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Abstract 

The study area is located in the eastern slope of Las Peñas Mountain and its adjacent 

oriental fluvio-aeolian-plain. Agriculture is the main activity (soybean, maize, wheat, peanuts 

and alfalfa) with no-tillage farming and intensive use of agrochemicals (pesticides-fertilizers). 

Glyphosate (N-phosphono-methylglycine) is the most common used herbicide which suffers 

microbial biodegradation giving aminomethylphosphonic acid (AMPA), its main metabolite. 

The objective of this work is to evaluate hydrogeological features which influence the 

presence of glyphosate and AMPA in waters. In the study area, the main flow direction of 

surface and groundwater is NW-SE. The unsaturated zone thickness decreases in the same 



direction from 60 to 0 m, so groundwater surges in low areas in the eastern sector. From the 

total water samples collected, glyphosate was detected in 66% of surface water samples 

(0.2 to 167.4 μg/L), in 15.8% of the groundwater samples (1.3 to 2 μg/L) and in the harvested 

precipitation sample (0.2 μg/L). AMPA was found in 33% of surface water and 15.8% of 

groundwater. The herbicide detection was related to areas with the shallowest water table 

(< 4 m), low hydraulic conductivity in the aquifer (K= 1.5 m/d), low hydraulic gradient (i= 

0.16%) and very low flow velocity (0.02 m/d). The most outstanding result is that the 

groundwater presents higher values in comparison with the surface water samples, which 

can be explained by the greater dilution capacity of streams. The detection of glyphosate 

and AMPA in the unconfined aquifer shows that the application for decades under the 

prevailing agricultural model exceeds the degradation potential of the soil and the 

unsaturated zone, causing groundwater contamination. 

 

Keywords: Hydrogeological features, groundwater pollution; Glyphosate-AMPA; Córdoba 

(Argentina). 

 

1 Introduction 

The global increase in crop production has been achieved mainly through the 

intensive use of agricultural chemicals such as pesticides and fertilizers. The trend has been 

amplified by the expansion of agricultural land, the introduction of new crop varieties and a 

more intensive use of agrochemicals and agro technologies, while also transferring 

agricultural pollution to water (Mateo-Sagasta et al., 2017, Giuliano Albo et al., 2015, 

Giliuano Albo et al., 2019). The resultant water pollution presents demonstrated risks to 

aquatic ecosystems, human health and productive activities (UNEP, 2016). 



Glyphosate (N-Phosphonomethyl glycine) is a post-emergent, non-selective, broad-

spectrum herbicide used extensively and intensively to control most annual and perennial 

weeds in genetically modified glyphosate-resistant crops (RR crops), mainly in transgenic 

corn and soybean crops. Glyphosate has high solubility in water, a low octanol/water 

partition coefficient (Kow), and a high organic carbon partition coefficient (Koc) (Mayer et 

al., 2006). It is considered to have low mobility in soils because sorption is generally high 

(Okada et al. 2016; Gomez Ortiz et al. 2017; Maqueda et al. 2017). 

Glyphosate undergoes microbial degradation in the soil, in aquatic sediments and 

water, a process which gives as a result its main metabolite, aminomethylphosphonic acid 

(AMPA) which is also water soluble and degrades more slowly than glyphosate (Grunewald 

et al.,2001). In 2015 the International Agency for Research on Cancer classified glyphosate 

as a probable human carcinogen, creating public concern about its presence in the 

environment (Guyton et al., 2015). 

Argentina ranks third in the world in the use of herbicides (Pretty and Bharucha, 

2015), with 240,000 tons of Glyphosate sprayed in 2013 alone (Avila-Vazquez and Difilippo, 

2016). Currently glyphosate based herbicides represent 64% of total herbicides sales in 

Argentina and for transgenic soybean cultivation, they represent 76% of the total package 

of chemical used products (FAO, 2019). 

The surface water in agricultural areas is more susceptible to agrochemical 

contamination through surface run-off, by direct overspray and spray drift. The study of 

Battaglin et al. (2014) has detected glyphosate in 52.2% of the total stream samples, in 

70.9% of ditches and drains and in 33.7% of lakes, ponds and wetlands, with a maximum of 

427μg/L in ditches and drains. Moreover, AMPA was detected in 71.6%, 80.7% and in 29.8% 

for each system respectively with a maximum of 0.43 μg/L. In Argentina, Aparicio et al. 

(2013); Lupi et al. (2015) and Primost et al. (2017) have detected glyphosate and AMPA in 

surface waters in a range between 0.5 and 7.6 μg/L. 



Groundwater pollution with herbicides is generally lower in groundwater than in surface 

water due to degradation in the unsaturated zone (Mueller and Senseman, 2015). 

Nevertheless, several studies have demonstrated the potential for leaching and vertical 

transport to groundwater (Lupi et al., 2015, Grondona et al., 2014, Aparicio et al., 2015, 

Okada et al., 2016, Pang et al., 2000, Labite et al., 2013). In this sense, the hypothesis that 

soil is an effective defense against contamination by pesticides often does not work (Costa 

et al., 2011). In Cataluña (Spain), Sanchis et al. (2012) analyze glyphosate in groundwater 

confirming that, despite the low mobility of this compound, the herbicide is capable of 

migrating towards the unconfined aquifer. In Argentina, Okada et al. (2018) have detected 

glyphosate and AMPA in 24% and 33% of the groundwater samples, with maximum 

concentration of 8.5 and 1.9 μg/L respectively. On a large scale, in Ireland, McManus et al. 

(2017) detected the highest frequency of occurrence of pesticides and their metabolites in 

groundwater present in high permeable sands and gravels as well as in shallow piezometers 

in poorly drained areas. 

Alonso et al. (2018) have detected glyphosate and AMPA in more than 80% of rainwater 

samples, obtained from the Pampa region in Argentina, in concentrations from 1.24 to 67.3 

μg/L and from 0.75 to 7.91 μg/L respectively. Glyphosate and AMPA were also detected in 

atmospheric dust, mainly in the finest particles of loess (8-18 μm), a situation which 

contributes to human exposure by inhalation (Bento et al., 2017; Aparicio et al., 2018; 

Mendez et al., 2017). 

Córdoba Province is part of the country's highest soybean productivity area, being in 

the second place of annual production in the national campaign 2018/2019 according to 

BCR (2019), with a total estimate of 16.42 millions of tons produced. Groundwater is a vital 

water resource for human consumption, irrigation and cattle intake in the study area. 

Therefore, it is very important to evaluate the natural chemical composition and those 



changes derived from agricultural contamination sources to outline the quality degradation 

that may interfere with water uses and to explain environmental regional processes. The 

main general hypothesis is that, for similar land uses, the hydrogeological features condition 

the fate of herbicides which degrade the natural water quality. Therefore, the aim of this 

research is to determinate the main geological and hydrogeological features that contribute 

to the presence of glyphosate and AMPA in surface water and groundwater in an agricultural 

area producing soybean as leading crop. 

 

2. Description of study area 

2.1. Location, geology and climate 

Located in the center of Córdoba province (Argentina), the research area covers 

3,047 km2 (Fig. 1). It comprises the piedmont of Las Peñas Mountains and an extended plain 

area with great geomorphological, stratigraphic and hydrodynamic peculiarities (Blarasin et 

al., 2014). 

