On the other hand, we also ha(@e iQij k=0 for anyk#j;, thenQ; =0 for anykaﬁj,,
obtaining thato(E; ;) = EJi i Due to the injectivity ofo, 7 (i):=j; is a permutation irSy, and
sinceo is an involution, we haver?=id.

Similar ideas will be used in the following steps.

Step 2Again using thatr should preserve the principdtgradation, we may assume that
o(DE; )= 2 -1 Pij(D)E;,;. We have

o(DE;;)=o(DE; E;;)=0(E;;)o(DE;;)
N
:Ew(i),w(i)(jZl Pi,j(D)Ei,j)
Pi.#i)(D)E ai) a(iy - (2.9

ThErefore, U(DEi,i):Pi(D)EﬂT(i),ﬂ'(i) W|th PI(D):PI,ﬂ'(I)(D) NOW, |et us Write Pl(D)
=P;(D) + P;, whereP; stands for the constant term Bf(D). Thus,
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DE; ;=% DE;;)=0(P{(D)E ). x(i)
=o((Py(D)+ pi)Ew(i),w(i))
:Ei(o'(DEw(i),w(i)))+piU(ETr(i),w(i))
=(Pi(P(D)+P)E; .
So, we haveD =P;(P(D))+P;. Thus, P(D)=a,D+f; with a;-a,;=1 anda;-f . +T;
=0.

Step 3.Let us suppose that(tEi,i)=t2|N:1Ti,|(D)E|,| . Using a similar argument to the one
used in(2.8), we can deduce tha; \(D)=0 if k# w(i). As before, we denot&;(D)=T; .

X (D). Again, let us writeT;(D)=T;(D)+T;, whereT; stands for the constant term ®f(D).
Thus,

tE; ;= 0*(tE; ;) = o(tT{(D)E iy i)
= U((tEﬂ'(i),ﬂ'(i))(?i(D) +Ti)E1-r(i),7-r(i))

= [f(U(DEW(i),W(i))) +TiUEw(i),w(i)]U(tEw(i),w(i))

=(Ti(T (@i )D+ o) +Ti)tTw(i)(D)Ei,i
= t((Ti(T iy (@niy(D+ 1)+ )+ T) T (D))E; 4

T_:jus, =T, (D) (f(Tw(i)(a,,(i)(D+1)+fw(i)))+"l'i). Then deg(;)=0 for all i, and T;
ROk
Step 4. Suppose i>j. Conside__ring the Z-gradation, we have thato(E))
=31 CHD)E i+ S 111G (D)Eyij-ni. Since, o(E| E; )= o(E; j)o(E )
=0(Ei ))E). =), We can deducélﬂ(l)(D) 0 for all 1 #i. Let C{(D)= Cﬂ(,)(D). Therefore,
we have

Ci'j(D)EW(i)+i_J"w(i) if 7T(|)$N_|+]

o(Eiy)= tCH(D)E iysiojnmiy IF #(I)=N—i+j+1. 29
Similarly, if i<j and
j—i
(Eij)=2 'S/ (D)Brri-jit E  S(DEwi,
we deduce thag" '(,)(D) 0 for all | #i. Thus, denotings'(D):=S! (,)(D) we have
SUD)E iyrici oy if w(i)=j—i+1
a(Ei )= AR (2.10

t1SID)Eiy+icjenay I m(i)<j—i.

Leti>]j andk=i—j, sinceo is an involution we have ifr(i)<N—i+j:
Ei,j:UZ(Ei,j):U(Ci’j(D)Ew(i)Jrk,ﬂ-(i)):a'(Ci'j(D)Ew(i)+k,7r(i)+kEﬂ-(i)+k,7r(i))

using(2.9), we must haver(w(i)+k)+k<N—Kk, otherwise we getin the right-hand side above,

so E; j=CW*k7)(D)C(a, (|)+kD+f7(|)+k)Ew(7r(|)+k)+kw(w(|)+k) Then, ¢; ;:==C"}(D) are
constant,]—w(w(|)+k) andc; ;- C(j).=i)=1, usingm 2=id.
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If w(i)=N—i+j+1, in the same way, using simultaneou&9) and(2.10 and taking care
of the t that appears inr(E; ;) we haved,j) )=S"")"0)(D) are constantj=m(m(i)+k
—N), and I=C; j-dagy, miiy D) -

Consideri<j and takek=i—j, by the same argument, if(i)=—k+1 then we have, ;
:=S"I(D) are constantj=m(m(i)+k), andd; ;- djy,»i)=1-

And, if 7(i)<—k then we havg = m(7(i) + N+Kk) andd; j- C(j) i bﬂm .

