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A B S T R A C T

We perform the location of microseismic events generated in hydraulic fracturing monitoring scenar-
ios using two global optimization techniques: Very Fast Simulated Annealing (VFSA) and Particle Swarm
Optimization (PSO), and compare them against the classical grid search (GS). To this end, we present an inte-
grated and optimized workflow that concatenates into an automated bash script the different steps that lead
to the microseismic events location from raw 3C data. First, we carry out the automatic detection, denois-
ing and identification of the P- and S-waves. Secondly, we estimate their corresponding backazimuths using
polarization information, and propose a simple energy-based criterion to automatically decide which is the
most reliable estimate. Finally, after taking proper care of the size of the search space using the backazimuth
information, we perform the location using the aforementioned algorithms for 2D and 3D usual scenarios of
hydraulic fracturing processes. We assess the impact of restricting the search space and show the advantages
of using either VFSA or PSO over GS to attain significant speed-ups.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

One of the main objectives of microseismic monitoring is to
locate events associated to hydraulic fracturing processes, which
has numerous applications in unconventional reservoir characteriza-
tion and exploitation (Kendall et al., 2011). During these procedures,
thousands of microseismic events could occur distributed around
fracture networks that depend on the reservoir conditions and the
fracturing plan. Accurately determining the position of each event
helps understanding the shapes and sizes of the induced fractures
and to estimate the dimensions of the stimulated rock (Van der Baan
et al., 2013), which is of great interest not only to appraise the com-
pletion and the fracture treatment (Cipolla et al., 2011), but also for
avoiding potential natural hazards such as water reservoir contami-
nation. Thus, being able to automatically perform the detection and
location of microseismic events by processing the records in real
time (Zimmer and Jin, 2011; Lagos et al., 2014) could help in taking
rapid decisions in the field, which are of paramount importance. It is
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the importance of these tasks what motivated us to develop efficient
algorithms capable of expeditiously process large amounts of data.

We considered the different steps that lead to the location of
microseismic sources following a pick-based approach, which involve
the accurate determination of the phases arrival times. As described
by Warpinski (2009), the general procedure is not different from
standard earthquake seismology principles. Broadly speaking, it con-
sists in detecting the phase arrivals on the microseismic records,
determining the arrival times of P- and S-waves and locating the
events, i.e. finding the coordinates of the microseismic source using
a priori estimated formation velocities. From the difference between
P- and S-waves arrival times only the distance to the microseismic
source can be estimated (Eisner et al., 2009). Hence a pick-based
approach requires the determination of the direction where the
energy comes from (backazimuth) prior to event location (Maxwell
et al., 2010). This can be done by studying the particle motion
associated with the incoming phases (Eisner et al., 2010).

In practice, we perform the detection of both P- and S-waves
and the determination of their corresponding arrival times by means
of a pattern recognition strategy that employs VFSA to find high
coherence values along hyperbolic time windows throughout the
3C input traces (Velis et al., 2015). The waveforms within this time
window are subsequently denoised by means of a reduced-rank sin-
gular value decomposition as described by Velis et al. (2015). We
obtain the backazimuth from the motion polarization analysis of
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both P- and S-waves and propose a simple energy-based strategy to
decide which backazimuth estimation is most reliable. Finally, we
automatically locate the microseismic events by solving a non-linear
optimization problem that takes advantage of the backazimuth infor-
mation for restricting the search space. We concatenate all these
steps into a single bash script that can be used to process raw 3C
microseismic data in a quasi-unsupervised way.

As for the location problem, which constitutes the main objective
of this work, we solve it using VFSA (Ingber, 1989) and PSO (Kennedy
and Eberhart, 1995; Shaw and Srivasta, 2007), thoroughly analyze
their performances from the point of view of their computational
efficiency and compare them against the classical GS (Lagos et al.,
2014), which is used in most commercial software. To this end,
we consider 2D and 3D problems given by the typical acquisition
geometries on fracking scenarios, which consist of a set of receivers
deployed within vertical or nearly vertical monitoring wells, on
account of cost limitations and well spacing (Eisner et al., 2009). The
main results indicate that VFSA was up to 8 times faster than GS,
and 2 times faster than PSO for 3D fracking scenarios. In the 2D case,
the speed-ups with respect to GS were about 4 and 2 for VFSA and
PSO, respectively.

