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Abstract
Weaddress the problemoffinding the optimal common resource for an arbitrary family of target
states in quantum resource theories based onmajorization, that is, theories whose conversion law
between resources is determined by amajorization relationship, such as it happenswith entanglement,
coherence or purity.We provide a conclusive answer to this problemby appealing to the completeness
property of themajorization lattice.We give a proof of this property that relies heavily on themore
geometric construction provided by the Lorenz curves, which allows to explicitly obtain the
corresponding infimumand supremum.Our framework includes the case of possibly non-
denumerable sets of target states (i.e. targets sets described by continuous parameters). In addition, we
show that a notion of approximatemajorization, which has recently found application in quantum
thermodynamics, is in close relationwith the completeness of this lattice. Finally, we provide some
examples of optimal common resources within the resource theory of quantum coherence.

1. Introduction

Quantum resource theories (QRTs) are a very general and powerful framework for studying different
phenomena in quantum theory from an operational point of view (see [1] for a recent review of the topic).
Indeed, all QRTs are built from three basics components: free states, free operations and resources. These
components are not independent among each other, and they are defined in away that depends on the physical
properties that onewants to describe. In general, for a givenQRT, one defines the set of free sates  , formed by
those states that can be generatedwithout toomuch effort. Then, an operation  is said to be free, if it satisfies the
condition ofmapping free states into free states:  is free if and only if   r rÎ " Î( ) . Thus, free
operations can be interpreted as the ones that are easy to implement in the lab. Finally, quantum resources are
defined as those states that do not belong to the set of free states (i.e. r Ï ). These states are the useful ones for
doing the corresponding quantum tasks. As an illustration, consider the task of transmitting an arbitrary
quantum state fromone lab to another distant one, where the allowed free operations are the so-called local
operations and classical communication. In this typical scenario, entanglement arises as the necessary quantum
resource to perform this task (as it can be seen from the quantum teleportation protocol [2]).

Clearly, it is not possible to convert free states into resources by appealing to free operations alone. This is the
reasonwhy the term resource theorywas coined. In fact, one of themain concerns of theQRTs is the
characterization of transformations between resources bymeans of free operations. Here, we are focused on
QRTs forwhich these transformations are fully characterized by a kind ofmajorization law between the
resources. Precisely, we are interested inQRTs forwhich

free
r s is equivalent to x xr s( ) ( ) or x xs r( ) ( ),

where x r( ) and x s( ) are probability vectors associated to ρ andσ, respectively, andmeans amajorization
relation (see e.g.[3] for an introduction tomajorization theory). In addition to the characterization of the
convertibility of free states bymeans of free operations [4–10], majorization theory has been applied to different
problems in quantum information such as entanglement criteria [11, 12], majorization uncertainty relations
[13–17], quantum entropies [18–20] and quantumalgorithms [21], among others [22–26].
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We restrict toQRTs based onmajorizationmainly for two reasons. Aswe have alreadymentioned, there are
several examples ofQRTs that satisfy amajorization law (see table 1 and [4–10]). Thus, the results obtained
which are based in the properties ofmajorization are of great generality, providing a unifying framework for
several physical problems. On the other hand,majorization induces a lattice structure [27–29].Wewill show that
this allows to introduce the notion of optimal common resource in a very natural way. Before doing that, we stress
that the lattice theoretical aspects ofmajorization theory have not been sufficiently exploited in comparisonwith
other features of it in the area of quantum information. Indeed, the first applications were given in [30, 31]; only
recently, new applications of themajorization lattice have been found [32–39].

Here, we aim to address the following problem. Let us suppose that onewants to have a set of target
resources  . For obvious practical reasons, it is very useful tofind a resource ρ, such that it can be converted by
means of free operations to any other resource belonging to the target set, that is,

free
r s for all s Î . By

definition, themaximal resource (if it exists) has to perform this task for any target set in a givenQRT. But amore
interesting question is whether there exists a state that can carry out the same task, but using the least amount of
resources as possible.More precisely, one aims tofind a resource ocrr such that ocr

free
r s s " Î , and for any

other ρ satisfying
free

r s s " Î , then either
free

ocrr r or
free

ocrr r . If this state exists, we refer to it as the

optimal common resource (ocr). In this work, we provide a solution for the problem of finding the optimal common
resources for arbitrary target sets of all QRTs based onmajorization. This problemwas already posed and (partially)
solved in [37], for possibly infinite (but denumerable) target sets of bipartite pure entangled states. Let us stress
that our proposal is a twofold extension of that previous work. In the first place, we provide a unifying
framework for arbitraryQRTs based onmajorization, which includes not only entanglement resource theory,
but also the important cases of coherence and purity resource theories. In the second place, we consider themost
general case of possibly non-denumerable sets of target resources. This is a powerful extension of previous
works, because it allows to apply this technique to target sets which are described by a continuous family of
parameters.We provide the answer to this general problemby appealing to the completeness of themajorization
lattice [27, 28]. In particular, our construction relies on the geometrical properties of Lorenz curves associated to
the corresponding target set of probability vectors, which allow us to provide an explicit algorithm for the
computation not only of the infimum (as in [27]) but also of the supremum.We also describe, for convex
polytopes, the relationship between the infimumand supremumand their extreme points.

