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Résumé. Lawvere a observé que certains ‘gros’ topos en géométrie algébrique
suggèrent l’existence d’un ‘niveau infinitésimal’, étroitement lié aux algèbres
locales de dimension finie. Motivés par cette observation, nous proposons
une définition élémentaire de level ε associée à un morphisme géométrique lo-
cal, établissons quelques propriétés de base pertinentes suggérées par l’intuition
géométrique et donnons une description concrète du niveau ε déterminé par
plusieurs morphismes géométriques pré-cohésifs.
Abstract. Lawvere has observed that certain ‘gros’ toposes in algebraic ge-
ometry suggest the existence of an ‘infinitesimal level’, closely related to
finite-dimensional local algebras. Motivated by this observation we propose
an elementary definition of level ε associated to a local geometric morphism,
establish some relevant basic properties suggested by geometric intuition, and
give concrete descriptions of the level ε determined by several pre-cohesive
geometric morphisms.
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1. Introduction

The formulation of Axiomatic Cohesion [14] and its development in the last
ten years naturally invites to revisit the ideas and concrete problems out-
lined in [12]. We consider here a specific question in the dimension theory
proposed in Section II of the latter reference:

The infinitesimal spaces, which contain the base topos in
its non-Becoming aspect, are a crucial step toward determinate
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Becoming, but fall short of having among themselves enough
connected objects, i.e. they do not in themselves constitute fully
a ‘category of cohesive unifying Being.’ In examples the four
adjoint functors relating their topos to the base topos coalesce
into two (by the theorem that a finite-dimensional local alge-
bra has a unique section of its residue field) and the infinitesi-
mal spaces may well negate the largest essential subtopos of the
ambient one which has that property. This level may be called
‘dimension ε’; calling the levels (i.e. the subtoposes essential
over the base) ‘dimensions’ does not imply that they are linearly
ordered nor that the Aufhebung process touches each of them.
The infinitesimal spaces provide (in many ways) a good example
of a non trivial unity-and-identity-of-opposites inside the ambi-
ent topos of Being: explicitly recognizing the two inclusions, as
spaces which could be called infinitesimal and formal spaces re-
spectively, may help clarify the confusing but powerful interplay
between these two classes which are opposite but in themselves
identical. The calculation of the ε-skeleton and ε-coskeleton, of
a space which is neither, needs to be carried out, and also the
calculation of the Aufhebung of dimension ε.

Our purpose is to confirm the suggestion that, in many examples of cohe-
sion, there exists a “largest essential subtopos of the ambient one which has”
the property that “the four adjoint functors to the base coalesce into two”.
In fact, we turn the suggestion into a rigorous definition of the level ε deter-
mined, if it exists, by a local geometric morphism E → S. When it exists, it
is an essential subtopos Eε → E with special properties. We prove that level ε
exists in many examples and we give an explicit description. In particular, if
E is the Zariski topos determined by the field of complex numbers, the site
for Eε will be shown to be closely related to local algebras, as suggested by
the quotation above.

Although some of the theory is developed in more generality, the typ-
ical topos of Being that we have in mind is the domain of a pre-cohesive
geometric morphism as defined, for example, in [16]. We recall most of the
definitions but the reader is assumed to be familiar with the ideas therein.

In Section 2 we recall in more detail the basics of the dimension theory
mentioned above. One way to start is to fix a local geometric morphisms
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p : E → S (typically with extra properties), consider its centre S → E as
‘level 0’ and study the levels above it. In Section 3 we analyse the subtoposes
above the centre of a local presheaf topos. The level ε determined by a local
geometric morphism is defined in Section 4. In the remaining sections we
calculate the level ε of several examples. In Section 5 we analyse the level ε
of local presheaf toposes in general and in some simple cases. In Section 6
we show that the Weil topos (determined by the field C of complex numbers)
underlies a subquality of the Gaeta topos determined by the same field. This
is shown to be level ε in Section 7.