2. Methods

Fig. 1 outlines the main processes of the automated workflow that
lead to the location of a microseismic event in either 2D or 3D scenar-
ios. The integrated workflow requires the input of the velocity model,
the number of receivers and their positions, an initial search space
and the observed 3C microseismic data. For simplicity, we omitted
some intermediate steps related to the input/output handling and
various associated processes. In the next sections we describe in
detail every relevant process, including best practice strategies and
limitations when dealing with low S/N ratios and large datasets.

2.1. Detection and denoising

In this work we use a technique developed by Velis et al. (2015)
consisting in a two-step process in which an event is first detected
and then denoised. The detection, which includes the arrival-time
picking, is carried out by means of a pattern recognition strategy that
searches for high coherence values within hyperbolic time windows
that embrace all the traces simultaneously. The search is performed
via VFSA which gives the method a high degree of efficiency. Based
on the analysis that the authors made for different measures of signal
coherence, we choose the stack energy defined by
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where s̄c
i is the i-th sample of the normalized mean trace along the

trial hyperbola (c indicates component) and M is the number of sam-
ples of the search window. The output includes a set of parameters
that define the optimum hyperbola (i.e. arrival times) that leads to
maximum signal coherence. Since all channels are processed simul-
taneously, the variation of the arrival times as a function of depth
is smooth, which is very convenient for a more reliable estima-
tion of the backazimuth from the S-wave polarization. The method
also includes a synchronizing step to take care of phase arrivals not
aligned along a hyperbola, as it would be the case for heterogeneous
velocity media (Velis et al., 2015).

Fig. 1. Integrated flowchart describing the main processes leading to a microseismic
event location.

Denoising is performed by means of a reduced-rank singular
value decomposition (SVD) of the data within the hyperbolic time
window that contains the detected phase (Velis et al., 2015):

Sq =
q∑

i=1

siuivT
i , q < N (2)

where N is the number of traces, Sq is a M×N matrix of rank q contain-
ing the phase waveform approximation, and ui, vi and s i (i = 1, N)
are the eigenvectors and singular values, respectively, of the SVD of
Sq with q = N. In practice, we found that good results are obtained
with q = 1 or 2, ensuring that all waveforms are similar after the
reduced-rank approximation.

Together with the arrival times of the detected phase, the
algorithm provides an indicator of its relative energy:

R =
E

Ēn
, (3)

where E is the energy of the phase arrival and Ēn is the mean energy
of the noise. Both quantities are computed within hyperbolic time
windows of size M × N.

Given a 3C microseismic dataset, the maximization of Gse leads
to the detection of the one phase whose stack energy is the highest.
Hence, in order to find both P- and S-waves, the procedure needs
to be applied twice, considering the residuals from the first step
(original data minus first detected and denoised phase) as the input
for the second one. By comparing their arrival times, it is possible
to determine which phase each detected wave corresponds to. We
include additional controls to avoid false detections, such as in the
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case of low S/N ratio scenarios where the maximization of Gse may
lead to spurious or residual detections.

Fig. 2 illustrates the two-step detection and denoising proce-
dure. In the first panel the S-wave can be clearly identified, but the
P-wave is barely recognizable due to the low S/N ratio. After the first
step, the S-wave arrival has been detected and denoised appropri-
ately (Fig. 2b). Fig. 2c shows the results after applying the detection
and denoising to the residual (data in Fig. 2a minus data in Fig. 2b),
where the P-wave phase arrival is clearly seen.