 

Fig. 1: Location of study area, water samples and hydrogeological profiles 

  

Las Peñas Mountains, part of the Pampean Mountains, are made up of a typical 

bedrock of Precambrian - Lower Paleozoic age outcrops, formed by igneous-metamorphic 

complexes of granitoids, gneisses, schists, migmatites, amphibolites, quartzites, granulites 

and calcareous dolomite intercalations (Demichelis et al., 2004). The general configuration 

of the bedrock towards the oriental plain is a set of gradually descending blocks that act as 

the base of the sedimentary filling. 

The Pampean Plain constitutes a great flat area that has received sediments since 

the Miocene, from the Andean Mountains uplift, and currently constitutes the pathway of 



these sediments towards the Atlantic shelf and continental slope (Chebli et al., 1999). The 

Pampean plain is a semi stable part of the cortical crust with a negative tendency. It is an 

area where thick continental and marine sedimentary sequences have accumulated from 

the Cambro-Ordovician period to the present. 

 In the study area, the piedmont sector is characterized by a smoothly undulating 

relief, with topographic gradients from 1.3% to 0.6%. The sedimentary materials correspond 

to Quaternary alluvial sequences of very fine sands with dispersed gravels and loess 

deposits covering the entire area. The active processes of water erosion (rills and gullies) 

as well as soil degradation by aeolian processes are significant. To the NE, the alluvial fan 

of the Ctalamochita River is recognized. It is one of the various great alluvial fans generated 

during Quaternary periods in this region, with a softy undulated relief and typical topographic 

gradients from 0.5% to 0.2%. It is formed mainly by coarse sediments like gravels and 

coarse, medium and fine sands, towards the oriental plain become more typical silty sand 

materials (Carignano et al. 2014). The soils in this area are in general Typic Ustorthents with 

sandy texture and 1% of organic matter (OM) content. To the SE, a typical aeolian plain is 

present with topographic gradients from 0.2% to 0.1%. This geomorphological environment 

is characterized by a poor drainage and discontinuous fluvial and aeolian paleo-features, 

where ephemeral or permanent small lwater bodies are installed. This drainage pattern, 

regionally called “spider like” drainage (Cantú and Degiovanni, 1984), is structurally 

controlled and presents a central depression and branches with different directions, filled 

with water. Processes such as flooding become more relevant in the flatter areas. Entic 

Haplustolls and Typic Natracualf soils predominate in this area, with silty texture (loess) and 

OM content from 1.7 to 1.9%. 

The climate in this region is subhumid, characterized by a mean temperature of 16.5 

°C and an average annual precipitation of 791.6 mm. Seventy one percent (71%) of the 



precipitation is concentrated during the spring-summer period, between September and 

February. 

2.2. Land use and agricultural management 

The urban area occupies 0.04% of the total study region, with 14 settlements, towns 

or small cities, being Hernando city the most populated with 17,843 inhabitants according to 

the 2012 INDEC (National Institute of Statistics and Population) survey. 

The land use is mainly defined by agriculture activities, with soybean,maize, wheat, 

sorghum and peanut cultivation in order of importance, with no tillage practice and a high 

use of agrochemicals. Horticulture is scarce and concentrated in peripheral areas of the 

small towns. Although extensive cattle breeding is practiced, the livestock activity is mainly 

concentrated in feed lots of cows and pigs. Dairy farms are also important, being the zone 

located within the “Villa María dairy basin” one of the most important of the country. 

The most common glyphosate formulations reported by the regional farmers were 

glyphosate potassium salt (at 53 and 66.2% w/v) and glyphosate-monoammonium salt (36% 

w/v).The reported doses are 1.8 to 3.0 L/ha (liquid) or 1.5 to 1.8 kg/ha (solid). The agronomic 

calendar comprises mainly summer crops, like soybean and maize (both transgenic, RR 

crops). The seeding time takes place between October and December, with post-emergent 

glyphosate application during November, December and January in most of the surveyed 

farms. The harvest period covers the months of March, April and May, according to climate 

parameters such as rainfalls and temperatures as well as particular agronomical 

management in each farm. To replace conventional tillage methods for weed control, most 

farmers apply glyphosate from April to August during fallow time. This management 

framework suggests that there are a few months during which glyphosate is not applied. 

Therefore, in a regional scale, almost always, a field under pulverization can be found, either 



for application to crops or in fallow season. Figure 2 shows the rainfall values and temporal 

distribution along with the glyphosate application time. 

  

Figure 2: Monthly average rainfall and application of glyphosate based herbicides. 

  

3 Methods 

The research was based on the compilation and analysis of topographic charts from 

the National Geographic Institute (IGN) at 1:50,000 scale and satellite images (Google 

Earth, Landsat ETM). 

Background information (geological, geomorphological, climatic, etc.) of the study 

area was collected and analyzed (Degiovanni et al. 2005; Carignano et al. 2014, Blarasin et 

al. 2014). 

The precipitation record was analyzed and interpreted using as representative, a local series 

from 1921 to 2017. The rainwater station belongs to the Agricultural Cooperative “La 

Vencedora” and is located in Hernando city (See figure 1: Town: Hernando). The series was 

selected taking into account the location of the station, the high direct correlation (r=0.99) 

with values belonging to other 5 surrounding precipitation stations and the length of the 

covered period. 

The geological and geomorphological study was performed through the description of the 

relief and lithological outcropping profiles during field surveys. Also information from vertical 

electric sounding (VES) and from drilling samples from the Secretary of Water Resources 

of Cordoba province was considered. 

The hydrogeological data were obtained through a survey of 74 wells which 

penetrate the upper 15-50 m of the unconfined sedimentary aquifer. The water table depth 

was measured using an electric piezometric probe (Solinst 101-P2). The surface water 



samples correspond to 3 streams, 2 ponds and 1 ditch. The sampling was carried out in 

November 2017 (spring season) during a 3 day field campaign. 

For the hydrogeochemical characterization and Glyphosate + AMPA analysis, 19 

samples were selected according to spatial representativeness and accessibility criterion. 

In each sampled site, water parameters were measured in situ: pH, electrical conductivity 

(EC) and temperature (T) using a multiparametric portable probe with GPS (Hanna HI 9829). 

The samples were collected with polypropylene bottles that had been rinsed three times with 

the pumped water before taking the sample. Upon arrival to the laboratory, water samples 

were conditioned and measured. The rain water is a sample harvested for one year in the 

south of Tancacha town, where the groundwater is not suitable for human consumption. 

Some local farmers collect the rainfall from the roof of houses and then store it in cisterns. 

The water samples were analyzed using Standard Methods (APHA et al. 2005) in 

the laboratory of the National University of Rio Cuarto. Carbonates and bicarbonates were 

measured by titration with Orion-Thermo selective electrodes; sulfates by turbidimetry, 

chlorides by titration with silver nitrate; calcium and magnesium by titration with EDTA and 

sodium and potassium by flame photometry (Metrolab 315 digital photometer). Nitrates were 

determined by potentiometry with a selective ion electrode (Orion Model 9307), a reference 

electrode and an Orion 710-A potentiometer, using a suppression solution for interferences. 

Six reference standards were used (5, 10, 25, 50, 100 and 300 mg/L of nitrate) to calibrate 

the potentiometer. The mean percentage error of the chemical analysis did not exceed 8%. 

In the case of samples extracted for the herbicide measurement, they were collected 

in 500 ml polypropylene containers and stored frozen (−20 °C) until further analysis. These 

samples were analyzed for glyphosate and AMPA by ultra-high performance 

chromatography coupled with a tandem mass spectrometer (UHPLC MS/MS) (Waters Inc., 

Milford, MA, USA) in EEA INTA Balcarce Laboratory (Argentina) with the methodology put 

forward by Aparicio et al. (2013). 