Remark 1.1. Since Gaeta toposes are perhaps not yet widely known, we
include here a brief description. If D is a small extensive category then
the finite families (Di → D | i ∈ I) of maps in D such that the induced∑

i∈I Di → D is an isomorphism form the basis of a Grothendieck topology.
The associated toposGD of sheaves is called the Gaeta topos (ofD) and it is
equivalent to the category of finite-product preserving functors Dop → Set.
The ‘Gaeta topology’ is subcanonical so that the Yoneda embedding of D
into the topos of presheaves factors through the Gaeta topos but, moreover,
the factorization D → GD preserves finite coproducts. See, for example,
the end of page 3 in [12] or Section 2 in [15]. If T is an algebraic theory
whose category A of finitely presented algebras is coextensive then we may
naturally refer to G(Aop) as the Gaeta topos determined by T . For instance,
we have the Gaeta toposes determined rigs, by distributive lattices or by k-
algebras, where k is a ring. We may even push the terminology further and
simply speak (as we have done above) of the Gaeta topos determined by C,
instead of the Gaeta topos determined by the theory of C-algebras.

In Section 8 we show that the Zariski topos determined by C (which is
not a presheaf topos) also has a level ε and that it coincides with that of the
Gaeta topos.

2. Levels and dimensions

In this section we recall some of the material in Section II of [12] which
proposes to consider essential subtoposes of a given topos of spaces (or a
category of Being) as a refined notion of ‘dimensions’ in that topos. The
quotations in this section are taken from that reference. First notice that
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reflective subcategories of a fixed category X may be partially ordered as
follows.

Lemma 2.1. If the adjunctions F a U : A → X and L a R : C → X are
such that U : A → X andR : C → X are full and faithful then the following
conditions are equivalent:

(i) There is an adjunction H a K : A → C with K full and faithful such
that RK ' U (or, equivalently, HL ' F ).

(ii) U : A → X factors (up to iso) through R : C → X .

(iii) F : X → A factors (up to iso) through L : X → C.

(iv) νU : U → RLU is invertible, where ν : 1X → RL is the unit of L a R.

(v) Fν : F → FRL is invertible.

Proof. Clearly (i) implies (iii), and (iii) trivially implies (v) since R is full
and faithful.

Assume (v) and let ξ : LR→ 1C be the counit of L a R. Define H =
FR and K = LU ; we show that H a K by showing that the 2-cells

C

X

A

X

C
R !! 1X //

1C //

F !! U

==

L

==
ξ−1

��

η
��

A

X

C

X

A.
U ==

F
* *

1A
//

L == R
! !

F
!!

(Fν)−1

��

ε ��

satisfy the triangular identities, where η and ε are the unit and counit of
F a U . One of these triangular identities is trivial. The other is

A

X

C

X

A

X

C

U ==

F
* *

1A
//

L == R
! !

1C //

F
!!

1X //

U

==

L

==

(Fν)−1

��

ε ��

ξ−1
��

η ��
= 1LU .
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This equation is equivalent to

A

X

C

X

A

X

C

U
FF

L
FF

R !!

1C //

F !!

1X //

U

==

L

==
ξ−1
��

η ��
=

A

X

C

X

A

X

C.

U !!

1A //

L !!

1X //

R

==

F

==
U
��

L
��

ε−1
��

ν ��

To see that this equation holds, replace on the right Uε−1 by ηU , and then
replace Lν by ξ−1L . Observe furthermore, that the counit of H a K is invert-
ible, thus K is fully faithful. We conclude that (v) implies (i).

The proof that (i)⇒ (ii)⇒ (iv)⇒ (i) is very similar.

If the equivalent conditions of Lemma 2.1 hold then we may say that the
reflective subcategory L a R is above F a U .

Remark 2.2. In the situation of Lemma 2.1, we may as well assume (as
we do in what follows) that the adjunction H a K : A → C is given by
FR a LU with unit and counit given by

1C
ξ−1
// LR

LηR // LUFR and FRLU
(FνU )−1

// FU ε // 1A

respectively. Observe as well that, if F preserves finite limits, then H also
preserves them; and if F has a left adjoint, then H also has a left adjoint.

From now on we restrict attention to the case where the ambient category
X is a fixed topos E . In this case Lemma 2.1 and Remark 2.2 imply the
following.

Corollary 2.3. Given subtoposes j : Ej → E and k : Ek → E the following
conditions are equivalent.

(i) Ek is above Ej .

(ii) j∗ : Ej → E factors through k∗ : Ek → E .

(iii) j∗ : E → Ej factors through k∗ : E → Ek.

(iv) The natural transformation νj∗ : j∗ → k∗k
∗j∗ is an isomorphism.
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(v) The natural transformation j∗ν : j∗ → j∗k∗k
∗ is an isomorphism.