2.2. Backazimuth estimation

Polarization of P- and S-waves are known to have different
behaviors from which the propagation direction can be estimated
(Jurkevics, 1988; Eisner et al., 2009). For isotropic media, their polar-
izations are parallel and perpendicular to the propagation direction,
respectively. On the one hand, estimating the backazimuth is quite
simpler for P-waves than for S-waves. On the other hand, since the
S/N ratio is usually higher for S- than for P-waves, it is specially use-
ful to obtain the backazimuth by means of the former (Eisner et al.,
2009).

For the polarization analysis we follow the method proposed
by Jurkevics (1988). Broadly speaking, it involves the calculation of
the covariance matrix of the three components of motion of either
the P- or the S-wave and the determination of its eigenvalues and
eigenvectors. The polarization vector, which in the case of the P-
wave corresponds to the propagation direction, is estimated from the
eigenvector associated with the largest eigenvalue.

In the case of the S-wave, we proceed as proposed by Eisner et al.
(2009) for a linear borehole array in an isotropic medium. The slow-
ness vector p, which is equal to the propagation direction divided by
the velocity, should satisfy the Eikonal equation. Thus, p • p = V−2

S ,
where VS is the S-wave velocity. Moreover, the polarization vector e
is perpendicular to the slowness vector, i.e. p • e = 0, and the deriva-
tive of the S-wave arrival time with respect to the borehole direction
gives the projection of p in this direction: pz = dtS/dz.

Some provisos must be taken into account. First, the ray direction
cannot be determined if the S-wave polarization is in the borehole
direction. Furthermore, there are two slowness vectors that satisfy
the above relations (Eisner et al., 2009). In practice, one should select
the one that points approximately towards the treatment well.

We will refer to the real backazimuth of a microseismic event as h
and to its estimation as ĥ. Whether we find ĥ using P- or S-wave polar-
ization analysis, we have one solution for each of n usable receivers.
Based on these estimations a unique backazimuth is determined. To
this end, we assume that they are normally distributed and that the
mean value is the “real” backazimuth (Han, 2010; Aster et al., 2005).
Since n is small, we rely on the Student’s t-distribution to better esti-
mate the mean (recall that the corresponding Student’s t-probability

density function approaches a normal distribution when n goes to
infinity). Then, the new variable

t =
h̃ − h̄

s/
√

n
(4)

follows a Student’s t-distribution with n−1 degrees of freedom, where
h̃ is the backazimuth obtained from a single trace, and h̄ and s are
the sample mean and standard deviation, respectively. We obtain
the mean value of t by maximizing its density function and update
h̄ and s accordingly. Since the backazimuth estimations are highly
sensitive to noise, outliers are very likely to occur. For this reason,
those backazimuth estimates that differ from the updated mean value
in more than one standard deviation are removed. This process can be
iteratively applied taking proper care not to overly reduce the sample
size.

Depending on the relative positions of sources and receivers, the
amplitudes of P- and S-waves can be remarkably different. After sev-
eral tests we observed that the errors are larger for ĥP than for ĥS for
low S/N ratios because the noise impact is larger for the former, as
explained above. Contrarily, for relatively low noise levels, the errors
are larger for ĥS, even though the amplitudes of S-waves are much
larger than the amplitudes of the P-waves. This means that if both
phases had the same S/N ratio, the backazimuth estimates obtained
from the P-wave would be more reliable that those obtained from
the S-wave. On the other hand, for moderate to low S/N ratios, the
use of S-waves would be advisable. Moreover, as explained above, it
is not possible to obtain ĥS when the S-wave polarization is in or near
the direction of the well (in our case, vertical). Therefore, we propose
the use of the energy indicator R (Eq. (3)), which can be calculated
for each phase and component individually, to automatically decide
which phase is more reliable to estimate the backazimuth. In a nut-
shell, ĥP should be used in those cases where R is larger for P- than for
S-waves (RP > RS), or at least larger than both its horizontal compo-
nents simultaneously, i.e. RP > Rx