3.1 Statistical analysis 

Finally, the whole analysis linking all the geochemical variables was made using 

descriptive statistical techniques (multivariate analysis) by means of specific software [SPSS 

Statistic v21]. Thus, a cluster analysis in R mode was carried out. Hierarchical methods 

provide a graphical representation of relatedness between the geochemical variables 

(dendrogram). The hierarchical cluster analysis was applied using the Ward linkage rule 

which linked iteratively nearby points through a similarity matrix to evaluate the distance 

between clusters. The squared Euclidian distance was selected as the similarity 

measurement. For the cluster algorithm, the data were previously log-normal transformed 

and all variables were standardized (z-scores) because of the different units of pH and EC 

in relation to the meq/L units used for the chemical concentrations. Taking into account the 

known relationship and dependence between pH and CO3
2, the latter was not necessary to 

be considered for the multivariate analysis. 

 

4 Results and discussion 

4.1 Surface water 

The entire area constitutes a non-typical hydrological system (Fertonani and Prendes, 

1983). A part of three main water collectors that exceed the limits of the study area may be 

distinguished: Ctalamochita river, Cabral stream and Tegua river. The general flow direction 

of streams and rivers is NW–SE and all the water systems finally supply water to the 

Saladillo wetland area, located in the SE of the province of Cordoba (Blarasin et al., 2014). 

The streams with headwaters in Las Peñas Mountains infiltrate into the piedmont area and 

show temporary or ephemeral regime. To the East, the courses act as gaining streams 

showing a permanent regime. The flow rates of these surface water systems vary between 



0.39 m3/s and 1.87 m3/s with an average water velocity of 0.4 m/s. In the poorly drained area 

of the South-East sector, the water velocities are very low, the drainage pattern is anarchical 

and, depending on rainfall intensities, water stagnates and evaporates slowly in ponds in 

the most important topographical depressions. These water bodies occasionally dry out intra 

or inter‐annually depending on the water table depth. The construction of artificial ditches to 

avoid flooding is common in cultivation areas. These systems have a very low water velocity, 

in the order of 0.09 m/s and drain groundwater and surface water that comes from farmed 

fields during the rainy season.  

The EC in stream water changes from 650.0 μS/cm to1020.0 μS/cm in the flow direction, 

and all the samples were classified as freshwater of sodium bicarbonate geochemical type. 

The ponds (L3 and L4) have EC values from 2830.0 μS/cm to 2340.0 μS/cm and contain 

brackish water of sodium sulfate-chloride and sodium bicarbonate type, respectively. The 

sample from the ditch (Ca2) presents the highest salt content with an EC of 3780.0 μS/cm. 

It corresponds to brackish water of sodium sulfate-chloride geochemical type. 

4.2 Groundwater 

4.2.1 Hydrogeological and hydrodynamic characterization 

The hydrogeological profiles (see location in Fig. 1), show the relationship between 

the topography, lithology and hydrological features. Topography is mainly controlled by a 

set of bedrock descending blocks, as a result of high angle reverse faults, according to the 

tectonic framework of the Pampean Mountains (Dalla Salda,1987). 

A-A’ profile (Fig. 3a) shows that the unconfined aquifer is formed by very fine 

sediments (very fine sands and silts) with scarce intercalations of coarser sandy materials. 

The aquifer base is the bedrock in the piedmont area and clay strata or cemented silty 

sediments (calcretes) that function as aquiclude or aquitard materials in the eastern area. 



The spatial variation of the unsaturated zone is very noticeable, from 25 m at the piedmont 

to 3 m towards the East. Here the water table outcrops in topographical depressions, 

generating small and shallow ponds. In the eastern aeolian environment, the fine sand and 

silty sand fractions predominate. In the low land areas, an increase in the silt–clay 

percentage was observed. In this profile, some layers of sandy materials (around 230 m 

deep in the area of Dalmacio Vélez Sarsfield town) are found, which constitute confined 

aquifers. The unsaturated zone is composed of coarse sediments (gravels) in the piedmont 

and very fine sandy sediments and silty sands in the eastern plain. 

B-B´ profile(Fig. 3b) shows that in the NW area the aquifer is constituted by alluvial 

sediments from the alluvial fan of the Ctalamochita river, that is, sands and gravels, although 

intercalations of thin strata formed by fine sandy and silt sediments can be observed. 

Towards the SE plain area, very fine sand and silt sediments (loess) prevail. The 

unsaturated zone thickness goes from 40 m near the apex of the alluvial fan to 2-3 m to the 

east. At depths of around 150-200 m, several strata formed by medium to coarse sand 

sediments exist, which correspond to paleo-channels that act as confined aquifer layers. 

C-C' profile(Fig. 3c), which crosses the area in S-Ndirection, is a good example to 

show the bedrock depth and the overlaying sediments in the piedmont area. The 

unsaturated zone thickness goes from 25 meters in the south up to 60 meters in the central 

region, diminishing again near the Ctalamochita river, in the alluvial fan environment. The 

unconfined aquifer is made up by sands in the upper meters (southern sector) to very fine 

silty sands in the lower strata. In the central area very fine and clayish/silty sediments prevail 

while in the northern area, the sediments are typical fluvial coarse sands and gravels. 

 

Figure 3. Hydrogeological profiles. a) A-A’. b) B-B’. c) C-C’. d) References 

  



The aquifer or saturated zone shows an average thickness of around 80 m in the plain but 

is thinner in the piedmont because of the proximity of the bedrock (about 30-50 m). The 

unsaturated zone thickness is variable, fundamentally related to the topographic 

characteristics. Thus,the highest values are found in the NE area (>58 m) and the lowest 

(0–3 m) in the low topographical southern areas (Figure 4). The equipotential map also 

shows the NW-SE direction of the groundwater flow, in general according to surface water 

flow, both regulated by the topographic characteristics. Although the aquifer is recharged by 

precipitation in the entire area, the regional recharge sector is located in the piedmont and 

adjoining area,where the flow lines show a slight divergence. As can be seen in Fig. 4, the 

hydraulic gradients are variable: 1.5% in the piedmont because of the bedrock proximity and 

0.1 % in the fluvio-aeolian plain, where the landform promotes a very low hydraulic gradient. 

  

Figure 4: Equipotential map, unsaturated zone thickness and nitrate spatial distribution in 

the unconfined aquifer. 

4.2.2 Hydrogeological units 

Based on lithological and geomorphological features that control the hydrogeological 

characteristics, four Hydrogeological Units (UH) were defined (Fig. 6). Their main features, 

the hydraulic parameters and the groundwater velocities are shown in Table 1. 

 

Table 1: Hydrogeological Units (UH), main features, hydraulic parameters and groundwater 

velocities. 

Figure 5: Hydrogeological unit for the unconfined aquifer 

4.2.3 Hydrogeochemistry 



The groundwater from the unconfined aquifer exhibits variable EC from 709 μS/cm 

(freshwater) up to 7,900 μS/cm (salty water) (Fig. 6). The 47.3% of the samples are sodium 

bicarbonate, 26.3% sodium sulfate, 15.8% sodium bicarbonate-sulfate, 5,3% sodium 

sulfate-chloride and 5,3% sodium chloride water types. 