When this is the case, we can take as witness of the fact that Ek is above Ej
the geometric morphism h : Ej → Ek such that h∗ = j∗k∗, h∗ = k∗j∗ with
unit and counit given by

1k
ξ′−1

// k∗k∗
k∗νk∗ // k∗j∗j

∗k∗ and j∗k∗k
∗j∗

(j∗ν′j∗ )
−1

// j∗j∗
ξ
// 1j

respectively, where ν, ξ are the unit and counit of j : Ej → E and ν ′, ξ′ are
the corresponding ones for k : Ek → E .

A geometric morphism f : F → E is called essential if the inverse im-
age f ∗ has a left adjoint f! : F → E . Following [12], essential subtoposes
of E will be called levels. Notice that for any given level l : El → E , the
leftmost adjoint l! is full and faithful (because the direct image l∗ is). Lev-
els may be partially ordered according to their underlying subtoposes as in
Corollary 2.3.

The basic idea is simply to identify dimensions with levels
and then try to determine what the general dimensions are in
particular examples. More precisely, a space may be said to have
(less than or equal to) the dimension grasped by a given level if
it belongs to the negative (left adjoint inclusion) incarnation of
that level.

So, for any level l : El → E and any X in E , the counit l!(l∗X)→ X
may be called the l-skeleton of X . The object X is said to be l-skeletal if
its l-skeleton is an iso, so that l! : El → E is the full subcategory of l-skeletal
objects. On the other hand, and in accordance with standard terminology,
the objects in the full subcategory l∗ : El → E will be called l-sheaves.

A subtopos Ej → E is way-above a level l : El → E if j is above l and,
moreover, l! : El → E factors through j∗ : Ej → E . The Aufhebung of level l
is (when it exists) the smallest level of E that is way-above l.

The Aufhebung of a level need not be easy to calculate. For an illustra-
tion of the complexity of the issue see [11], [7], [20], [13] and [8].

Recall that a geometric morphism p : E → S is local if p∗ : E → S has a
fully faithful right adjoint (usually denoted by p!). For such a p, the subtopos
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p∗ a p! : S → E is a level called the centre of p and it is sometimes conve-
nient to think of it as the smallest non-trivial level of E (or ‘dimension 0’),
especially, if p has further properties:

Within the class of all levels over the base (of course it is a
set in fact if the category of Being is a topos), the base itself is
often further distinguished by having a still further left adjoint
to its discrete inclusion, this extra functor therefore assigning to
every space in Being its set of components.

So let us fix a local and essential geometric morphism p : E → S. Re-
call that essential means that the fully faithful p∗ : S → E has a further left
adjoint p! : E → S. As quoted above, this left adjoint is thought of as assign-
ing, to each space (i.e. an object in E), its associated set (i.e. object in S) of
pieces or connected components. To aid the intuitive discussion, the centre
of p will be called level 0 (of p) and its Aufhebung will be called level 1 (of
p).

Because of the special feature of dimension zero of having
a components functor to it (usually there is no analogue of that
functor in higher dimensions), the definition of dimension one
is equivalent to the quite plausible condition: the smallest di-
mension such that the set of components of an arbitrary space
is the same as the set of of components of the skeleton at that
dimension of the space, or more pictorially: if two points of any
space can be connected by anything, then they can be connected
by a curve. Here of course by “curve” we mean any figure in
(i.e. map to) the given space whose domain is one-dimensional.

See Proposition 17 in [11] and Proposition in p. 19 of [20]. We give a
different proof:

Proposition 2.4. For any level l above level 0, l is way-above 0 if and only if,
for everyX in E , p!(l!(l∗X))→ p!X is an isomorphism (where l!(l∗X)→ X
is the l-skeleton of X).

Proof. Apply Lemma 2.1 to l∗ a l∗ : El → E and p! a p∗ : S → E .
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Notice that this result does not assume that level 1 exists. The levels
way-above level 0 may be considered as the levels above level 1 even if the
latter does no exist.

Corollary 2.5. Assume that level 1 exists. If a level l is above level 0 then,
l is above 1 if and only if p!(l!(l∗X))→ p!X is an isomorphism for every X
in E .

We also recall a general description of levels in presheaf toposes.

Definition 2.6. An ideal of a small category C is a class of maps I in C that
satisfies the following two conditions:

1. (Right ideal) For every g : D → C in I and h : E → D in C, gh ∈ I.