S and RP > Ry
S . Otherwise, ĥS should

be used.
Lastly, given the well-known 180◦ ambiguity (illustrated in

Fig. 3) that arises when working in an azimuthally isotropic veloc-
ity medium, and since automation is our goal, we assume that the
waves are coming from the stimulated regions. This assumption is
valid when there is actually no other fluid displacements or no stress
relaxation associated with previous stages is occurring simultane-
ously (Eisner et al., 2009), which could be misinterpreted as events of
the current stage. Hence, we consider only the events that occurred
within the “expected region”. In particular, we define this area by a
110◦ angle range, which is wide enough to encompass most possi-
ble backazimuths. Those arrivals that come from outside that region
are not considered and should be individually evaluated to find out

Fig. 2. a) Synthetic record; b) and c) results after the first and second steps of the detection and denoising algorithm.
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Fig. 3. Representation of the 180◦ ambiguity.

whether they correspond to events of interest occurring out of the
treatment region.

2.3. Location

The pick-based approach we follow for the microseismic event
location requires the determination of the differences between the
S- and P-waves arrival times (Lagos et al., 2014). In practice we
minimize the cost function

0 (xs, ys, zs) =

⎡
⎣ 1

Nc

Nc∑
i=1

(
Dti − Dtobs

i

)2

⎤
⎦

1/2

, (5)

where Nc = 3×N is the number of channels, and Dti and Dtobs
i are the

modeled and observed time differences between the S- and P-waves
arrivals. This non-linear function can be minimized via a variety
of methods. As we stated earlier, in this work we minimize this
cost function by means of VFSA (Ingber, 1989) and PSO (Shaw
and Srivasta, 2007), which proved to be much more efficient than
standard methods such as grid search (GS) (Lagos et al., 2014).

For the GS implementation we use regular meshes with elements
of side h embracing a predefined search space. The cost function is
evaluated at each node in each iteration. For the first iteration, we
set h = 50 m for the whole search space. After each iteration, we
set h = h/2 and update the search space around the current global
minimum. The iteration is repeated until a stop criterion is reached.
In order to facilitate the statistical analysis described in the Results
and discussion section, the lowest left corner of the mesh in the first
iteration is randomly selected within an element of size h.

Fig. 5. 2D location example: a) Estimated source positions (400 realizations). b)
Zoomed-in plots.

PSO basically consists in moving a swarm of particles through
the search space. The model unknowns (microseismic source coor-
dinates) are represented by the positions of the particles, which
are iteratively updated taking advantage of both previous individual
experience and social knowledge. A more extensive description of
the algorithm and its implementation can be found in Appendix A.
VFSA is implemented as described by Velis (1998).

3. Results and discussion

We now focus on the efficiency of the optimization methods
from a statistical point of view. We consider two different acquisi-
tion geometries or models. The first model includes a single vertical
monitoring well (Well A) with a 12-receiver array starting at the
coordinates (200, 100, 350) m with a vertical spacing of 30 m, in a
subsurface given by a homogeneous and isotropic half-space with
VP = 3500 m/s and VS = 2200 m/s. This constitutes a 2D location
problem where xs and ys are replaced by the horizontal distance from
the receiver once ĥ has been estimated. The second model includes a
second monitoring well (Well B) with a 12-receivers array starting at
the coordinates (500, 700, 350) m and with the same vertical spacing.
In this case we perform a 3D location, since the backazimuth infor-
mation is not used to reduce the number of unknowns. We consider
a source at (xs, ys, zs) = (600, 300, 600) m assuming that the source
mechanism is a shear fracture on the plane (x, z) with a slip in the −x
direction. Fig. 4 illustrates the spatial distribution of the described
wells and the fictitious source.

Fig. 4. Acquisition geometry.
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Table 1
2D location example: errors in the estimated coordinates, uncertainties and number
of cost function evaluations (mean values after 400 realizations and 100 repetitions).