Although the groundwater flow is towards the SE, the most saline groundwater is 

located in the piedmont where fine sediments predominate. These exert more interaction 

between water and sediments particles and then, generate more possibilities to incorporate 

solutes to groundwater. After that and due to mixing processes with rain water that recharges 

very coarse sediments in the alluvial fan of Ctalamochita River, groundwater becomes 

fresher. In this unit the major aquifer recharge values were found (in the order up to 25% of 

precipitation) measured with the chloride mass balance method (Healy, 2010). In the south 

and southeast area, the groundwater is brackish mainly due to fine sediments and low flow 

velocity, both factors that promote the increase of total dissolved salts by the greater water-

mineral contact than in coarser sediments. This spatial distribution and the origin of chemical 

elements and compounds were corroborated with the numerical geochemical modeling 

(Parkhurst and Apello, 1999). The results demonstrate that solutes come mainly from 

dissolution processes of carbonate which may be found as nodules or calcrete layers in the 

sediments. Also gypsum or halite salts supplied by wind from hydro-halomorphic areas may 

be disolved. Another fundamental role is played by ion exchange processes, given the 

presence of exchangers like illites and smectites, which fundamentally provide cations to 

solution (especially Ca++ by Na+). In addition, partial hydrolysis processes of silicate clasts 

or volcanic glass were identified (Becher Quinodoz et al. 2019). Finally the atmospheric input 

of the ions must be indicated, which was confirmed when the rainwater was analyzed (40-

45 mg/L of dissolved salts).  



The general distribution of the EC in the different hydrogeological environments, is 

locally modified by point source pollutants, which promotes an increase in the EC values by 

the incorporation of solutes derived from livestock activity, as in the case of Sample B16. 

 

Figure 6: Spatial distribution of groundwater electrical conductivity in the unconfined aquifer 

and Stiff diagrams showing spatial changes in the geochemical type 

 

In the studied area the nitrate values in groundwater were between 2.0 and 280.5 

mg/L. and in surface water, between 1.0 and 5.0 mg/L. Taking into account some studies 

carried out in the region of Cordoba, which estimated that the natural baseline range (NBR) 

of NO3
- in the unconfined aquifer is between 5.0 and 15.0 mg/L (Blarasin et al., 2008, 

Giuliano Albo and Blarasin, 2013) it can be established that 57.9% of the samples of the 

unconfined aquifer taken out in this study, exceed the NBR. The spatial distribution of the 

nitrate content in the unconfined aquifer is shown in Figure 4. It is noticeable the major 

impact was identified in the areas where there is a thin unsaturated zone (less than 10m). 

4.3 Glyphosate and AMPA concentrations in surface water and groundwater 

Glyphosate was detected in 66% of surface water samples, in a range from 0.2 to 

167.4 μg/L. AMPA was found in 33% of the surface waters from 0.7 to 49.4 μg/L. The highest 

value corresponds to Ca2 with 167.4 μg/L and 49.4 μg/L of glyphosate and AMPA, 

respectively. 

In relation to streams, only one sample (A6) presented glyphosate (0.2 μg/L). The ponds L3 

and L4 showed glyphosate in a range of 0.5 to 0.7 μg/L and only L3 had AMPA (0.7 

μg/L).These results showed that lentic ecosystems present a greater contamination degree 

than the lotic ecosystems. The Ca2 ditch has very low velocity (0.09 m/s) and limited dilution 

potential. 



Similar results are reported by Battaglin et al. (2014) who pointed out that the highest 

concentrations of glyphosate and AMPA were found in ditches. The Glyphosate values 

found in this study are similar to those found in other studies carried out in our country, such 

as that of Sasal et al. (2017) in the province of Entre Rios, where the values are between 

0.1 to 240.0 μg/L in surface water. In Córdoba and Buenos Aires, Alonso et al. (2014) 

detected glyphosate in a range of 1.5 - 16.0 μg/L in surface water samples taken from ponds 

and streams. These values are higher than those found in the present study (0.2 to 0.7 μg/L). 

The mentioned authors also carried out a groundwater sampling and did not detect 

glyphosate and AMPA in the unconfined aquifer. 

In the present study, glyphosate was detected in 15.8% of the total groundwater 

samples, in a range from 1.3 to 2.0 μg/L. AMPA was detected in the same samples, with 

values from 1.5 to 3.1 μg/L (Table 2). Those sites where both molecules were detected in 

groundwater are related to areas where the water table is less than 4 meters deep. A 

numerical model using MACRO 5.0 (Larsbo and Jarvis, 2003) was used to corroborate in 

some sites the transport of glyphosate (Lutri et al., 2019). These glyphosate values are 

similar to those found by Okada et al. (2018), which range from 0.1 to 8.5 μg/L in 

groundwater of the Argentinian Pampean plain. In the case of AMPA, our values were 

slightly higher to those detected by the mentioned authors, who measured a maximum of 

1.9 μg/L. The values found in groundwater in the present study resembled those determined 

by studies from Sanchis et al. (2012) and Battaglin et al. (2014), who determined maximum 

glyphosate concentrations of 2.5 μg/L in Catalonia, Spain and 2.0 μg/L in the United States, 

respectively. Furthermore, the latter found AMPA in groundwater in maximum 

concentrations of 4.9 μg/L. 



Glyphosate was detected in rainwater (0.2 μg/L) which is related to the way the 

pesticide is sprayed and to the fact that the rainwater harvesting comes from the roofs of 

houses, which are not always correctly cleaned. 

Regarding the suitability for human consumption, in Argentina there are two legal 

criteria, one is contained in Law 24,051 on Hazardous Wastes, which follows the Canadian 

Water Quality Guidelines of 280 μg/L (Health Canada, 2017) and the other coming from the 

National Secretary of Water Resources which refers to studies of the US-EPA with maximum 

allowed concentration of 700 μg/L (US. EPA, 2002) for glyphosate and AMPA. None of the 

groundwater samples in our study exceeded the limits established by both criteria. However, 

taking into account the most restrictive limit defined by the European Union (European 

Directive 98/83/EC) of 0.5 μg/L of the combined maximum residue level (MRL) of glyphosate 

and AMPA, all the groundwater samples exceeded this limit. 

  

4.4 Statistical analysis of hydrogeochemical data 

Figure 7 compares the results obtained from the analysis of glyphosate and AMPA 

in groundwater and its hydrogeological location. It shows that UH4 is the most affected unit, 

followed by UH3. 

Taking into account the described characteristics of UH4, it can be defined as a more 

vulnerable unit due to agricultural pollution, since, from a spatial point of view, it is located 

in a regional discharge zone, where groundwater flows from western large areas. The 

shallow water table depth (4 meters or less) increases the aquifer vulnerability. Also, given 

the low values of hydraulic gradient and hydraulic conductivity, the groundwater velocity and 

associated potential for dilution are low. 

The comparison of glyphosate and AMPA concentrations in both surface water and 

groundwater, shows that surface water presents a greater median value, due to the highest 



concentration detected in the ditch. This result highlights that pollutants from agricultural 

activities are more likely to reach surface water bodies due to their direct exposure to runoff 

from farmed lands. The glyphosate and AMPA values in groundwater are significant and 

may occur as a result of the very low dilution capacity of this hydrological system. 

 

Figure 7: Box plot of concentration of a) glyphosate in the Hydrogeological Unit. b) AMPA in 

Hydrogeological Unit. c) Glyphosate and hydrological systems and d) AMPA and 

hydrological systems. 