2.Majorization lattice

Here, we introduce themajorization lattice and present itsmost salient order-theoretic features.
Let us consider probability vectors whose entries are sorted in non-increasing order, that is, vectors

belonging to the set:

x x x x x, , : 0 and 1 . 1d d i i
i

d

i1 1
1

  åD º ¼ =
+

=

⎧⎨⎩
⎫⎬⎭[ ] ( )

Geometrically, this set is a convex polytope embedded in the d 1- -probability simplex.
Let us now introduce the notion ofmajorization between probability vectors (see, e.g. [3]).

Definition 1. For given x y, dÎ D , it is said that xmajorizes y, denoted as x y , if and only if

x y k d1, , 1. 2
i

k

i
i

k

i
1 1

å å " = ¼ -
= =

( )

Table 1.Quantum resource theories where the transformations between resources bymeans of free operations are given by amajorization
relation. For eachQRT, the corresponding free operations are: local operations and classical communication (LOCC), incoherent
operations (IO) and unital, respectively.

QRT

Free

operations Resources Probability vector

Entanglement (pure) [4] LOCC i ii i
A B d dA B y yñ = å ñ ñ Î Ä∣ ∣ ∣ (Schmidt

decomposition)

x , , d1y y yº ¼( ) [ ]
with d d dmin ,A B= { }

Coherence (pure) [5–8] IO ii i
dy yñ = å ñ Î∣ ∣ ( iñ{∣ } incoherent basis) x , , d1

2 2y y yº ¼( ) [∣ ∣ ∣ ∣ ]
Purity [9, 10] Unital I

d
r ¹ acting on d x , , d1r r rº ¼( ) [ ]with ir eigen-

values of ρ

2
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Notice that x yi
d

i i
d

i1 1å = å= = is trivially satisfied, because x and y are probability vectors (sowe can discard this
condition from the definition ofmajorization).

The intuitive idea ofmajorization is that a probability distributionmajorizes another one, whenever the
former ismore concentrated than the latter. In this sense,majorization provides a quantification of the notion of
non-uniformity. Tofix ideas, let us observe that any probability vector x dÎ D trivially satisfies themajorization

relations: e x u1, 0 ,..., 0 , , , 0, , 0 , ,d x x d d d
1

rank

1

rank

1 1  º ¼ ¼ ¼ º⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦[ ] , where xrank is the number

of positives entries of x, and ed and ud are the extreme d-dimensional probability vectors in the sense of
maximumnon-uniformity (ed) andminimumnon-uniformity (ud, i.e. the uniformprobability vector),
respectively. Let us remark that there are several equivalent definitions ofmajorization that connect it with the
notions of double stochasticmatrices, Schur-concave functions and entropies, among others (see e.g.[3]).

Here we are interested in the order-theoretic properties ofmajorization. Indeed, it can be shown that the set

dD togetherwith themajorization relation is a partially ordered set (see e.g. [40] for an introduction to order
theory). Thismeans that, for every x y z, , dÎ D one has

(i) reflexivity: x x ,

(ii) antisymmetry: x y and y x , then x y= , and

(iii) transitivity: x y and y z , then x z .

Notice that if one leaves the constraint that the entries of the probability vectors are sorted in non-increasing
order, then condition (ii) is not valid in general. Instead of this, a weaker version holds, where x and y differ only
by a permutation of its entries. In such case,majorization gives a preorder because condition (i) and (iii) remain
valid.

In general, majorization does not yield a total order for probability vectors belonging to dD . This is because

there exist x y, dÎ D such that x y and y x for any d 2> . In this situation, we say that the probability
vectors are incomparable. For instance, it is straightforward to check that x 0.6, 0.16, 0.16, 0.08= [ ]and
y 0.5, 0.3, 0.1, 0.1= [ ]are incomparable.