2. (Left ideal) For every f : C → B in C and g : D → C in I, fg ∈ I.

An ideal is called idempotent if for every f ∈ I there are g, h ∈ I such that
f = gh.

Theorem 4.4 in [7] shows that levels of the presheaf topos Ĉ are in bijec-
tive correspondence with idempotent ideals of C. If I is such an idempotent
ideal then the associated Grothendieck topology J is such that, for each C
in C, a sieve S on C is J-covering if and only if it contains all the maps in I
with codomain C.

3. Subtoposes above the centre of a local map

Let p : E → S be a local geometric morphism.

Proposition 3.1. Let j : Ej → E be a subtopos and assume that the following
diagram

Ej E

S

j
//

f ��

p
��

commutes so that p∗j∗ = f∗ : Ej → S and j∗p∗ = f ∗ : S → Ej . Then the
following are equivalent, where ν is the unit of j : Ej → E:
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1. The subtopos j : Ej → E is above the centre of p.

2. p! : S → E factors through j∗ : Ej → E .

3. p∗ : E → S factors through j∗ : E → Ej .

4. The natural transformation νp! : p! → j∗j
∗p! is an isomorphism.

5. The natural transformation p∗ν : p∗ → p∗j∗j
∗ is an isomorphism.

6. The geometric morphism f is local and j∗f ! ' p!.

In this case, we may assume that f ! = j∗p! and that the unit η and counit ε
of f∗ a f ! are given by

1Ej
ξ−1

// j∗j∗
j∗ηj∗ // j∗p!p∗j∗ = f !f∗

f∗f
! = p∗j∗j

∗p!
(p∗νp! )

−1

// p∗p
! ε // 1S

respectively, where η and ε are the unit and counit of p∗ a p! respectively,
and ξ is the (iso) counit of j∗ a j∗.

Proof. Corollary 2.3 tells us that items 1 to 5 are equivalent; furthermore,
Remark 2.2 tells us that we can take unit and counit of f∗ = p∗j∗ a j∗p! as
given in the statement of the proposition. So that f is local. Observe that
j∗f

! = j∗j
∗p! ' p! via the iso νp! . So any one of the first five conditions

implies 6. Finally, almost immediately, 6 implies 2.

So subtoposes above the centre determine local maps towards the base.
Moreover, if p is essential then so is f . Indeed, f! = p!j∗ and the composites

1Ej
ξ−1

// j∗j∗
j∗σj∗ // j∗p∗p!j∗ = f ∗f!

f!f
∗ = p!j∗j

∗p∗
(p!νp∗ )

−1

// p!p
∗ τ // 1S

are the unit and counit of f! a f ∗, where σ and τ are the unit and counit of
p! a p∗.

For instance, consider a small category C with a terminal object so that
the canonical geometric morphism Ĉ → Set is local. See C3.6.3(b) in [5].
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Lemma 3.2. Let D → C be a full subcategory such that idempotents split in
D. Then, the induced essential subtopos D̂ → Ĉ is above the centre of p if
and only if the subcategory D → C contains the terminal object.

Proof. If the subcategoryD → C contains the terminal object then D̂ → Set
is local by C3.6.3(b) in [5] and it is straightforward to check that there is a
natural iso as in item 6 of Proposition 3.1, so D̂ → Ĉ is above the centre of
p.

Conversely, assume that D̂ → Ĉ is above the centre of p. Then D̂ → Set
is local by item 6 of Proposition 3.1 so, as idempotents split by hypothesis,
D must have a terminal object 1D by C3.6.3(b) in [5]. So it remains to show
that the inclusion D → C preserves the terminal object. To do this let 1C be
the terminal object of C and notice that, by item 3 of Proposition 3.1, it must
be the case that, for every X in Ĉ, X1C ∼= X1D. Taking X = C( , 1D) we
may conclude that 1D has a point and, as D → C is fully faithful, it must
be the case that the composite 1D → 1C → 1D is the identity on 1D. So the
point 1C → 1D is an iso.

On the other hand, it is not the case that subtoposes that induce local
maps are above the centre in general. For example, let C = {0 < 1

2
< 1}

be the total order with three elements and consider the full subcategory
D = {0 < 1

2
} → C then the following diagram

D̂

!!

// Ĉ

��

Set

commutes and both morphisms to Set are local, but the subtopos D̂ → Ĉ is
not above the center of p; as one may show, for example, by checking that
p∗ : Ĉ → Set does not invert the unit of the subtopos.