 

The multivariate statistical evaluation of groundwater data (figure 8) shows the 

conglomerates of the different chemical variables, where two main groups stand out. The 

first one (G1) clusters the major ions with EC, which define the mineralization processes and 

explain the natural chemical composition of groundwater, where the most saline waters are 

those of sodium sulfate geochemical type. The second group (G2) is clearly linked to the 

alteration of the natural background of water composition due to anthropogenic 

contamination processes. The first subgroup (G2A) links glyphosate and AMPA, 

corroborating the same origin, that is the agricultural pollution source. The second one (G2B) 

is represented by nitrates, bicarbonate and pH, which may be interpreted as an indicator of 

contamination processes like the incorporation of nitrates derived from fertilizers or from the 

incorporation of organic matter from livestock, whose degradation generates HCO3
-  ions 

and can diminish the pH. 

 

Figure 8: Dendrogram obtained by Average Linkage Clustering in R mode. (G: Group.) 

 

5 Conclusions 



The hydrogeological study made it possible to define an unconfined sedimentary 

aquifer as multilayered, heterogeneous and anisotropic with variable thickness. It is made 

up mainly by aeolian sediments of Quaternary age (very fine silty sands) with different 

cementation degree at different depths. Also, some layers are made up by medium to coarse 

psefitic sediments (sands and gravels) related to the alluvial fan of the Ctalamochita river. 

The base of the unconfined aquifer is constituted by an igneous- metamorphic bedrock in 

the piedmont zone, while in the rest of the area it is represented by aquitard/acuiclude 

materials (very fine sands and silts with carbonate cementation) or clay-silt sediments. The 

results obtained showed that the unsaturated zone, the groundwater flow direction, the 

hydraulic gradients and the groundwater velocity are fundamentally controlled by the 

landform and lithological characteristics which define the main hydrogeological units. 

The hydrogeochemical analysis shows that the groundwater exhibits a marked 

spatial variation in salinity and geochemical composition, according to the defined 

hydrogeological units. Thus, the freshest waters of calcium-sodium bicarbonate 

geochemical type are related to the aquifer developed in the alluvial fan of the Ctalamochita 

river (UH3). In this unit, the coarse texture of sediments allows a higher flow velocity, with 

limited sediment-water interaction, which partially inhibits the weathering processes that 

contribute with ions and compounds to groundwater. Most salty and sodium sulphate-

chloride waters are in the NW sector, related to the piedmont zone (UH1) where the aquifer 

is formed by very fine (silt-clay-sandy) sediments which increase the water-sediment 

interaction. In addition, the thick unsaturated zone delays the recharge process from 

rainwater and surface water and promotes the acquisition of solutes during the slow process 

of percolation towards the aquifer. In the UH2 unit, where greater sediment heterogeneity 

prevails, the water is sodium bicarbonate to sodium sulphate type. In the poorly drained unit 

(UH4), a zone of transit and partial discharge of groundwater, the fine aeolian sediments 



and the groundwater evolution from the occidental area, promote groundwater sodium 

sulphate type. 

In relation to NO3
- ion, a good indicator of human contamination, it can be observed that the 

greatest impacts are on the unconfined aquifer, with values up to 280 mg/L, above the 

natural-regional background values, and occur in sectors where the water table is shallow 

(less than 4 m), which enables the contaminant arrival at the aquifer. In these areas, the 

aquifer also has lower hydraulic conductivity and lower groundwater velocity, which partially 

diminishes the dilution processes by hydrodynamic dispersion. Conversely, where very 

coarse sediments prevail and although the water table is shallow and the land use is similar 

to the rest of the studied area, the NO3
- values are lower (in the order of 2 mg/L). On the 

other hand, in areas with a thick unsaturated zone (like some piedmont sectors), the 

contaminant arrival at the unconfined aquifer is limited. The higher values of NO3
- in 

groundwater can be assumed as derived from agriculture, especially fertilizers such as urea, 

which is the most used in the region, or from livestock activity, that generates significant 

organic matter waste, compounds whose degradation in the analyzed aerobic environment 

increase the bicarbonate ions in solution. 

In surface water samples, the xenobiotics glyphosate and AMPA were detected in 66% of 

the samples in a range of 0.2-167.0 μg/L (glyphosate) and 0.7-49.4 μg/L (AMPA). The 

highest values in surface water were in the ditch, a site not only highly exposed to the 

pollutants arrival (especially in rainy seasons coinciding with the herbicide application) but 

also with very low water velocity that allows the compounds to persist in solution. In the 

streams the herbicide concentration is low, an aspect controlled by the flow rate values and 

higher water velocity, which allow dilution processes. 

The unconfined aquifer is less exposed to contamination due to the protection given by the 

soil and the unsaturated zone. Although the glyphosate has physicochemical characteristics 



that explain its low mobility (such as its high Koc) and its possibility of retardation and 

degradation in the soil, it was found in the groundwater. The characteristics of the defined 

hydrogeological units influence the arrival of herbicides at the aquifer. Although glyphosate 

and its metabolite AMPA were measured only in 15.8% of the groundwater samples and the 

concentrations were low (glyphosate 1.3-2.0 μg/L and AMPA 15.8-3.1 μg/L) both molecules 

were detected in areas where the water table is less than 4 meters deep. This situation 

facilitates leaching processes through the vadose zone allowing the pollutants to reach the 

aquifer. Also these areas show low flow velocity which decreases hydrodynamic dispersion 

processes and the dilution of pollutant concentration. 

The most outstanding result that emerges from the data is that the groundwater presents 

higher values in comparison with the stream water, which can be explained by greater 

dilution capacity of the latter. However, the highest value was detected in the ditch sample, 

that is, a site very exposed to the pollutants arrival and where the very low water velocity 

allows the xenobiotic to persist in solution. 

The detection of this herbicide and its metabolite in the unconfined aquifer shows that the 

application for decades within the framework of the prevailing agricultural model interferes 

with the natural balance and exceeds the degradation potential of the soil system, causing 

groundwater contamination. 

Future studies will be focused on the herbicide modeling in the unsaturated zone as well as 

the possible variation of the concentrations in groundwater in relation to the climatic 

seasonality, in order to better define the factors that influence its behavior. 

 

6 Acknowledgements 



The research was supported by PICT 2015-0474(FONCYT Argentina), CECyT-UNRC 

(National University of Rio Cuarto) and CONICET (National Scientific and Technical 

Research Council). 

 

7 References 

Avila-Vazquez and Difilippo, 2016. M. Avila-Vazquez, F.S. Difilippo. Agricultura Toxica y 

Pueblos Fumigados de Argentina. Crítica y Resistencias. Revista de conflictos sociales 

latinoamericanos, No. 2, 23-45 (2016). http://criticayresistencias.comunis.com.ar. 

Alonso et al. 2018. L. L. Alonso, P.M. Demetrio, M.A. Etchegoyen, D.J. Marino. Glyphosate 

and atrazine in rainfall and soils in agroproductive areas of the pampas region in 

Argentina. Science of the Total Environment 645 (2018) 89–96. 

https://doi.org/10.1016/j.scitotenv.2018.07.134. 

Alonso et al. 2014. L.L. Alonso, Y. Elorriaga, M.I. Fabiano, M.L. Orofino, P.V. González, V. 

López Aca, M.J. Durand, S. Barbieri, C. Stimbaum, J. Galarza, I. Sabanes, N. Bazán, J.M. 