Target misfit: 0.5 × 10−3 s Target misfit: 1.0 × 10−3 s

PSO VFSA GS PSO VFSA GS

ex (m) 5.9 5.9 6.0 6.2 6.3 6.3
ey (m) 10.6 10.7 10.7 10.7 10.7 10.7
ez (m) 5.6 6.2 7.5 10.7 12.0 14.1
ux (m) 1.1 1.2 1.4 2.1 2.4 2.6
uy (m) 0.6 0.6 0.7 1.2 1.3 1.4
uz (m) 3.8 4.0 3.9 7.1 7.4 7.5
NE 248 ± 11 170 ± 8 552 ± 15 190 ± 7 122 ± 5 463 ± 29
Speed-up 2.2 3.3 1 2.4 3.8 1

The propagated signal is a Ricker wavelet with a peak frequency
of 100 Hz. For statistical purposes, we generated a set of 400 syn-
thetic records with the same source but different noise realizations.
Since analyzing the effects of different focal mechanisms on the
detection and location processing is out of the scope of this work, we
considered the same type of source for every record. The data is con-
taminated with band-limited Gaussian noise with S/N = 3, which
yields a S/N ratio for the P-wave close to 1. The S/N ratio is computed
as the quotient between the maximum signal (considering both P-
and S-waves) and noise amplitudes.

We test the performances of the algorithms for two different tar-
get misfits: 0.5 ms and 1 ms. Given that most service companies offer
sampling intervals of 0.25 ms or smaller (Eisner et al., 2010), the
expected misfits that we set are consistent with an error in the arrival
time determination of 2 and 4 samples, respectively. For the sake of
efficiency, we set the search space as small as possible being care-
ful not to preclude regions of potential sources. The iterative process
in all cases is stopped when the cost function satisfies a predefined
target misfit or a maximum of 10,000 cost function evaluations is
reached.

3.1. 2D location example

We performed the 2D location of the microseismic source for each
of the 400 noise realizations with the three optimization algorithms.
For statistical purposes, in each case we repeated the optimiza-
tion 100 times using different seeds. The results of a single run are
depicted in Fig. 5. As expected, the largest uncertainty is associated

Fig. 6. 3D location example: a) Estimated source positions (400 realizations). b)
Zoomed-in plots.

with the backazimuth estimation, which is evident from the result-
ing arch-shaped cloud of events that seem to keep the distance from
the well.

Table 1 summarizes the results after averaging the 100 repeti-
tions for each of the 400 realizations for two different target misfits.
The absolute errors in the estimated coordinates (ex, ey and ez) are
very similar for the three algorithms and fall within the usual obser-
vational errors for microseismic event location in single vertical
array scenarios (Eisner et al., 2009). The quantities named ux, uy and
uz represent the uncertainties in the estimated source coordinates
due to the stochastic nature of the algorithms. Given a certain tar-
get misfit, these uncertainties are similar for the three algorithms
and in every case they represent a small proportion of the absolute
error in the source coordinates. It follows from the above that the
only difference regarding the performances of the three optimization
algorithms relies on their computational efficiency, which is the most
important result in what our work is concerned. Naturally, the mean
number of cost function evaluations (NE) needed to reach a solution
increases when we demand a smaller misfit. It is clear that both PSO
and VFSA require significantly smaller number of cost function eval-
uations than GS, leading to speed-ups that go from 2 for PSO to 4 for
VFSA, approximately.

3.2. 3D location example

Fig. 6 shows the results of the 3D location corresponding to
one out of the 100 repetitions for the 400 realizations. Table 2
summarizes the averaged results for the same two target misfits
we set in the 2D location example. Again, positioning errors are
within the usual values, but smaller than in the 2D case, since the
uncertainty introduced by the backazimuth is no longer present.
As expected, location errors are larger for the vertical component
(Eisner et al., 2009). As in the previous section, the 100 repetitions of
the optimization with the different algorithms allow us to evaluate
the uncertainties on the source positioning regardless of the noise
realizations effects. For a given target misfit, these uncertainties are
very similar for the three algorithms. Since for 3D location the algo-
rithms explore a 3D search space, the mean NE is larger than in the
2D case. The biggest change is observed for GS, which requires about
4 and 8 times the number of cost function evaluations required by
PSO and VFSA, respectively.