Step 5.Let i>], then by step 1E i »iy=0(Ei;)=0(E;-E;;)=0(E;;)-o(E;), and
using (2.9 and(2.10 we get

dj,i'Ci,jzl' (21])

Now, let us determine the permutatien Again, we have foi=2,... N, E i) )= (E )
=o0(Ei-1-Ei_1))=0(Ei_1;)- o(Ej -1). Now, rewriting(2.9) and(2.10 for this case, we have

Cii—1Exiy+ 1m0y 1f m(i)<N
U(Ei’i_l)_[tci,ilElvN if m(i)=N, (2.12
di-iEri-v-1mi-1 if #(i—-1)>1
(’(Ei1")_[tloli1,iEN,l if m(i—1)=1. 213
Letiy be such thatr(ig) =N. From these equations, it is easy to see that
w(ip—1)=1, and w(i—1)==(i)+1 for anyi#ig,. (2.19

Sincew is a bijective map, we conclude thatmust bew,, given in (2.5 wherem=i,— 1.
Step 6.In this step we will characterize the constaats f;, andb; defined in steps 2 and 3.
Let us start witha; . We have

—BitE i), =)= — o (E;i ;)
=[o(DE;;),0(tE; ;)]
=[(@D+f)E i) i) PitEi) =]
=biaitE i), i) -

So,a;=—1 for all i. SincetE;,;;,,-Ej+1;=Ej1;-tE;;, applyingo to both sides and using
(2.12 we deduce thab; , ;=b;. In step 3 we showed th& - b )=1, thenb;=*

Finally, by applying the same argument ®E; ;.1 -Ej11j=E;;1;-DE;;, we getfi0
=fi, ,—1 and ifi#ig thenf;=f;_;(1<i). Thusf:=f;=---=f; andf-1=f; =---=fy,
getting in this way all the conditions in our theorem and all the equatior®.#.

On the other hand, it is straightforward to check tlatefined by(2.6) is indeed anti-
involution of DY, finishing the proof. |

Let us study condition§2.7g and(2.7b in more detail. By(2.79, all the coefficient; ; are
completely determined by

Ci==Cjy1j, Ii=1,.N—-1, (2.19

and condition (2.7 is equivalent toc;-c, +1)=1(i#m), and *l=cy(cny) t=Cm
T(c) " r=1I,.4(c;)) 1. Observe that the permutatiom,, is basically given by two simple
permutations of the sefd,... m} and{m+1,...N}. Thus Eq.(2.7b reduces to

CiCm_i=1 (1<i<m), cmiicn_i=1 (1<i<N-m), =1=]] ¢. (2.16

i#=m
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Let N=n+m. If m (respectively,n) is even, we havdl;_Ci=Cm_1), and Cm- 1),2) =1
(respectively,lli~ mCi=Cmy -1y aNd Cm(n- 1),2) =1); we shall call the coefficient, 1.
(respectivelycn (n—1y/2) a fixed point. Ifmor n are odd, the corresponding products are equal to
1. Therefore, we have

Case—:
If N is even and

(1) meven, then there are two fixed points and one of them must be 1 and the other one equal to
- 1.

(2) modd, then there are no fixed points and the last conditig2.i) is impossible. Thushere
is no anti-involution in this case

If N is odd, thenm or n is even and we have only one fixed point that must be equal fo
Case+:

For anyN, the last condition inf2.16) will be satisfied if we take thépossible fixed points equal

to 1.

lll. LIE SUBALGEBRAS DY ..

Let Dﬁmlm denote the Lie subalgebra &1\ fixed by — 04 fcom. NAMely
,Dg,f,c,m:{aeDN|Ut,f,c,m(a): _a}- (3.1

Now, we shall study the relation amorigN f.c,m for different data ¢,f,c,m). Let seC,
denote by®, the automorphism ofD s given by@ S(A)=A, O4tl)=tl and O4(DI)=(D
+s)I, wherel stands for the identity matr|x Clearlp ; preserves the princip&-gradation of
DY, Letoy:=0 ;cm, then we have

o1 Os= 014 s= 05 0% 3.2

Slmllarly, letr={r; ;} (i>]) satisfying(2.7g and(2.70b. Denote byF, the automorphism of
N defined byl (t1)=tl, T (D1)=DI, T'(E;;)=E;;, I'/(E; D=rijEij (i>]), andT'((E; ;)
—(rI DTE (<)) Letog=0+ fom, then we have

oc-I''=0c,=l-10c, (3.3

where €-r); j:=c; ;r; jand ¢ ~1); ;j=r; . Observe that-r andr ~* also satisfy(2.7a and(2.7b.
Using (3.2 and(3.3), we have:

Lemma 1:(cf. Ref. 1, Lemma 2)2(a) The Lie aIgebraSD+ f.c,m are all isomorphic for
differentf e C. In fact, we haved (DY fom= N f-2scm-

(b T (D fcm) D+fc r-2m-

Due to Lemma 1 we may choose a Lie algebra amBHg c.m» but we must keep in mind the
analysis of the fixed points for the casésand — that we made before.

We will fix f=0. In this way, we have a normalization similar to the one taken in Ref. 1.