Santillán, F. Yorlano, L. Álvarez, P. Carriquiriborde, J.M. Damián. Glifosato y atrazina en 

muestras ambientales de las provincias de Buenos Aires y Córdoba, Argentina. V 

Congreso SETAC-Argentina (2014). (Soc. de Toxicología y Qca Ambiental). 

https://setacargentina.setac.org/wp-content/uploads/2015/09/libro_de_resumenes-

2014.pdf. 

Aparicio et al., 2015. V. Aparicio, E. De Gerónimo, K. Hernández Guijarro, D. Pérez, R. 

Portocarrero, C. Vidal. Los plaguicidas agregados al suelo y su destino en el ambiente. 

Ed. INTA. 73 p. ISBN 978-987-521-665-5. 

https://inta.gob.ar/sites/default/files/inta_plaguicidas_agregados_al_suelo_2015.pdf 

http://criticayresistencias.comunis.com.ar/
https://doi.org/10.1016/j.scitotenv.2018.07.134
https://setacargentina.setac.org/wp-content/uploads/2015/09/libro_de_resumenes-2014.pdf
https://setacargentina.setac.org/wp-content/uploads/2015/09/libro_de_resumenes-2014.pdf


Aparicio et al. 2013. V. Aparicio, E. De Geronimo, D. Marino, J. Primost, P. Carriquiriborde, 

J.L. Costa. Environmental fate of glyphosate and aminomethylphosphonic acid in 

surface waters and soil of agricultural basins. Chemosphere 93(9):1866-1873 (2013). 

Aparicio et al., 2018. V. Aparicio, S. Aimar, E. De Gerónimo, M.J. Mendez, J.L. Costa. 

Glyphosate and AMPA concentrations in wind‐blown material under field conditions. 

Land Degrad Dev. 29: 1317– 1326 (2018).https://doi.org/10.1002/ldr.2920. 

APHA et al. 2005. APHA, AWWA, WEF. Standard Methods for the Examination of Water 

and Wastewater, 21st edition. Washington, DC: American Public Health Association, 

American Water Works Association, Water Environment Foundation (2005). 

Battaglin et al. 2014. W. A. Battaglin, M. T. Meyer, K. M. Kuivila, J. E. Dietze. Glyphosate 

and its degradation product AMPA occur frequently and widely in U.S. soils, surface 

water, groundwater, and precipitation. Journal of the American Water Resources 

Association, 50(2), 275–290 (2014). https://doi.org/10.1111/jawr.12159. 

BCR, 2019. Bolsa de Comercio de Rosario. Informe especial sobre cultivos GEA – Guía 

Estratégica para el Agro. https://www.bcr.com.ar/es/mercados/gea/estimaciones-

nacionales-de-produccion/estimaciones. [Ultimo Acceso 3/06/2019].  

Becher Quinodoz et al. 2019. F. Bécher Quinodoz, L. Maldonado, M. Blarasin, E. Matteoda, 

V. Lutri, A. Cabrera, M.J. Giuliano Albo, D. Giacobone. The development of a conceptual 

model for arsenic mobilization in a fluvio-eolian aquifer using geochemical and 

statistical methods. Environmental Earth Sciences. 78:206 (2019). 

https://doi.org/10.1007/s12665-019-8201-8. 

Bento et al., 2017. P.M Bento, D. Goossens, M. Rezaei, M. Riksen, H.J.G Mol, C.J. Ritsema, 

V. Geissen. Glyphosate and AMPA distribution in wind-eroded sediment derived from 

loess soil. Environmental Pollution, 220, 1079–1089 (2017). 

https://doi.org/10.1016/j.envpol.2016.11.033. 

https://doi.org/10.1002/ldr.2920
https://doi.org/10.1111/jawr.12159
https://www.bcr.com.ar/es/mercados/gea/estimaciones-nacionales-de-produccion/estimaciones
https://www.bcr.com.ar/es/mercados/gea/estimaciones-nacionales-de-produccion/estimaciones
https://doi.org/10.1007/s12665-019-8201-8
https://doi.org/10.1016/j.envpol.2016.11.033


Blarasin et al., 2008. M. Blarasin, A. Cabrera, E. Matteoda, G. Damilano, M.J. Giuliano-Albo. 

Indicadores para evaluar cambios ambientales en acuíferos. Consideraciones sobre 

el fondo natural de la calidad de agua. Evaluación de la sustentabilidad ambiental en 

sistemas agropecuarios, Editorial EFUNARC: 69-80 (2008). 

Blarasin et al. 2014. M. Blarasin, A. Cabrera, E. Matteoda, H. Frontera, M. Aguirre, L. 

Maldonado, F. Bécher Quinodóz, J.M. Giuliano Albo. Recursos hídricos subterráneos 

Parte I: Aspectos litológicos, hidráulicos, cambios de régimen y reservas de los 

principales acuíferos de la Provincia de Córdoba. Relatorio Del XIX Congreso Geológico 

Argentino: Geología y Recursos Naturales, Pág. 1233 – 1261, Córdoba (2014). AGA 1a Ed. 

ISBN 978-987-22403-8-7. 

Cantú and Degiovanni, 1984. M. Cantú, S. Degiovanni. Geomorfología de la Región 

Centro Sur de Córdoba. IX Congreso Geológico Argentino. San Carlos de Bariloche. Actas 

IV: 76-92 (1984). 

Carignano et al. 2014. C. Carignano, D. Kröhling, S. Degiovanni, M. A. Cioccale. 

Geomorfologia. Relatorio del XIX Congreso Geológico Argentino, Córdoba. I: 747-823 

(2014). ISBN 978-987-22403-8-7. 

Chebli et al. 1999. G. Chebli, M. Mozetic, C. Rossello, M. Bühler. Cuencas Sedimentarias 

de la Llanura Chacopampeana. Instituto de Geología y Recursos Minerales. Geología 

Argentina. Anales 29 (20): 627-644 (1999). Bs. As. 

Costa et al. 2011. J.L Costa, V. Aparicio, M. Zelaya, V. Gianelli, F. Bedmar. Transporte de 

imazapir, atrazina, s-metolacloro y acetoclor en el perfíl de un suelo argiudol del 

sudeste de la provincia de Buenos Aires, Argentina. Estudios en la Zona no Saturada 

del Suelo. Vol X. pp 157-162 (2011). - Editores: José Martínez Fernández, Nilda Sánchez 

Martín. Actas de las X Jornadas de Investigación de la Zona no Saturada del Suelo, 

Salamanca (España).I.S.B.N.: 978-84-694-6642-1 



Dalla Salda, 1987. L. Dalla Salda. Basement tectonics of the Southern Pampean 

Ranges, Argentina. Tectonics 6: 249-260 (1987). 

Degiovanni, 2005. S. Degiovanni. Geomorfología Regional. En “Aguas superficiales y 

subterráneas en el Sur de Córdoba: Una Perspectiva Geoambiental”. Universidad Nacional 

de Río Cuarto. Pág. 19 – 29 (2005). ISBN 950-665-350-141-152. Ed. UNRC. 

Demichelis et al., 2004. A. Demichelis, L.B. Hernandez, O.M. Rabbia, A. Tibaldi. 

Termobarometría anfíbol-plagioclasa en un cuerpo ígneo del complejo de Las Peñas, 

Sierras Pampeanas Orientales. 7mo. Congreso de Mineralogía y Metalogenia. Avances 

en Mineralogía, Metalogenia y Petrología. Río Cuarto, Argentina, pag 309-314 (2004). 