There is a visual way to addressmajorization that consists in appealing to the notion of Lorenz curve [41].
More precisely, for a given x dÎ D one introduces the set of points k x, i

k
i k

d
1 0å = ={( )} (with the convention 0, 0( )

for k 0= ). Then, the Lorenz curve of x, say Lx w( )with d0,w Î [ ], is obtained by the linear interpolation of
these points. At the end, one obtains a non-decreasing and concave polygonal curve from 0, 0( ) to d, 1( ). In this
way, given twoLorenz curves of x and y, if the Lorenz curve of x is greater (or equal) than the one of y, it implies
that xmajorizes y, and vice versa. On the other hand, if two different Lorenz curves intersect at least at one point
in the interval d1,( ), itmeans that x and y are incomparable. See for example figure 1, where the Lorenz curve of
e u x, , 0.6, 0.16, 0.16, 0.084 4 = [ ]and y 0.5, 0.3, 0.1, 0.1= [ ]are plotted. It is clear that e x u4 4  and
e y u4 4  , but x y and y x . However, in such case, one can easily realize that there are infinite Lorenz
curves below the ones of x and y, and among all of them, there is onewhich is the greatest one. In the same vein,
there are infinitelymany Lorenz curves above those of x and y, and there is onewhich is the lowest one.

These intuitions can be formalized and allow to formulate a notion of infimumand supremum in the general
case [27–29]. Consequently, the definition ofmajorization lattice is introduced as follows:

Definition 2.The quadruple e u, , ,d d d = áD ñ defines a bounded lattice order structure, where

e 1, 0, , 0d = ¼[ ] is the top element, u , ,d d d

1 1= ¼⎡⎣ ⎤⎦ is the bottom element and for all x y, dÎ D the infimum

x y and the supremum x y are expressed as in [29] (or see below).

Precisely, the components of the infimumare given by iteration of the formula

x y x y x ymin , min , , 3k
i

k

i
i

k

i
i

k

i
i

k

i
1 1 1

1

1

1

å å å å = -
= = =

-

=

-⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭( ) ( )

for k d1, ,= ¼ and the convention that summationswith the upper index smaller than the lower index are
equal to zero. For the supremum, one has to proceed in two steps. First, one has to calculate the probability
vector, say z, with components given by

z x y x ymax , max , . 4k
i

k

i
i

k

i
i

k

i
i

k

i
1 1 1

1

1

1

å å å å= -
= = =

-

=

-⎧⎨⎩
⎫⎬⎭

⎧⎨⎩
⎫⎬⎭ ( )

3

New J. Phys. 21 (2019) 083028 GMBosyk et al



In general, this vector does not belong to dD , because its components are not in decreasing order. If it is the case

that z dÎ D , then z x y=  . Otherwise, one has to apply the flatness process (see [29], lemma 3) in order to get
the supremum, as follows. For a probability vector w w w, , d1= ¼[ ], let j be the smallest integer in d2,[ ] such that
w wj j 1> - and let k be the greatest integer in j1, 1-[ ] such that

w
w

j k
a

1
, 5k

l k

j
l

1 
å
- +

=-
= ( )

with w 10 > . Then, a flatness probability vector w¢ is given by

w
a l k k j

w

for , 1, ,

otherwise.
6l

l
¢ =

= + ¼⎧⎨⎩ ( )

Then, the supremum is obtained in nomore than d 1- iterations, by iteratively applying the above
transformationswith the input probability vector z given by (4), until one obtains a probability vector in dD .

Let us consider a finite set of probability vectors, that is, x x, , N1 = ¼{ }with xi
dÎ D . By appealing to

the algebraic properties of the definition of lattice, it is straightforward to show that the infimumand the
supremumof  always exist, and are given by x x xN1 2 =   ¼ ⋀ and x x xN1 2 =   ¼ ⋁ .
However, if one considers an arbitrary set of probability vectors (which could be infinite), the lattice properties
are not strong enough to guarantee the existence of infimumand supremum. If the infimumand supremum
exist for arbitrary families, the lattice is said to be complete. It has been shown that themajorization lattice is
indeed complete [27, 28]. For the sake of completeness, we reproduce the demonstration here and extend it in
the following sense: we provide an explicit algorithm for computing the supremum.

Proposition 1. Let  an arbitrary set of probability vectors such that d Í D . Then, there exist the infimum
x inf º ⋀ and the supremum xsup º ⋁ of  .

In addition, the components of the x inf are given by

x inf inf , 7k k k
inf

1 = - -{ } { } ( )

where S x x:k k = Î{ ( ) }with S x xk
i

k

i
1

åº
=

( ) for k d1, ,Î ¼{ }and S x 00 º( ) .