Due to Lemma (b), it is possible to changeby c-r 2. Thus we can take;= 1, except for
the fixed points that are 1 or1, and they should keep the sign. Denoteddy ,, and DN m the
anti-involutiono~. ¢ ., and the Lie subalgebrR" foms respectlvely, with this choice cifandc

Remark 1:0bserve thaD" . is naturally |somorph|c ool Nem-

In order to give an epr|C|t descrlptlon of this family of subalgebras, we need some notation.
For any matrixA € Mat,,.,(C), define

(AD)i i=Ans1-jme1-is (3.4

i.e., the transpose with respect to the other diagonal. Recall the anti-involutidRs=an* given
in Ref. 1:
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o+ p(tF(D))=(=t)"f(—D—k+b) (beC). (3.5
We extendo . ,, to @ map on Mafx (D) =D& Maty,,n(C) by taking[ o+ n(A) i j= o+ b(Ai)-
Case +:
We define the following maps on Mgat.(D):

ATl:b-Jr,O(AT)! BT2=t71&+,O(BT)1

(3.6
Cls=to, _1(C"), Fl=a, 4(F").
Then the anti-involutionr_. ,, on DN="De Maty(C) is explicitly given by
A B\ (A1 CTs
0'+,m<C F):(BTZ FT4)' 3.7
whereA e Maty,« (D), B e Maty, (D), CeMat,xn(D), andF e Mat, (D). And
N A Bl t T
DI = _g' F A+A"1'=0 and F+F"=0;. (3.9

Observe that conditionr, ,(a)= —a impliesC'3=—B andB'2= —C, and these two conditions
are equivalent sinceR("2)'3=B. It is also possible to prove thaﬂ]m is a Lie subalgebra oPN
by direct computations, using that, fand 1, are antiautomorphism, and the identitigs2
=t !B™, Fla=tF"s, (BT2)"1=Bt™!, etc. Observe thde and' are not antiautomorphism. The
following identities are also useful

b'i,o(t_lb'i,o( )= i(‘)t_l,
(3.9

(.Ti,fl(tilb-i,o(')): itil('%

Case—:

Since the situatiomN even andm (alson) odd is impossible, we may suppose, due to the
symmetry, thah is even.

Now, consider the following maps on Mat.(D):

A= AT,

_B!
B*ZZ(Bl|Bz)*2‘=tlb',0( _1‘_2) :

Bl
(3.10
cra-[S *3'—t¢'7 (—clch
CZ U — -1 21~17>
- (Fl FZ)*“ . (F} —FE)
= =0_ _ y
Fs Fyu “H-FL FI

whereB; aremX p, with n=2p, C; arepxXm, andF; arepXp.
Then the anti-involutioro_ ,, on DN is explicitly given by

A B A*l C*3
O'—,m(c F):(B*Z F*4)’ (3-1:0

whereA e Mat,« (D), B e Mat,«,(D), Ce Mat,. (D), andF e Mat, (D). And
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DN'm=[( A B

_p*? :A+A*!'=0 and F+F**=0¢. (3.12

Note that we have again that condition (a)=—a implies C*3=—-B and B*?*=—C, and
these two conditions are equivalent sind ¢)*3=B. Again, it is also possible to prove that
N = IS a Lie subalgebra 0PN by direct computations, using that and*, are antiautomor-
phlsm Observe that, and* 3 are not antiautomorphism.

Observe that we may replace T Dyusual transpogen (3.6)—(3.8) and we get another family
of involutions (denoted byo" .m) that do not preserve the principétgradation, and the corre-
sponding subalgebras are rﬂagraded subalgebras @, but they are isomorphic to the others.
Namely, using tha"=JATJ"* where

= : 1 : (3.13

we get Aq, °o'+ m=0+ m, Where

Jn O
Inn=| o Jn
andJ, is thenXxn matrix J. In the same way, we may replace T Byn (3.10, getting another
family of involutions denoted byr:m, and they produce subalgebras isomorphic to the others.

More precisely, we have Agp p°tTI,m=tL,m, where

Jn O O
Impp=| 0 Jp O
0 0 J

p

IV. GENERATORS OF ’Dﬁ,m

In this section we give a detailed description of the generato'ﬁqﬁn. Then we show that
these subalgebras are simple Lie algebras.
Let us denote by[w]® the set of all odd polynomials iifw], and byC[w]© the set of all

even polynomials irf;[w]. And letk=0 if kis an odd integer ank=1 if k is even.
Note thatD'ivm {x— 0. m(x):xe DV} and observe that b§3.5)

o p(tF(D)) = (=) F(—Dy),

whereD, =D + (k—b)/2. Therefore, by(3.6) and (3.10 the following is a set of generators of
IDN

*.m*
From now on we will use the description of the elements in the subalgebras u&:8)iand

(3.12.

» Corresponding to the block, that is 1=<i, j<=m andb=0 (D,=D +k/2):
First consider case-,
{t(f(DVE ms1-j—F(—DWE me1-i)keZ f e ([x],1<si<j<m}
for the case-,
{t“F(DWEi ms1-j— (=D F(=DWYEj ms1-):keZfe([x]Isi<j<m}
and the generators on the opposite diagonal for the ¢aaee
{t*f(DWE; mi1i:keZ,feC[x]V,1<i<m}

Downloaded 01 Mar 2004 to 170.210.248.7. Redistribution subject to AIP license or copyright, see http:/jmp.aip.org/jmp/copyright.jsp



J. Math. Phys., Vol. 42, No. 8, August 2001 Classical Lie subalgebras 3743
and for the case- are
{tkf(Dk) Eim+1-i:KeZfe(x]® 1<i<m}.