European Directive 98/83/EC. European Council, Council Directive 98/83/EC of 3 November 

1998 on the quality of water intended for human consumption, Off. J. L 330 (1998) 0032–

0054. 

FAO, 2019. Food and Agriculture Organization of the United Nations. FAOSTAT: STATS: 

Data-Pesticides: http://www.fao.org/faostat/es/#data/RP 

Fertonani and Prendes, 1983. M. Fertonani, H. Prendes. Hidrología en Áreas de Llanura, 

Aspectos Conceptuales, Teóricos y Metodológicos. Coloquio sobre Hidrología de 

Grandes Llanuras. Tomo I:119-156 (1983). PHI-UNESCO. Olavarría. Argentina. 

Giuliano Albo and Blarasin, 2013. M.J. Giuliano Albo, M.T. Blarasin. Hidrogeoquímica y 

estimación del fondo natural de nitratos del agua subterranea en un agroecosistema 

del pedemonte de la sierra de Comechingones. Córdoba (Argentina). Revista de la 

Asociación Geológica Argentina, 71(3), 378-392 (2013). 

Giuliano Albo et al., 2015. M.J. Giuliano Albo, M.T. Blarasin, H. Panarello. Evaluación de 

la geoquímica e isótopos del nitrato en el acuífero libre de una llanura con actividad 

agropecuaria, Córdoba, Argentina. Ingeniería, Revista Académica de la FI-UADY, 19-1, 

pp. 24-38 (2015), eISSN 2448-8364. https://core.ac.uk/download/pdf/158834278.pdf 

http://www.fao.org/faostat/es/#data/RP


Giuliano Albo et al., 2019. J.M. Giuliano Albo, M.T. Blarasin, A. Cabrera, F. Becher 

Quinodoz, L. Maldonado, D. Giacobone, E. Matteoda, I. Matiatos, V. Lutri, H. Panarello. 

Application of isotope techniques to evaluate nitrate contamination in groundwater 

in Rio Cuarto city (Argentina). International Symposium on Isotope Hydrology: Advancing 

the understanding of water cycle processes.ID: 74.20-24 (2019). 

Gomez Ortiz et al., 2017. A.M. Gomez Ortiz, E. Okada, F. Bedmar, J.L Costa. Sorption and 

desorption of glyphosate in mollisols and ultisols soils of Argentina. Environmental 

Toxicology and Chemistry, Vol. 36, No. 10, pp. 2587–2592 (2017). DOI: 10.1002/etc.3851. 

Grondona et al., 2014. S. Grondona, M. Gonzalez, D. Martinez, H. Massone, K. Miglioranza. 

Endosulfan leaching from Typic Argiudolls in soybean tillage areas and groundwater 

pollution implications. Science of the total environment. Volume 484, 2014, Pages 146-

153. https://doi.org/10.1016/j.scitotenv.2014.03.016. 

Grunewald et al., 2001. K. Grunewald, W. Schmidt; C. Unger, G. Hanshmann. Behavior of 

glyphosate and AMPA in soils and water or reservoir Radebourg II catchment. Journal 

of Plant Nutrition and Soil Science 164: 65-70 (2001). https://doi.org/10.1002/1522-2624  

Guyton et al., 2015. K. Guyton, D. Loomis, Y. Grosse, F. Ghissassi, I. Benbrahim-Tallaa, N. 

Guha, C. Scoccianti, H. Mattock, K. Straif. Carcinogenicity of tetrachlorvinphos, 

parathion, malathion, diazinon, and glyphosate. The Lancet Oncology. IARC, Lyon, 

Francia. http://www.thelancet.com/pdfs/journals/lanonc/PIIS1470-2045 (2015)70134-8.pdf. 

Health Canada, 2017. Guidelines for Canadian Drinking Water Quality-Summary Table. 

Water and Air Quality Bureau, Healthy Environments and Consumer Safety Branch, 

Health Canada, Ottawa, Ontario. https://www.canada.ca/content/dam/hc-sc/migration/hc-

sc/ewh-semt/alt_formats/pdf/pubs/water-eau/sum_guide-res_recom/sum_guide-

res_recom-eng.pdf 

https://doi.org/10.1016/j.scitotenv.2014.03.016
https://doi.org/10.1002/1522-2624


Healy, R. W, 2010. Estimating groundwater recharge. 256 p. Cambridge University Press 

(2010). ISBN: 9780511780745. DOI: 10.1017/CBO9780511780745. 

National Geographic Institute (IGN). National cartographic agency of Argentina. Ministry 

of Science, Technology and Production for Defense. http://www.ign.gob.ar/ 

INDEC, 2012. Censo nacional de población, hogares y viviendas 2010: censo del 

Bicentenario: resultados definitivos, Serie B nº 2. - 1a ed. - Buenos Aires. INDEC, 

2012. v.1, 378p.; ISBN 978-950-896-421-2. 

https://www.indec.gob.ar/ftp/cuadros/poblacion/censo2010_tomo1.pdf 

Labite et al., 2013. H. Labite, N.M. Holden, K.G. Richards, G. Kramers, A. Premrov, C.E. 

Coxon, E. Cummins. Comparison of pesticide leaching potential to groundwater under 

EU FOCUS and site specific conditions. Science of The Total Environment, Volumes 

463–464 (2013), Pages 432-441, ISSN 0048-9697. 

http://dx.doi.org/10.1016/j.scitotenv.2013.06.050.(http://www.sciencedirect.com/science/art

icle/pii/S004896971300702X). 

Larsbo and Jarvis, 2003. M. Larsbo, N. Jarvis. MACRO 5.0: A model of water flow and 

solute transport in macroporous soil. Technical description. Uppsala, Sweden, SLU 

(Swedish University of Agricultural Sciences) (2003), Department of soil sciences. 

Lupi et al., 2015. L. Lupi, K.S.B. Miglioranza, V. Aparicio, D. Marino, F. Bedmar, D. 

Wunderlin. Dynamics of Glyphosate and AMPA in an agricultural watershed from the 

southeastern region of Argentina. Science of the Total Environment 536, 687-694 (2015). 

Lutri et al., 2019. V. Lutri, E. Matteoda, M.T. Blarasin, V. Aparicio, L. Maldonado, F. Becher 

Quinodoz, J.M. Giuliano Albo, A. Cabrera, D. Giacobone. Glyphosate transport modeling 

in soil and its relationship with groundwater contamination in a rural area of the 

Pampean Plain of Córdoba, Argentina. European Geosciences Union-EGU General 

http://www.ign.gob.ar/


Assembly 2019. Geophysical Research Abstracts Vol. 21, EGU 2019-1934, (2019). E-ISSN 

1607-7962. https://meetingorganizer.copernicus.org/EGU2019/EGU2019-1934.pdf 

Maqueda et al. 2017. C. Maqueda, T. Undabeytia, J. Villaverde, E. Morillo. Behavior of 

glyphosate in a reservoir and the surrounding agricultural soils. Science of The Total 

Environment, 593: 787‐795 (2017). 

Mateo-Sagasta et al., 2017. J. Mateo-Sagasta, S. Marjani, H. Turral, J. Burke. Water 

pollution from agriculture: a global review. Executive summary. FAO and IWMI. Food 

and Agriculture Organization of the United Nations Rome. International Water Management 

Institute on behalf of the Water Land and Ecosystems research program Colombo, 2017. 