On the other hand, to obtain the components of xsup , we have first to define the probability vector with
components given by

x sup sup . 8k k k 1 = - -¯ { } { } ( )

Then, we compute the upper envelope of the polygonal given by the linear interpolation of the points k S x, k k
d

0={( ( ¯))} ,
say L w¯ ( ), by using the algorithm 1. Finally, the components of the supremumare given by:

x L k L k 1 . 9k
sup = - -¯ ( ) ¯ ( ) ( )

Figure 1. Lorenz curves of of e4 (black), u4 (gray), x 0.6, 0.16, 0.16, 0.08= [ ] (red) and y 0.5, 0.3, 0.1, 0.1= [ ] (blue). (a)Among all
Lorenz curves below the ones of x and y, there exists the greatest Lorenz curve that corresponds to the probability vector x y =
0.5, 0.26, 0.14, 0.1[ ] (green). (b)Among all Lorenz curves above the ones of x and y, there exists the lowest Lorenz curve that
corresponds to the probability vector x y 0.6, 0.2, 0.12, 0.08 = [ ] (cyan).

4
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The proof of proposition 1 is given in appendix A.1. Clearly, when the set is given by two probability vectors in

dD , that is x y, = { }, the calculus of infimumand supremumof the proposition 1 reduces to the procedure
given in [29] (see equations (3)–(6)).

2.1. Infimumand supremumover convex polytopes
Let us illustrate themeaning and relevance of the infimumand supremumdiscussed abovewith an interesting
example. First, let us note that if d Í D is a convex polytope, then the corresponding infimumand supremum
can be computed as the infimumand supremumof the set of vertices, vert ( ).

Lemma1. Let  be a convex polytope contained in dD , and vert ( ) the set of vertices, vvert n
n
N

1 = =( ) { } . Then, the
infimum x inf º ⋀ and the supremum xsup º ⋁ of  are given by the infimumand supremum elements of
vert ( ), namely

x v x vand . 10n
n
N n

n
Ninf

1
sup

1= == =⋀{ } ⋁{ } ( )

The proof of lemma 1 is given in appendix A.2.Notice that, although the problem is reduced to the calculation of
the infimumand supremumamong the extreme points of the convex polytope, x inf and xsup do not necessarily
belong to it (see e.g.figure 2(a)). However, wewill see an interesting examplewhere the infimumand supremum
dobelong to the given convex polytope (see e.g.figure 2(b)).

Let us consider the 1ℓ-norm ò-ball centered in x d
0 Î D intersectedwith dD , that is, B x x0

 = ¢ Î( ) {
x x:d

0
1 D ¢ - ∣∣ ∣∣ }, where x x

i

d
i1 1åº =∣∣ ∣∣ ∣ ∣denotes the 1ℓ-normof a probability vector. Let usfirst note

that x x x:d 0
1  ¢ Î ¢ -{ ∣∣ ∣∣ } is a convex polytope (see [20]). Then, B x0

 ( ) is also a convex polytope, because
it is the intersection of that convex polytopewith dD . Therefore, by applying lemma 1, B x0

⋀ ( ) and B x0
⋁ ( )

reduces tofinding the infimumand supremumof the vertices of B x0
 ( ).

Interestingly enough, the lattice-theoretic property ofmajorization can be posed in strong connectionwith
the notion of approximatemajorization [20, 42], which has recently found application in quantum
thermodynamics [43].More precisely, the steepest ò-approximation, x B x0 0

Î¯ ( )( ) , and the flattest
ò-approximation, x B x0 0

Î ( )( ) , of x0 given in [20, 42] satisfy that, x x x0 0  ¯ ( ) ( ) for all x B x0
Î ( ). Using

the definition of infimumand supremumof a given family, it follows that x x0 sup =¯ ( ) and x x0 inf =( ) ,
although the algorithms to obtain them are different to the ones presented here. Thus, we see that the notion of
approximatemajorization is in strong connectionwith the property of completeness of themajorization lattice.
Furthermore, we have shown that it can be reduced to the application of the algorithmof infimumand
supremum to the set of vertices of B x0

 ( ).

3.Optimal common resource

Now,we are ready to apply the proposition 1 to the problemoffinding the optimal common resource inQRTs
based onmajorization.

Figure 2. Infimumand supremumof convex polytopes in 3D (region formed by the convex hull of e3, u3 and , , 01

2

1

2
⎡⎣ ⎤⎦) for

(a) x x p p p: 0.5, 0.4, 0.1 1 0.55, 0.3, 0.15 with 0, 13 = Î D = + - Î{ [ ] ( )[ ] [ ]} (black line), where 0.5, 0.35, 0.15 =⋀ [ ]
(red hexagon) and 0.55, 0.35, 0.1 =⋁ [ ] (blue square); and (b) B 0.525, 0.35, 0.1250.15 = ([ ]) (light gray region), where

0.45, 0.35, 0.2 =⋀ [ ] (red hexagon) and 0.6, 0.35, 0.05 =⋁ [ ] (blue square).