3.3. Search space restriction

In the case of the 3D location, the information provided by
the two monitoring wells make it unnecessary to obtain the back-
azimuth from the polarization analysis. However, we can take
advantage of the backazimuth estimates for restricting the search
space and attain higher computational efficiency. We assume that
the actual source position is somewhere close to the intersection
between the two directions given by the backazimuths estimated

Table 2
3D location example: errors in the estimated coordinates, uncertainties and number
of cost function evaluations (mean values after 400 realizations and 100 repetitions).

Target misfit: 0.5 × 10−3 s Target misfit: 1.0 × 10−3 s

PSO VFSA GS PSO VFSA GS

ex (m) 3.7 3.8 3.8 4.5 4.9 4.9
ey (m) 3.8 3.9 3.9 4.6 5.0 5.0
ez (m) 4.8 5.3 5.6 8.6 10.3 10.6
ux (m) 1.5 1.7 1.7 2.8 3.1 3.0
uy (m) 1.5 1.7 1.7 2.7 3.1 3.0
uz (m) 3.1 3.3 3.2 5.8 6.5 6.4
NE 444±16 243±13 1910±182 328 ± 129 148 ± 7 1165±225
Speed-up 4.3 7.9 1 3.5 7.9 1
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Fig. 7. a) Search space restriction based on backazimuth information. b) Determination of the extent of the search space (see text for details).

for the two wells (Fig. 7a). This would be the case of a velocity
model in which only depth variations are considered, such as layered
subsurfaces.

A criteria for defining the proper extension of the search space
was established from the statistical analysis we describe next. We
considered the same set of 400 realizations that correspond to a fic-
titious source located at (xS, yS, zS) = (600, 300, 600) m. After the
detection and denoising, we estimated the corresponding backaz-
imuths for both wells. Table 3 summarizes the resulting means,
which are very close to the actual backazimuths, and standard devi-
ations. Assuming that the estimated backazimuths follow a Gaussian
distribution, then the probability that h is within the interval defined
by the mean plus minus 3s is 99%. This range defines a potential
region around the intersection point (xI, yI), as shown in Fig. 7b.

For this particular case, (xmin, xmax) = (553, 650) m and
(ymin, ymax) = (240, 364) m. This analysis can be used to assess the
expected variability of the intersection point (and the size of the
search space) for a given S/N ratio.

Taking these results into account, in practice for each event we
find the intersection point (xI, yI). This point is the center of the
search space for the horizontal components. We then set the size of
the search space equal to three times the size of the region estimated
above. That is, (xI ± 150m, yI ± 150m). These are the values actually
used for the 3D location example. In cases where ĥ is not reliable or
the intersection point is too far from the expected source position,
we enlarge the search space so as to encompass the whole stimulated
region.

We could follow a similar analysis to restrict the search range for
zS. However, since velocities vary more with depth than with any
other direction, the dip information and the corresponding intersec-
tion point would not be reliable. For this reason, we prefer to set
a wide search range for the depth coordinate. In all the examples
considered in this work, we set it equal to (200, 1000) m. A simi-
lar approach could be followed for other geometries such as a single
deviated monitoring well, or other cases where a 2D location is not
possible.

The impact of the search space restriction on the computational
cost of the events location process can be assessed by analyzing the
results shown in Table 4. The table shows the mean number of cost

Table 3
Actual and mean backazimuth estimates for the set
of 400 realizations associated with the same source.

Well A Well B

Actual h 63.43◦ 165.96◦

Mean ĥ 63.40◦ ± 1.89◦ 166.34◦ ± 0.96◦

function evaluations with a target misfit of 0.5 ms in the cases of
the restricted and not-restricted search spaces. The size (in meters)
of the horizontal search spaces are 300 × 300 and 1000 × 1000,
respectively. As expected, the number of cost function evaluations
increases significantly when the search spaces are not restricted,
specially for the GS.