» Corresponding to the blockB—C (b=0):
First consider case-. Here we have
{F(DWE; mrj—t H(—=DWEns1-jms1-i):keZ, feC[x], 1sism, and Isj<N-m}.
And for the case-,
{t"(F(DYE; mej— (=1t H(=DWEnsi1-jmr1-i):keZ fel[x], 1sism,

and l=sj=p},
{t“(F(DWE; m+j+ (=DMt (=D Ens1-jme1-1):KeZ, fel(x], I<ism,

and p+1<j=sN-m}.

 Corresponding to the blocks (b=—1 andD, =D + (k+1)/2):
Case+:

{t(f(DWEm+in+1-j— F(-DEmijns1-DikeZ, fe([x], Isi<jsN-m} (4.0
and the generators on the opposite diagonal are
{t“f(DWEmsins1 i keZ, fe([x]?, 1<isN—m}. (4.2
For the case- they are
{t"(F(DWEm+ims+j— (D (—=DWEns+1-jn+1-1):keZ, fex], 1<i,j<p},
{tU(DW0Emsin+1-j+ (D F (=D Emsjne1-):keZ, felx], 1=i<j<p},
{t"(F(DWEN+1-imtj+ (=D F(=DWYENs1-jmri)ikeZ, fel]x], Isi<j<p}
and the generators on the opposite diagonal are
{tF(DWEmsins1ikeZ feC[x]®D, 1<i<N-—m}.

Using the above-given description we can prove the following
Theorem 2: The Lie algebra@ﬁym are simple.
Since this is a rather technical proof, we refer to the Appendix.

V. GEOMETRIC REALIZATION OF o+

In this section we give a geometric realizationoof ¢ ,,, for arbitraryf. The algebraDN acts
on the spac&=CN[t,t 1] and one has two bilinear forms an

Bi(hyg):ReshT‘]ig! (51)
where
t= 71 0 0
t "%, 0 " .
J,= s , J_= 0 0 t Jp od
ot iy
0 -t 0

with ®:V—V given by ®(h(t))=h(—-t), h(t)eV, and J,, as in (3.13. Observe thatV
=(C"t,t~1]x C"[t,t 1] is an orthogonal decomposition ¥t Now, consider the following propo-
sition.
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Proposition 1:(a) The bilinear form®B.. are nondegenerated aBd is symmetric. Iff is even
(respectively, oddthenB_ is symmetric(respectively, skew-symmetjic
(b) For anyL e DN andh,geV we have

B-.(Lh,g)=B-(h,o+ tm(L)9), (5.2

that is,L ando. ¢ (L) are adjoint operators with respectBa. .
Proof: (a) The statements thd&. are nondegenerated aBd is symmetric are straightfor-
ward. Let us se® _:

(_1)Itk+1—f—lJm 0 0
B_(t“g ,t'e))=Regef 0 0 (D', | e
0 (=Dt (=3p) 0
(=)' Skr1-1,0Im 0 0
=ef 0 0 (=1)'Ss1-1,-13p g
0 (=)' Scsr—f,-1(=Jp) 0
(= D)*8s1-10Im 0 0
=(—1'ef 0 0 (= D*Sei-r,-1Jp | &
0 (=D Sai—f,-1(—=Ip) 0

=(—1)'B_(t'e; t*e).

Therefore, iff is evenB_ is symmetric and if is oddB_ is skew-symmetric.

(b) Let thkp(D)(é E), h=t"e,, andg=t°e, be as shown previously. We will consider only
the + case. The— case is completely analogous being careful with the definitiod_of Then
recall that

) —ts+k< p(—k—s+f)AT  tp(—k—s+f-1)C’ ;
(1)@= t1p(—k—s+1)B!  p(—k-s+f-1)F"|°

andL(h)=t*""p(r)(& Pe, . Let us compute,
A B\T/t774, o0

_iq |t
C F 0 t'J,

5k+r+sff,OAT‘Jm 5k+r+sf,1CTJn>
5k+r+s—f,OBTJm é\k+r+s—f,—lFT‘]n .