5
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In thefirst place, we have to distinguish between two possible cases ofQRTs based onmajorization.We call
directmajorization-basedQRTs to thoseQRTs such that

free
r s iff x xr s( ) ( ), whereas we call reversed

majorization-basedQRTs to those that reverse themajorization relation (that is,
free

r s iff x xs r( ) ( )).
Notice that purity is of the former type, whereas entanglement and coherence are of the latter one (see table 1).
For suchQRTs, let us remark that ocrr is an optimal common resource if ocr

free
r s s " Î , and for any other

ρ satisfying
free

r s s " Î one has
free

ocrr r . Let us observe that all states ρ such that ocr

free
r r« are

equivalent in the sense that all of them are optimal common resources.
For a given set of target resources  , let us consider its corresponding set of probability vectors  , which

depends on themajorization-basedQRT that one is dealingwith.We shownow that the problemoffinding an
optimal common resourcewithin aQRTbased onmajorization, can be reduced to an application of the
completeness of themajorization lattice. Indeed, by directly applying proposition 1, onefinds that an optimal
common resource of  for directmajorization-basedQRTs can be obtained from the supremumof the
corresponding set of probability vectors  . On the other hand, for reversedmajorization-basedQRTs, it can be
obtained from the infimumof the corresponding set of probability vectors  .

In this way, the completeness of themajorization lattice is of the essence in dealingwith the optimal
common resources inQRTs based onmajorization. Aswe have already stressed in the Introduction, this is a
twofold extension of the proposal of [37].

3.1.Optimal common resourcewithin the resource theory of quantum coherence
In the following, we illustrate how to obtain an optimal common resourcewithin the resource theory of
quantum coherence introduced in [46].

Deterministic transformations between pure sates bymeans of incoherent operations (IOs) (free operations)
have been addressed in several works [5–8]. In particular, we consider two pure sates ii

d
i1y yñ = å ñ=∣ ∣ and

ii
d

i1f fñ = å ñ=∣ ∣ , where i i
d

1ñ ={∣ } is afixed orthonormal basis (the incoherent basis) of a d-dimensionalHilbert

space. The coefficients iy{ } and if{ } are complex numbers in general, satisfying 1i
d

i i
d

i1
2

1
2y få = å == =∣ ∣ ∣ ∣ . Let

x y( ) and x f( ) be the probability vectors in dD associated to these pure states, that is, xi i
2y y=( ) ∣ ∣[ ] and

xi i
2f f=( ) ∣ ∣[ ] , where i i1 y y+∣ ∣ ∣ ∣[ ] [ ] and i i1 f f+∣ ∣ ∣ ∣[ ] [ ] for all i. It has be shown that yñ∣ can be converted

into fñ∣ bymeans of IOs, denoted as
IO

y fñ  ñ∣ ∣ , if and only if x xf y( ) ( ) (see e.g.[47] and references therein).
This result can be seen as the analog of the celebratedNielsen’s theorem [4] for quantum coherence.

Let us recall that ii
d

d1
1å ñ= ∣ is amaximally coherent state, since it canbe converted into anyother state bymeans

of IOs [46].Weare going todiscuss twocases inwhich theoptimal commonresource is not amaximally coherent one.
As a first example, if we consider a subset of pure states given by :d

1  f f a= ñ Î{∣ ∣ ∣ }[ ] with

d1 1a< , tofind an optimal common resource of  wehave to calculate the infimumof the set

x x:d 1
2  a= Î D{ }. It can be shown that , , ,

d d
2 1

1

1

1

2 2

 a= ¼a a-
-

-
-

⎡⎣ ⎤⎦⋀ , so that an optimal common

resource has the form i1 i
d

d
ocr

2
1

1

2

y añ = ñ + å ña
=

-
-

∣ ∣ ∣ . Clearly this optimal common resource is not a

maximally coherent state.
As a second example,motivated by the study of coherence of quantum superpositions [48], let us consider

amore subtle target set formed by superpositions of given two orthogonal states.More precisely, let  =
:df f a m b nñ Î ñ = ñ + ñ{∣ ∣ ∣ ∣ }, where ii

d
d1
1

1

1
mñ = å ñ=∣ ∣ , ii d

d

d d1
1

1 1
nñ = å ñ= + -

∣ ∣ and 12 2a b+ = (with

, a b Î for simplicity). If we do not impose any other restriction overα, then  contains themaximally
coherent state, which is trivially the optimal common resource. In order to exclude that possibility, let us
consider that d d2

1a ¹ . In particular, let us suppose that d d2
1a > , so that there is min

2a such that
1min

2 2 a a , with min
2a strictly greater than d d1 (the other case, with d d2

1a < , is completely analogous).
The corresponding set of probability vectors is

x x
d d d d d d

: , , ,
1

, ,
1

,d

d

2

1

2

1

2

1

2

1

1


a a a a

= Î D = ¼
-
-

¼
-
-



  ⎧
⎨
⎪⎪

⎩
⎪⎪

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎫
⎬
⎪⎪

⎭
⎪⎪

and the infimumof dD is shown to be

d d d d d d
, , ,

1
, ,

1
.