4. Conclusions

We implemented an automatic and optimized procedure that
concatenates the different steps that lead to the location of the
microseismic sources. The detection and denoising method we
applied provided the necessary inputs to the backazimuth estima-
tion and location steps, including the energy indicators, that helped
to assess the reliability of the detected phase arrivals and avoid pos-
sible false detections, and criteria for the identification of the P-
and S-waves. In addition, it provided appropriate arrival times and
consistent waveforms used for the subsequent steps.

Location involved a non-linear optimization problem where the
objective was to minimize the discrepancy between the observed
and calculated traveltime differences of the S- and P-waves. We
solved this problem by means of two global optimization algorithms:
PSO and VFSA. In the 2D location scenario, we searched for two coor-
dinates only, since the backazimuth information that we obtained
automatically in a previous step, allowed us to limit the search space
to a plane containing the source and the receivers array. In the 3D
location scenario the optimization involved three coordinates. For
this case, we devised a strategy to restrict the search space based on
the backazimuth estimates obtained from two monitoring wells, and
showed that this leads to a significant speed-up of calculations. On
the other hand, we showed that the proposed energy-based criterion
can be used to automatically make the decision whether to use the P-
or S-wave backazimuth estimates, an important choice for reliability
purposes.

Both PSO and VFSA proved to be very effective and efficient in
terms of computational effort when compared against the classical
GS, which is used in most commercial software. In this sense, VFSA

Table 4
Mean number of cost function evaluations (and
speed-up) after 400 realizations by restricting or
not restricting the search spaces.

PSO VFSA GS

Not restricted 740 385 7758
Restricted 444 243 1910
Speed-up 1.7 1.6 4.1
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was up to 8 times faster than GS and 2 times faster than PSO for 3D
location. In the 2D case, the speed-ups with respect to GS were about
4 and 2 for VFSA and PSO, respectively. We believe that these speed-
ups, together with those obtained by restricting the search space and
the energy-based criteria used to select the most reliable backaz-
imuth estimates, might represent a key factor when processing large
volumes of data.
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Appendix A. Particle Swarm Optimization (PSO)

PSO is a stochastic optimization technique based on the social and
cognitive behavior observed in natural populations such as flocks of
birds on their search for food sources (Kennedy and Eberhart, 1995).
The algorithm starts with N particles, whose positions represent
the model unknowns, randomly distributed throughout the search
space. At each iteration their positions are updated based on the
corresponding cost function values, weighting both the individual
cognition of each particle and the knowledge of the whole group.

Numerous modifications to the method have been applied since
its inception, leading to different versions involving diverse parame-
ters (Poli et al., 2007). We next describe the expressions used in this
work for the PSO implementation. Let mk

i and vk
i be the position and

velocity of the i-th particle at the k-th iteration and let mg be the best
position ever reached by a member of the group. Provided the limits
of the search space are not exceeded, the velocity at the k-th iteration
and the new position at the (k + 1)-th iteration are given by

vk
i = a

(
vk−1

i + br̃
(

ml
i − mk

i

)
+ cr̃

(
mg − mk

i

))
, (A.1)

mk+1
i = mk

i + vk
i , (A.2)

where r̃ is a random number drawn from a uniform distribution in
[0, 1] and v0

i = 0 for all particles. The constant a plays the role of
a “constriction factor” that helps reducing the velocity magnitudes,
which can be quite large depending on the problem. The constants
b and c represent the “learning rates” related to the individual
cognition and social behavior.

The parameters a, b and c play a key role on the exploration capabil-
ity of the method, given that they determine the likelihood of a particle
to move to other regions of the search space or to concentrate on its

surroundings. The optimum values are those that give the algorithm
both behaviors simultaneously and depend on the problem that is
being optimized. Previous to this work, we performed a calibration
of the algorithm for its use for microseismic event location in order
to find the parameters with which it shows better performances in
terms of computational efficiency. As a result, we considered a = 0.4,
b = 0.8 and c = 2.0. PSO requires one evaluation of the cost func-
tion at each iteration and for each particle. Finally, we considered a
swarm composed of 50 and 100 particles for the 2D and 3D location,
respectively.
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