B.(L(t'ey),t%ey) = Rest"“p(r)e;(

=(p,q)entry p(r)(
(5.3
On the other hand, we have
t~ 11,0
0 t‘fJn>
p(—k—s+f)AT  tp(—k—s+f—1)C’
'(t—lp(—l<—s;+f)5T p(—k—s+f—1)|ﬂ)eq

B (h,o; 1 m(L)g)=Rest' "> e]

( 5k+r+s—f,0p(_ k—s+f )JmA-r 5k+r+s—f,—1p( —k—s+f— 1)JmCT
‘SkJrrJrsff,Op(_k_s"'f )\]nBT 5k+r+sff,flp(_k_s"'f_l)\]nFT p.q

(5.9
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Now, comparing(5.3) with (5.4) we finish the proof. |
Remark 2:Analogously, we can define the following nondegenerate bilinear formg @n
this case we considdr=0 for simplicity):

BL(h,g)=Resh'J. g,

where
t 4 0 O
t~ 1, O "
Jy 7= o 1) b= O 0 Ip|ed
" 0 -1, 0

with 1, the mXm identity matrix, and it is easy to see that they satisfy
B.(Lh,g)=B.(h,ol ,(L)g),

wherea_T_P,m were defined in3.13. Therefore, we can claim thaﬂ’m is a subalgebra 0PN of
type o(m,n) andDN,m is a subalgebra oP" of type osp(m,n) (orthogonal-symplectic

VI. CONFORMAL ALGEBRA ASSOCIATED WITH ’Dﬁ'm

In this section we will study the conformal algebra associated Wﬁnn. We will follow the
notation on Ref. 2. Recall thadN="D'® MatyC, viewed as an associative algebra is a formal
distribution algebra with the family of pairwise local formal distributions

F={A(2)=3"(2)®A:ne Z, ,Ae Mat\C},

whered"(2) =3 .t (= )"z 1" 1= 8(t—2)(— d,)", cf. Ref. 2, example 2.10. Recall that given a
collection of mutually local formal distributions, the closureF is defined as the minimal
C[d]-module closed under afith productshe 7, (see Ref. 2, pp. 39

The associated associative conformal algebra is

Cend,= @z, ([9]3"®@MatyC

with A-product

k

Tode=2,

k A .
j (M) IKE T

We will denote bygcy the conformal(associative algebra Cengl viewed as a Lie conformal
algebra with thex-bracket

Kk G o
[J,"\)\J'B]ZJZO (j)(Ha)JJkg'J—;O (j)(—x)ug;" : (6.2)

For simplicity, we will introduce the following bijective map that we learn from Kac'’s lectures
at MIT (Spring’98, called thesymbo]

Symb: gcy  —Maty[4d,x],

; Ak(a)JkHQ A()xK,

whereA,(d) e Maty(C[ 2]). The transferred-bracket is
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A(,%X),B(9,X)=A(—N,X+AX+3d)B(A+3,X)—B(N+39,—N+X)A(—\,X).

Now, we will try to extend the anti-involutions . ,, on DN to the conformal algebra Cegd
(here we return to our normalizatidr=0 made in Sec. )l When we applyr ;. , to the fieldsJ,ﬁ
we find some problems. In order to show this we will need the following formulas:

o d)=—tat™t . _1(d)=—d (6.2)
and
o4 p(6(t—2))=406(t—2z) for any b. (6.3
If 1<i, j<m, using(3.6):
71 m(Jg, (2)= 04 (8t =2)(— G Eyj)
=01 o(0(t=2)(=))Emr1—jmr1i
=0y =)o o(6(t=2)Emi1—jmi1i
=ttt S(t—2)Ems1—j ms1-i
=(0(t=2)a+t(t '8(t=2))" )Ems1—j me1-i

=(3(t=2)d =t 1 8(t=2)+ 8 (t=2))Emr1-me1-i

__11 _4+—-140 _ 0
a JEerlfj,erlfi(Z) t JEerlfj,erlfi(Z) 0"ZJEm+1fj,m+17i(Z)'
(6.9
Warning The second term in the last line (6.4) has an extra 1.
And if 1<i, jJ<N—m,
T mlJE 0 (D)= 00 1(8(t=2) (= 9) B Neai
=0 0(t=2)Enr1-jNr1-i
=(8(t—2)d+ 6 (t—2))Enr1—jN+1-i
__ 11 _ 510
B JEN+1—j,N+1—i(Z) aZJENJrl—j,NJrl—i(Z)' 6.9
In the same way, for &i<m and 1<j<N-m we have
oemJg L (@)=—U g (@Fade (D). (6.6
and for I<si<N-—m and 1<j<m, we get
U+’m(‘]ém+i,j(z)):_t(‘]émﬂ—j,ml—i(z)+&Z‘]gmﬂ—j,ml—i(z))_J%mu—j,ml—i(z)' (6.7

Remark 3:(a) From (6.4) and (6.6) to (6.7), we observe that

o m(FITF.

We will return to this point later.
(b) From (6.5) and using symbol, we have that
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(O 0 )_(O 0 )
7rmo Fox) Lo Ff@a,-a-x)

So if we consider the degenerated case 0, we havea+,0(A)=¢'r+,_1(AT) getting in this
way an anti-involution omgcy . In terms of symbol, the corresponding conformal subalgebra fixed
by — o o, which is usually denoted bgcy, is the linearC-span of

A(9,X):=A(d,X) = 04 o(A(d,X))=A(d,X) —A(d,— d—X)

with A e Maty and the corresponding-bracket given by

[A(d,x), B(d,X)]=A(—ANN+I+X)B(AN+39,X)—B(N+3d,—A+X)A(—N,—N+X)

—AT(=\,—9—X)B(A+3,X) +B(A+ 3, — A +X)AT(= N, A —X).