d

min
2

1

min
2

1

min
2

1

min
2

1

1


a a a a

= ¼
-
-

¼
-
-

  ⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
⋀
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Therefore, an optimal common resource of  is of the form

d
i

d d
i

1
.

i

d

i d

d
ocr

1

min
2

1 1

min
2

1

1

1

å åy
a a

ñ = ñ +
-
-

ñ
= = +

∣ ∣ ∣

Notice that in this example ocr y ñ Ï∣ .

4. Concluding remarks

In this paper we gave a solution for the problemoffinding an optimal common resource for an arbitrary family
of target states of a given aQRTbased onmajorization like entanglement, coherence or purity (see table 1). Our
method relies on the completeness properties of themajorization lattice.We provided concrete algorithms for
computing the infimumand supremumof an arbitrary family of states (proposition 1). Our contribution
improves previousworks (e.g. [27–29, 37]), in the sense that our algorithmworks for target sets of arbitrary
cardinality (i.e. we provide an expression for the supremum for possibly non-denumerable families of states).
Also, for convex polytopes, we include a study of the relationship between the infimumand supremum, and
their extreme points (lemma 1).

In addition, we showed that the notion of approximatemajorization is in strong connectionwith the
property of completeness of themajorization lattice [20, 42]. Indeed, the flattest and steepest approximations are
nothingmore than the infimumand supremumof the corresponding set, respectively, and they can be
calculated only from their vertices.

Finally, the fact that completeness of themajorization lattice is of the essence in dealingwith the optimal
common resources is illustratedwith some examples within the resource theory of quantum coherence [46].
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Appendix

A.1. Proof of proposition 1
For the sake of completeness, we showhere that themajorization lattice is complete.We stress that this has been
proved in previousworks [27, 28]. However, we give an alternative proof that relies heavily on themore
geometric construction provided by the Lorenz curves. This allow us to provide an explicit algorithm for the
computation not only of the infimumbut also of the supremum (proposition 1).

Let usfirst introduce some notations and definitions. Let us define the partial sumof thefirst k components

of a given vector x as S x xk i

k
i1åº =( ) with the convention S x 00 º( ) . Now, let us consider the set formed by all

partial sums up to k that come fromprobability vectors in  , that is, S x x:k k = Î{ ( ) }and its infimum
S infk kº and supremum S supk kº¯ . Notice that, for each k d0,= ¼ , both Sk and Sk̄ exist, since each k is a

set of real numbers bounded frombelow by k

d
and above by 1. Finally, let us consider the probability vectors

x S S S S S S S, , , ,i i d d1 2 1 1 1= - ¼ - ¼ -- -[ ]and x S S S S S S S, , , ,i i d d1 2 1 1 1= - ¼ - ¼ -- -¯ [ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ]. Let us
prove that from these probability vectors one can obtain the infimumand the supremum, respectively.

A.1.1. Infimum. Let us nowprove that x x inf= . Toprove that,we appeal to thedescriptionofmajorization in
termsof Lorenz curves. Firstwe show that the curve L x w( )with d0,w Î [ ], formedby the linear interpolationof the

points k S, k k
d

0={( )} (notice that S 00 = and S 1d = ) is a Lorenz curve. This is equivalent to prove that x dÎ D .We
proceed in two steps: (a) L x w( ) is non-decreasing i.e.L k L k 1x x +( ) ( ) for all k d0, , 1Î ¼ -{ } (b) L x w( ) is
concave i.e.L k L k L k1 1x x x

1

2
 - + +( ) ( ( ) ( )) for all k d1, , 1Î ¼ -{ }. Theproofs of bothpoints are given

by reductio ad absurdum.
Let us proceedwith the proof of (a) L k L k 1x x +( ) ( ) for all k d0, , 1Î ¼ -{ }. Let us assume that there

exists k¢ such that L k L k 1x x¢ > ¢ +( ) ( ). By construction, there exists a sequence, say L k 1x ii ¢ + Î{ ( )} with
xi Î , of elements of k 1 ¢+ , that converges to S L k 1k x1 = ¢ +¢+ ( ). Let us choose i¢ big enough such that
L k L k L k L k1 1 1x x x x

1

2
i ¢ + - ¢ + ¢ - ¢ +( ) ( ) ( ( ) ( )) for all i i ¢. Let us pick one of them, say i0. On the other

hand, by definition of x, one has L k L kx xi0 ¢ ¢( ) ( ). Finally, one has L k L k L k 1x x xi0 ¢ ¢ > ¢ + +( ) ( ) ( )
L k L k L k1 1x x x