Assume from now on that every object of C has a point so that the canon-
ical p : Ĉ → Set is pre-cohesive. Let J be a Grothendieck topology on C
and let Sh(C, J)→ Ĉ be the associated subtopos.

Lemma 3.3. The following are equivalent:

1. The subtopos Sh(C, J)→ Ĉ is above the centre of p.
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2. For every C in C and S ∈ JC, S contains all points of C.

3. The maximal sieve is the only J-cover of 1.

Proof. By Corollary 4.5 in [16], the centre of p : Ĉ → Set coincides with
the subtopos of sheaves for the double negation topology. In other words,
p! : Set→ Ĉ coincides with the subtopos Sh(C, K)→ Ĉ where a sieve on
C is K-covering if and only if it contains all points of C. So Sh(C, J)→ Ĉ
is above the centre of p if and only if, for every C in C, JC ⊆ KC. In other
words, the first two items are equivalent. The second item trivially implies
the third. The third item easily implies the second.

4. Subqualities and level ε

Recall that if we denote the counit of p∗ a p! by ε, and the unit and counit of
p∗ a p∗ by α and β then the following diagram commutes

p∗

p∗ε−1

� �

ηp∗
// p!p∗p

∗

p!α−1

��

p∗p∗p
!

β
p!

// p!

and the composite is denoted by φ : p∗ → p!. Following item (c) in Defini-
tion 2 of [14] we could say that the Nullstellensatz holds (for p) if φ : p∗ → p!

is monic. Recall that the Nullstellensatz holds if and only if p is hypercon-
nected. See [6] for explicit proofs of the equivalences between different
formulations of the Nullstellensatz.

Lemma 4.1. If the subtopos j : Ej → E is above the centre of p : E → S
and f = pj : Ej → S denotes the composite local geometric morphism then,
φ : f ∗ → f ! and j∗φ : j∗p∗ → j∗p! are equal. Therefore, if p is hypercon-
nected then so is f .
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Proof. Observe that in the commutative diagram below

j∗p∗

j∗φ
((

j∗p∗ε−1
// j∗p∗p∗p

!

j∗β
p!

��

j∗p∗p∗νp!
// j∗p∗p∗j∗j

∗p!

j∗β
j∗j∗p!

� �

j∗p!

id
))

j∗ν
p!

// j∗j∗j
∗p!

ξ
j∗p!
� �

j∗p!

the top composite equals f ∗ε−1 by Proposition 3.1, while the composite
on the right, as in Section 6.1 of [18], is βf ! , so the top-right composite
is φ : f ∗ → f !.

It is convenient to slightly extend the terminology in [14] and say that
a local geometric morphism q : Q → S is a quality type if the canonical
transformation φ : q∗ → q! is an isomorphism. Such special adjunctions are
also called quintessential localizations in [4]. Notice that, trivially, quality
types satisfy the Nullstellensatz, so they are hyperconnected.

Fix a local geometric morphism p : E → S and call its centre level 0 as
in Section 2.

Definition 4.2. A subquality of p : E → S is a subtopos j : Ej → E above
level 0 and such that the composite pj : Ej → S is a quality type.

Compare with the notion of quality introduced in [14]. Roughly speak-
ing, while quality is a (special kind of) functor to a quality type, a subquality
is a (special kind of) functor from a quality type.

Lemma 4.3. Let Ej → E be a subtopos above level 0. Then, Ej → E is a
subquality of p if and only if j∗φ : j∗p∗ → j∗p! is an isomorphism. Hence, if
p satisfies the Nullstellensatz then, Ej → E is a subquality of p if and only if
φA : p∗A→ p!A is j-dense for every A in S.

Proof. Follows from Lemma 4.1.

A subquality of p is said to be essential if it is so as a subtopos of E . In
this case, the subquality is a level of E and it is above the centre of E .
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Definition 4.4. In case it exists, level ε (of p) is the largest essential subqual-
ity of p.

Intuitively, level ε is an ‘infinitesimal’ dimension so it should not be
above level 1. More generally, essential subqualities should not be way-
above level 0. In the context of Proposition 2.4 we can make this precise as
follows. Let Ω be the subobject classifier of E and recall (Proposition 3 in
[14]) that if p is a quality type and p!Ω = 1 then S is degenerate. Intuitively,
the condition p!Ω = 1 is a positive way of saying that p is not a quality type.