(c) In the caseN=1 we have the same picture as in Ref. 1, where the fillew):=45(t
—2)(— )"+ (—1)"" (- 9)"8(t—z), are introduced. Transferred in terms of symbel=x"
—(—9d—x)" and the\-bracket is simply(cf. Ref. 1, pp. 131-132

[Whwm=(=A—=3d—w)"W"—(d—w)™W"—(W+9)"W"+ (A —w)"( =N +w)".
Let us return to Remark(8). Consider the Lie algebra of matrix differential operators with

constant coefficientg:=MatyC[ 7].
Now, for each B=m=N, we have &/,-gradation ing=go® g, where,

[ Mat,([4] 0
B~ ¢ Maty_C[d])’
_ 0 MatmemC[&])
871 Maty L] 0 '

Let us consider the Lie algebr@\'’? of matrix differential operators with coefficients in
C[tY2,t=12], which can be seen as

PN (112412 g g,
Consider the following subalgebra &f\:V/?:
Dy =tht Hegeat[tht Heg,.
This is atwistedDN algebra. Let us define the isomorphidrg : D2 DNY2 given by

t—1/2| m 0 t1/2| m 0
0 IN—m 0 IN—m .

Tm(A)= (

Note thatT,, restricted toD" gives us an isomorphism betwe@\ and D\:*2. Via this isomor-
phism we translate , , to D2, gettingTyeo | e Tn'=0, where

A B\ A" ct
7*\c F/T7 B FT)

Observe thatr, is equivalent to the involution definingcy extended tdl)ﬁ'l’z. Take the subal-
gebraD)? of Dt fixed by — o, . This is isomorphic tdDY .
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Following the notation in Ref. 3D\? gives rise to 1/2-twisted formal distributions algebra
with local family

f ( nIIZ(Z) Jn|/2(z)®A E tk+|/2( a)n —k—-1— |/2A A E(MatNF)“ IEZz]

where

A 0
(MatNC)0=[(O F):AeMath,Fe MatN_mC],

(6.9

0 B
(MatyC) .= [ ( c 0) :BeMat,xn-mC,Ce MatNmeC} .
Observe thadly I’2(2)— Si(z—1)(—9)"A;, wheres)(z—t) =3, tkT2z k17172,
Define symb(]n I’2) xA; whereA,; e Maty(C);,i €{0,1}. Under this identification, the asso-
ciatedZ,-graded Conformal algebra is

gn,m:=(MatyCLd,x])o® (Maty([d,x])1
with \-product
[Al(o'?,x))\B]((?,X)]=A|(—)\,)\+(9+X)BJ()\+&,X)— B]()\+(7,_)\+X)A|(_)\,X)

Therefore,gcy m is simply goy=Maty(C[d,x]) endowed with aZ,-gradation that comes
from theZ,-gradation in Ma{(C) given by (6.8).

It is easy to see that, (F,) C Fy, getting in this way the/,-graded conformal subalgebra
0Cy m Of gCy 1, fixed by — o, . Obviously, we can seecy ,, asocy with aZ,-gradation, or as the

7,-graded conformal algebra associated with th&Ztiisted formal distribution aIgebr’E,’}'1 %7/2

VIl. CONFORMAL ALGEBRA ASSOCIATED WITH DY m

In this section we will study the conformal algebra associated Wh!hn As in Sec. VI we
will follow the notation in Refs. 2 and 3. Recall that in the case, we first considered the
degenerated case, , (that ism=0) where we obtained a formal distribution algebra structure on
DY 0, butin the case #m<N we obtained a 1/2twistedformal distribution algebra. Similarly,
in the case—, we will first consider the degenerated case N. Here we are forced to take the
Lie aIgebraD'ﬂv,\I as Z,-local formal distribution algebra, and in the casem<N we get a
double structure, that is 1Z2wistedandZ,-local formal distribution algebra.

Let m=N. Herea,,N(A):ir,,o(AT). In the case oN=1 we get the Lie algebr®~ con-
sidered in Ref. 1. In this paper as in our case the most convenient choice is the isomorphic
subalgebraD™ which is the subalgebra o fixed by —o_ =:—ir_,_1(AT) (because
o_ _1(d)=drando_ _(t)=—1).