1

2
i0¢ - ¢ + ¢ +( ( ) ( )) ( ). But this is in contradictionwith the fact that L k L k 1x xi i0 0 +( ) ( ) for

all k d0, , 1Î ¼ -{ }, which is true by definition of Lorenz curve. Then, (a) holds.
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Now,we proceedwith the proof of (b): L k L k L k1 1x x x
1

2
 - + +( ) ( ( ) ( )) for all k d1, , 1Î ¼ -{ }

Assume that there exists k¢ such that L k L k L k1 1x x x
1

2
¢ < ¢ - + ¢ +( ) ( ( ) ( )). By construction, there exists a

sequence, say L kx ii ¢ Î{ ( )} with xi Î , of elements of k ¢, that converges to S L kk x= ¢¢ ( ). Let us choose i¢ big
enough such that L k L k L k1 1x x x

1

2
i ¢ < ¢ - + ¢ +( ) ( ( ) ( )) for all i i ¢. Let us pick one of them, say i0. By

definition of x, L k L k1 1x xi0 ¢ - ¢ -( ) ( ) and L k L k1 1x xi0 ¢ + ¢ +( ) ( ). This implies that L kxi0 ¢ <( )
L k L k L k L k1 1 1 1x x x x

1

2

1

2
i i0 0¢ - + ¢ + ¢ - + ¢ +( ( ) ( )) ( ( ) ( )). But this is in contradictionwith the fact

L k L k L k1 1x x x
1

2
i i i0 0 0 - + +( ) ( ( ) ( )) for all k d1, , 1Î ¼ -{ }, which is true by definition of Lorenz curve.

Then, (b) holds.
Up tonow,wehaveproved that L x w( ) is a Lorenz curve that, by construction, satisfies L Lx xw w w" Î( ) ( )
d0,[ ]and x " Î . In otherwords,weobtain that x dÎ D and x x x  " Î . It remains to beproved that for

any x d¢ Î D such that x x x  ¢ " Î , one has x x ¢. In order to do this, we appeal again to the reductio ad
absurdum and thenotion of Lorenz curve. Let us assume that there exist x¢ such that x x x  ¢ " Î , but x x ¢.
This happens if at least onepartial sumof x¢ is greater than theone of the x, say the k¢ partial sum. Inother
words, L k L kx x¢ > ¢¢( ) ( ). Choose again a sequence L kx ii ¢ Î{ ( )} of elements of k ¢ that converges to Sk¢. Choose i¢
big enough such that L k L k L k L kx x x x

1

2
i ¢ < ¢ + ¢ - ¢¢( ) ( ) ( ( ) ( )) for all i i ¢. Let us pick one of them, say i0, so

L k L k L k L kx x x x
1

2
i0 ¢ < ¢ + ¢ - ¢¢( ) ( ) ( ( ) ( )). But, by hypothesis, one has L k L kx xi0¢( ) ( ) for all k d0, ,Î ¼{ },

which is in contradictionwith the previous inequality. Thus, there does not exist such x¢. Therefore, x x inf= .

A.1.2. Supremum. Notice that, according to lattice theory, the arbitrary supremumcan be expressed in terms
of the arbitrary infimum, and vice versa [45]. Thismeans that our proof of the existence of the infimum for an
arbitrary set  of probability vectors (whose components are arranged in non-increasing order), automatically
implies the existence of its supremum x x x x x:d

sup = ¢ Î D ¢ " Î⋀{ }.With this observationwefinish
our proof that themajorization lattice is complete. Notice that themere proof of the existence of a supremum,
does not guarantee the existence of an algorithm to compute it. Thus, in the sequel, we focus our efforts in
providing such an algorithm.

Consider the polygonal curve Lx w( )¯ , with d0,w Î [ ], formedby the linear interpolationof the points
k S, k k

d
0={( ¯ )} (notice that S 00 =¯ and S 1d =¯ ). By construction, Lx w( )¯ is non-decreasing and satisfies that

L L d, 0,x xw w w" Î( ) ( ) [ ]¯ and x " Î . But, alike L x w( ), Lx w( )¯ is not necessarily a Lorenz curve. Thus, it
cannot beused to construct the (ordered)probability vector associated to the supremumof the given family.
Instead, let us show that the upper envelopeof Lx w( )¯ , that is, L g g ginf : is concave and w w wº¯ ( ) { ( ) ( )
L d0,x w w" Î( ) [ ]}¯ (see e.g. [44], definition 4.1.6), is indeed the Lorenz curve associated to the supremum:
L Lxsup w w=( ) ¯ ( ). In thisway, from the upper envelope L w¯ ( ), one obtains the supremumas xsup =
L L L L i L i L d L d1 , 2 1 , , 1 , , 1- ¼ - - ¼ - -[ ¯ ( ) ¯ ( ) ¯ ( ) ¯ ( ) ¯ ( ) ¯ ( ) ¯ ( )]. Thus, wehave to prove that: (a) L w¯ ( )
is a Lorenz curve, and (b) if x d¢ Î D and x x x ¢ " Î , then x xsup¢ .