Mayer et al., 2006. P.M. Mayer, S.K. Reynolds, M.D. McCutchen, T.J. Canfield. Riparian 

buffer width, vegetative cover, and nitrogen removal effectiveness: a review of 

current science and regulations. EPA/600/R-05/118. U.S. Environmental Protection 

Agency, Cincinnati, OH. 2006. 

McManus et al., 2017. S.L. McManus, C.E Coxon, P.E. Mellander, M. Danaher, K.G. 

Richards. Hydrogeological characteristics influencing the occurrence of pesticides 

and pesticide metabolites in groundwater across the Republic of Ireland. Science of 

the Total Environment 601–602 (2017) 594–602. 

https://doi.org/10.1016/j.scitotenv.2017.05.082. 

Mendez et al., 2017. M.J Mendez, S.B. Aimar, V. Aparicio, N.B. Ramirez Haberkon, D.E. 

Buschiazzo, E. De Gerónimo, J.L. Costa. Glyphosate and Aminomethylphosphonic acid 

(AMPA) contents in the respirable dust emitted by an agricultural soil of the central 

semiarid region of Argentina. Aeolian Research journal 29(2017)23-29.  

http://dx.doi.org/10.1016/j.aeolia.2017.09.004. 

https://meetingorganizer.copernicus.org/EGU2019/EGU2019-1934.pdf
https://doi.org/10.1016/j.scitotenv.2017.05.082
https://doi.org/10.1016/j.scitotenv.2017.05.082
http://dx.doi.org/10.1016/j.aeolia.2017.09.004
http://dx.doi.org/10.1016/j.aeolia.2017.09.004


Mueller and Senseman, 2015. C.T Mueller, S. Senseman. Methods Related to Herbicide 

Dissipation or Degradation under Field or Laboratory Conditions. Weed Science. 63. 

133-139 (2015). 10.1614/WS-D-13-00157.1.  

Okada et al. 2016. E. Okada, J.L. Costa, F. Bedmar. Adsorption and mobility of 

glyphosate in different soils under no-till and conventional tillage. Geoderma 263:78-

85 (2016). 

Okada et al., 2018. E. Okada, D. Pérez, E. De Gerónimo, V. Aparicio, H. Massone, J.L. 

Costa. Non-point source pollution of glyphosate and AMPA in a rural basin from the 

southeast Pampas, Argentina. Environmental Science and Pollution Research. 

25(15):15120-15132 (2015). https://doi.org/10.1007/s11356-018-1734-7. 

Pang et al., 2000. L. Pang, M. Close, J. Watt, K. Vincent. Simulation of picloram, atrazine 

and simazine leaching through two New Zealand soils into groundwater using 

HYDRUS-2D. Journal of Contaminant Hydrology. 44(1): 19–46 (2000). 

https://doi.org/10.1016/S0169-7722(00)00091-7 

D.L. Parkhurst, C.A.J. Appelo, 1999. User’s Guide to PHREEQC (Version 2)—A 

Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and 

Inverse Geochemical Calculations. U.S. Geological Survey, Water Resources 

Investigations Report 99-4259, Washington DC (1999). 

Pretty and Bharucha, 2015. J. Pretty, Z.P. Bharucha. Integrated Pest Management for 

Sustainable Intensification of Agriculture in Asia and Africa. Insects, 6(1), 152-182 

(2015). doi:10.3390/insects6010152. 

Primost et al. 2017. E. Primost Jezabel, D. Marino, V. Aparicio, J.L. Costa, P. 

Carriquiriborde. Glyphosate and AMPA, “pseudo-persistent” pollutants under real-

world agricultural management practices in the Mesopotamic Pampas 



agroecosystem, Argentina. Environmental Pollution 229. 771-779 (2017). ISSN 0269-

7491. http://dx.doi.org/10.1016/j.envpol.2017.06.006. 

Sanchis et al., 2012. J. Sanchís, L. Kantiani, M. Llorca, F. Rubio, A. Ginebreda, J. Fraile, T. 

Garrido, M. Farré. Determination of glyphosate in groundwater samples using an 

ultrasensitive immunoassay and confirmation by on-line solid-phase extraction 

followed by liquid chromatography coupled to tandem mass spectrometry. Analytical 

and Bioanalytical Chemistry. 402 (7): 2335-45 (2012). doi: 10.1007 / s00216-011-5541-y. 

Sasal et al., 2017. M.C. Sasal, M.G. Wilson, S.M. Sione, S.M. Beghetto, E.A. Gabioud, J.D. 

Oszust, E.V. Paravani, L. Demonte, M.R. Repetti, D.J. Bedendo, S.L. Medero, J.J. Goette, 

N. Pautasso, G.A. Schulz. Monitoreo de glifosato en agua superficial en Entre Ríos. La 

investigación acción participativa como metodología de abordaje. Revista de 

Investigaciones Agropecuarias. Vol 43-2. 195-205 (2017). 

http://ria.inta.gob.ar/sites/default/files/trabajosenprensa/sasal-castellano-4.pdf 

SPSS Statistic v20. IBM Corp. Released 2011. IBM SPSS Statistics for Windows, Version 

20.0. Armonk, NY: IBM Corp. 

US. EPA, 2002. United States Environmental Protection Agency. Office of Groundwater and 

Drinking Water. Technical Fact Sheet on Glyphosate. 

http://www.epa.gov/OGWDW/dwh/t-soc/glyphosa.html. (2002).  

UNEP, 2016. United Nations Environment Programme. A snapshot of the world’s water 

quality: towards a global assessment. Nairobi. 162pp. http://www.wwqa-

documentation.info/assets/unep_wwqa_report_web_lores.pdf 

  

http://dx.doi.org/10.1016/j.envpol.2017.06.006
http://www.epa.gov/OGWDW/dwh/t-soc/glyphosa.html
http://www.wwqa-documentation.info/assets/unep_wwqa_report_web_lores.pdf
http://www.wwqa-documentation.info/assets/unep_wwqa_report_web_lores.pdf


 

Table 1: Hydrogeological Units (UH), main features, hydraulic parameters and groundwater velocities. 

Hydrogeological Unit Sediments and relief K (m/d) 
Hydraulic 
gradient 

(%) 

Groundwater 
velocity (m/d) 

UH1. Eastern slope 
sector of Los 
Cóndores Mountains 

Silty-sand sediments differentially cemented 
with carbonates. (re transported aeolian 
sediments with alluvial intercalations. 
Undulated relief. 

0.5 1.5 0.15 

UH2. Eastern slope 
sector of Las Peñas 
piedmont 

Silty sands sediments (re transported aeolian 
sediments) with buried paleochannels, 
Undulated relief 

2 1 0.20 

UH3. Paleo alluvial 
fan of the 
Ctalamuchita River. 

Fluvial sands and gravels. Moderately to 
smoothly undulated plain 

40 0.2 0.32 

UH4. Poorly aeolian 
drained area with 
spider-type drainage 
(southeast sector) 

Silty sands mainly of aeolian origin.  
Smoothly undulated plain. 

1.5 0.16 0.024 

 

  



Table 2: Results of the chemical analysis of Surface water and groundwater in the study area. 
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Glyphosate and AMPA assessed in rain water, surface water and groundwater 

Field application in wet season resulted in high surface-water glyphosate exposures  

Glyphosate and AMPA detected in the unconfined aquifer (the primary water resource)  

Concentrations were related to low hydraulic conductivity, gradient, and flow velocity 
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