Let us consider as before the fieldl§(z) e F [cf. (6.1)]. Therefore, we have that

o_(JA(2)=0_(8(z=t)(=d)"A)=(—3d)"8(z+t)A
with 8(z+t)=z13,_,(—t/z)¥. This motivates one to consider the family
Fo={"Y2):=6(zxt)(—d)"A:neZ, and AeMat,(},

which is a family of pairwiseZ,-local formal distributions(hereZ,={1,—1}), with OPE (a,f
(S Zz):
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k
K
[IR(@). 385 w)]= 2 2 (T)(r)ﬂ"(am?& TP Sz aB W)

k=0 r=0
_Zo (T>(—B)'J'§X“_"B(w)a'wa(z_ B W),

As in Sec. VIl in Ref. 3, we introduce the following operator on the space of formal distri-
butions:T,(a(z)) = aa(az), with @ € Z,. Note that7" is closed under all ,. Therefore, if we
take symb{;") =xA and symbgz ')=yA, then O ,7*) gives rise to a conformal algebra

R=F"=gcy®gcy=Maty(([9,x]) ®Maty(([4,y]),
since thex-bracket is
[A(9,5X),B(4,X)]=A(= XA+ 3+X)B(A+3,X) = B(A +,— X\ +X)A(—\,X),
[A(3,Y),B(3,y)]=A(=\,—N—3d+Yy)B(A+3,y) — B\ + 3, A +Y)A(—\,Y),

and[A(d,x),B(d,y)]=0. TheZ,-action on it by semilinear automorphisrtthis is aT,d=4dT,
and T ([X\YD)=[Ta(X)anTa(y)]D, is given by T_;(A(d,x))=A(dy) and T_;(A(d,y))
=A(d,X).

Now, we have that

o_(A(3,x)=A"(a,y— ),
(7.0
o_(A@3,y))=A"(9,x+9).

Thus, the subalgebra fixed byo_ is the C-linear span ofA(d,x):=A(d,x) —A'(3,y—d), (ob-
serve thatA(d,y) = —A(d,x+d)).
The \-bracket is

[A(3,X),B(d,X)]=A(—N,X+N+3d)B(N+9,X)—B(A+d,— N+ X)A(—\,X).

Note that it is easy to show that

T_1(A(9,x))=—(AT(—3,x+3)).

Therefore, the associated conformal subalgebra is isomorplgictovith a Z,-action by semilin-
ear automorphisms given by, =id andT_;.

Remark 4:0Observe that we can collapse to the chkel, gettinggc, as theZ,-conformal
algebra associated with the Lie algelipa in Ref. 1.

Now, let us consider #m<N. In this case we need to combine the Zt®isted and the
Z,-local notions.

As in Sec. VI, consider the Lie algebra of matrix differential operators with constant coeffi-
cientsg:=Maty([ 7]. For each B2m=<N, we take the/,-gradation ing=go® g, as before.

Let us consider the Lie algebr®N'Y? of matrix differential operators with coefficients in
C[t¥2t712], and consider the following subalgebra:

,Dm,ll2:C[tl,t—l](g)goeatl/zc[tl't—1]®gl.

This is a twistedDN algebra. Let us define the isomorphidhy : DVY2— DN12 given by
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1
\/i—tfl/ZIm 0 )A _-t1/2|m 0
m

0 Ino v

Tm(A):(
0 IN—m

Note thatT,, restricted toD" gives us an isomorphism betwe@® andDﬁ*l’Z. Via this isomor-
phism we translater_ ,, to D2, gettingTeo_ o Tht=0, where

o (A)=0_ A%,
with A e Mat,C and

A By Bp\* [ Al -Cl C]
At=| C; Fy Fo| =| =B} Fi, ~-F}
C, F; F, Bl -Fl FI

Take the subalgebr®y,;* of D' fixed by — o, . This is isomorphic taD .

Following the notation in Ref. 3PN'*2 gives rise to a 1/2-twisted andZ,-local formal

distributions algebra with the family
F= Jg,ii/Zil(Z) ::Jn,i/Z,tl(Z)®Ai ::kEZ (it)k+i/2( _ at)nz—k—l—i/ZAi :Ai c (MatN\C)| ie ZZ .

Observe that}'***(2) = §;2(z— (= 1)t)(— 9)"A where

Sip(z—(x1)t)= kEz (= 1)t)k+irg—k=1-i12,

Its OPE is @,Be Z,):
n

[IR'"2(2), 33 2P w)]= = 2 ( 2) (=B IR =V W) 3,82 B~ Hw)

m r
m\(r o B )
+ZO kzo ( r )(k)ﬁr(a‘fv‘]mi\? OB (W) 0y i (2~ a B wW).

Now we also introduce the following operator on the space of-tWsted andZ,-local
formal distributionsT ,(a(2)) = aa(az), with a € Z,. Note thatF,, is closed under all,, .
Thus, introducing symki'>%)=xA; and symba,ﬁ}"z"l)=yAi with A e (MatyC);, ieZ,

={0,1}, we have that the associat&g-graded conformal algebra

gonm=Fm= D ((MatyC[4,x]);®(MatyC[,y]);)
ieZy

with \-bracket
[Ai(&,X))\Bj(a,X)]:Ai(_)\,)\+&+X)Bj()\+(9,X)_ Bj()\+(9,_)\+X)Ai(_)\,X),

and[A;(d,x)\B;(4,y)]=0. Again, theZ,-action on it by semilinear automorphism is given by
T_1(Ai(0,x)) =Ai(a,y) andT_1(Ai(d,y)) =Ai(.X).
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Thereforegcy m=9gcy® gcy=MatyC[ d,x]® Maty([ d,y] endowed with &,-gradation and a
Z-action by semilinear automorphisms given by, .
It is easy to see thdin terms of symbolwe have fori € Z,,

. (AI(d,%))=A(3,y=3),
. (A(2,Y)=Af(3,x+3).
Thus, we consider the- o, -fixed subalgebra which is th€-linear span ofA;(d,x):=A;(d,X)

— A (3,y—3).
The \-bracket is (,] € Z,)

[Ai(3,X),Bj(d,X)]=Ai( =N, X+ N+ 39)Bj(A+9,X) =Bj(N+ 9, = N +X)Ai(—\,X).