Ourmethod to obtain the supremum xsup has three steps: first, we calculate x;¯ second, we compute the
upper envelope of Lx w( )¯ , L ;w¯ ( ) third, we compute the elements of xsup as the components of the probability
vector associated to the Lorenz curve L w¯ ( ). Thefirst and last steps are straightforward.We also provide the
algorithm1 tofind the upper envelope of a polygonal curvewith coordinates k S x, k k

d
0={( ( ))} .

Algorithm1.Upper envelope

input: x dÎ
output: coordinates of the upper envelope of the polygonal curve joining k S x, k k

d
0={( ( ))} .

procedureUPPERENV(x)
 0 ¬ { } > Stores the ‘critical points’ of x

i 0¬
while i xlength< ( ) do
m 0¬ { } > Stores slope values

for j i x1 length= + ¼ ( )do
m mappend ,

S x S x

j i

j i¬
-

-{ }( ) ( )

endfor
k¬ max(position of mmax( ))> Finds position of the lastmaximum slope

 kappend , ¬ { }
 i k¬ >Updates i

endwhile
return k S x, k k Î{( ( ))} >Coordinates of the upper envelope

endprocedure
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Notice that for a given probability vector x dÎ¯ , the output of the algorithm1 is a set of points
k S x, k k Î{( ( ¯))} . It is clear that the linear interpolationof these points is a Lorenz curve, say Lxup w( ), whichhas

associated someprobability vector x d
up Î D . Let us show that Lxup w( ) is equal to the upper envelope of Lx w( )¯ . To

see that, take twoconsecutive indices, k k,i i 1 Î+ . By construction, L Lx xupw w=( ) ( )¯ for kiw = and ki 1w = + .
For k k,i i 1w Î +[ ], Lxup w( ) is the linear interpolation and so onehas twopossibilities: either k k 1i i1 = ++ and
L Lx xupw w=( ) ( )¯ for all k k,i i 1w Î +[ ], or k k 1i i1 > ++ and L Lx xupw w<( ) ( )¯ for some integer k k,i i 1w Î +( ).
In both cases, since the interpolation is linear, there is no concave curve such that L Lx xw w( ) ( )¯ and
L Lx xupw w<( ) ( ) for all k k,i i 1w Î +( ). Since this is the case for any ki Î , wenecessarily obtain the upper
envelope of the polygonal curve joining k S x, k k

d
0={( ( ))} . Then,wehave proved that L Lxup w w=( ) ¯ ( ). This last

equality implies in turn that (a) L w¯ ( ) is a Lorenz curve. As a consequence, by construction of L w¯ ( ), we also have
that x L L L L i L i L d L d1 , 2 1 , , 1 , , 1up = - ¼ - - ¼ - -[ ¯ ( ) ¯ ( ) ¯ ( ) ¯ ( ) ¯ ( ) ¯ ( ) ¯ ( )] satisfies that x x xup  " Î . In
addition,wehave that x d ¢ Î D such that L L d0,x xw w w" Î¢( ) ( ) [ ]¯ and x xup  ¢. Therefore, (b)holds
and x xup sup= .

A.2. Proof of lemma1
Weprove now that x vvertinf inf º = º⋀ ⋀ ( ) and x vvertsup sup º = º⋁ ⋁ ( ) , that is to say that
infimumand supremum can be computed among the set of vertices of the convex polytope.

Let x be an arbitrary probability vector in d Í D . Since  is a convex polytope, x can bewritten as a convex

combination of the vertices, x p vn
N

n
n

1= å = , with v Pvertn Î ( ), p 0n  and p 1n
N

n1å == . For arbitrary k, the k-
partial sumof x gives

S x p S v S v k x, , , A.1k
n

n k
n

k
inf å= " " Î( ) ( ) ( ) ( )

wherewe have used that, by definition, v vn inf , v vertn " Î ( ). On the other hand, since vert  Í( ) and
given that x inf º ⋀ , we knowby definition of infimum that v xinf inf must hold.Hence, using(A.1)

x v x x, . A.2inf inf   " Î ( )
Therefore, by definition of infimum, one has x vinf inf= .

Analogously, for the supremumone obtains that

x v x x, , A.3sup sup   " Î ( )

and the desired result follows as before, by definition of supremum, x vsup sup= .
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