Therefore, the conformal subalgebra associated \/Dﬂhm is isomorphic togcy with a
7,X 7,-action given by &,-gradation(that comes from th&, gradation in Ma{C) andZ,-action
by semilinear automorphism given By =id andT_;.

ACKNOWLEDGMENTS

Part of this work was done during our visit to MIT in April 2000, we are very grateful for the
hospitality at MIT. This research was supported in part by Foncyt, CONICET, Fomec, Conicor and
SECYT (Argenting.

APPENDIX

Here we will prove

Theorem 2: The Lie aIgebraﬁDﬂ’m are simple.

Proof: We will give the proof only for the cas@ﬂym, since the other is completely analogous.
We are going to use the description in terms of generators given in Sec. IV. Since the proof is

rather technical, some details will only be sketched. Assumehtkdt. Let us define

S
X= ( 2) ™ eDY .. (A1)
0 Dln_m

Note that ke 7)
k—1 k—1
ad X)| tkf D+—— A=ktkf D+——]A, (A2a)

whereA= (5*0). Similarly, if F=(§2 ), we have that

k k
ao(X)(tkf(mE F)=ktkf D+§)F (A2b)
. _ 40 B
and if BC= (-1 ), we get
k—1 1 k—1
adX)(tkf(D+T)BC)=(k— E)tkf D+ T)BC. (A20)
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Let J be a nonzero ideal oP"!  and letv € 7 andv =v"+0v5%+v", with vA+0F of the
form (3 %), andv®€ of the form € 7).

By [(A2a)—(A2c)] we may assume that*+v"e 7 andvBCe 7. So, since[l,,, v +v"]

e J we have thav” e 7 and similarly we can show that™ e 7.

We are going to show that if* € 7,0"#0, thenE; n.1-j*Ej ms1-i€ J andE; ny1-i€ T
with 1=<i,j=<m. Analogous arguments will work finely for the remaining blocks, and the details
are left to the reader. Therefore we can conclude \tharDﬂ'm.

Takev”#0 in J. By (A2a), we may suppose”=t“A(D) =t -, ;- ma,;(D)E, ; with A of
the form (¢ 9).

Assume that; o(D)#0. Thus,

1 1
[(D—E)Ei,mui,tkA(D)}ﬂklg;m D+k_§am+lfi'j(D)Ei’j
1
_(D_E aj,i(D)Ej,m+1—i]' (A3)

Now takeY=t"(E, s~ Em+1-sm+1-r) € D} , With s#m+1—r, s#i andr#m+1—i. Com-
puting ad{Y) of (A3) we get

(D—D[ams1-imi1-s(D=KEimi1r—a (D)Ermi1-i
Tam+1-r,i(D)Emt1-sm+1-i~@m+1-i,r(D—K)E;js] (A4)
and again, ad@ — 1/2)E 1, ) (r#m+1—r, r #i), applied to(A4), gives us
— (D=3 ams1-imr1-s(D=KEj +asi(D)Emi1-rmr1-i]€T (AS)
with ag;(D) #0. In particular,(A5) belongs toDﬁ‘m, thus we have that
am+1-imi1-s(D)=—asi(=D—k+1). (AB)

Therefore, we may assume that(D— 1/2)’[f(D)E; ;+f(—D—k+1)Epns1rme1-il€J for
somef #0.

Note thatE,— Em+1—q,m+1—p€D'i,m for any 1<=p,q=m. If we pick different values fop
andq it is easy to show that

_(D_% Z[f(D)Ep,q+f(_D_k+1)Em+17q,m+lfp] eJ, (A7)

for arbitrary values ofp and g. Note in particular, ifp=m+1—q we get an element on the
diagonal(cf. with description of generators in Sec.)IV

Now to finish the proof, we only need to show we can lower the degrééf in (A7). But
again, since(E; —Ems+1-1m+1-1) ED'-\!I—,m for 1<I=m, and if we compute the bracket between
(A7) andt(E, ;—Em+1-pm+1-p), and the bracket betwedA7) andt(Eqq—Ems1-qm+1-q)
and then the difference between them we have that

t((f(D+1)~f(D)Epq+(9(D)=9(D—1))Em+1-qm+1-p) €T.

Thus we get an element in the ideal with lower degreB,jbut we have increased the degree in
t. Using the argument ifA4), we can again lower the degreetinThis process will eventually
end, showing thaE, ;*Emi1-qm+1-p- O
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