Proposition 4.5. Let the local p : E → S be essential and hyperconnected.
Let l : El → E be an essential subquality of p. If p!Ω = 1 and l is way-above
0 then S is degenerate.

Proof. Let ρ : l!(l
∗Ω)→ Ω be the l-skeleton of Ω. As l is way-above level 0

by hypothesis, Proposition 2.4 implies that p!ρ : p!(l!(l
∗Ω))→ p!Ω = 1 is an

isomorphism. As pl : El → S is a quality type, p!(l!(l∗Ω)) ∼= p∗(l∗(l
∗Ω)). So

p∗(l∗(l
∗Ω)) = 1.

Let Ωl be the subobject classifier in El. It is well-known that l∗Ωl is a
retract of Ω in E . So Ωl

∼= l∗(l∗Ωl) is a retract of l∗Ω, and then p∗(l∗Ωl)
is a retract of p∗(l∗(l∗Ω)) = 1. That is, p∗(l∗Ωl) = 1. As pl : El → S is
hyperconnected, p∗l∗ : El → S preserves the subobject classifier. Altogether,
the subobject classifier of S is terminal.

Corollary 4.6. Let p : E → S be essential and hyperconnected. Assume that
p!Ω = 1 and that level ε of p exists. If ε is way-above 0 then E is degenerate.

5. Level ε in presheaf toposes

Consider a small category C with terminal object so that the canonical geo-
metric morphism p : Ĉ → Set is local. Without loss of generality we may
assume that idempotents split in C.

Corollary 5.1. IfD → C is a full subcategory closed under splitting of idem-
potents then, the essential subtopos D̂ → Ĉ is a subquality of p if and only
if D → C contains the terminal object and every object of D has a unique
point.
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Proof. It follows from Lemma 3.2 above and Proposition 4.5 in [19] which
implies that the restriction D̂ → Set is a quality type if and only if every
object in D has a unique point.

Let C! → C be the full subcategory of all objects in C that have exactly
one point. For later reference we emphasize the following consequence of
Corollary 5.1:

Lemma 5.2. The subcategory C! → C is the largest full subcategory D → C
of C such that D̂ → Ĉ is an essential subquality.

We discuss below some related sufficient conditions for this subquality
to be level ε. In order to do so recall (C2.2.18 in [5]) that an object B in a
site (B, J) is J-irreducible if every J-covering sieve on B is the maximal
sieve. The Grothendieck coverage J is said to be rigid if, for every object
B in B, the family of all morphisms from J-irreducible objects to B gen-
erates a J-covering sieve. If J is rigid and I → B is the full subcategory
of J-irreducible objects then the Comparison Lemma implies that restriction
along the inclusion I → B restricts to an equivalence Sh(B, J) ∼= Î.

Proposition 5.3. If every Grothendieck coverage on C is rigid then Ĉ! → Ĉ
is level ε of the local Ĉ → Set.

Proof. If every Grothendieck coverage on C is rigid then the levels of Ĉ are
all induced by full subcategories of C. So the result follows from Lemma 5.2.

At first glance, Proposition 5.3 may look difficult to apply so let us derive
a simpler sufficient condition.

Corollary 5.4. If C is finite then Ĉ! → Ĉ is level ε of the local Ĉ → Set.

Proof. If C is finite then every coverage of C is rigid (see C2.2.21 in [5]).

In particular, graphic toposes [11] have a level ε of this simple kind.
On the other hand, it is worth mentioning that Proposition 5.3 also applies
to non-finite examples such as the sites studied in [8]. For instance, ∆ or
the category of non-empty finite sets. It follows that simplicial sets and the
classifier of non-trivial Boolean algebras have a level ε. In this cases, though,
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level ε coincides with level 0 because, in the respective sites, the terminal
object is the only object with exactly one point.

In order to discuss a simple example where ε does not coincide with 0 we
borrow the 4-element graphic monoid discussed in p. 62 of [11]. Consider
first, as an auxiliary step, the pre-cohesive topos p : ∆̂1 → Set of reflexive
graphs. Let G be the graph with two nodes and a non-trivial loop displayed
below

⊥
''

>

and let M be the monoid of endomorphisms of G that are either constant or
don’t collapse the non-trivial loop. There are four such maps, two constants,
the identity, and the unique map α that sends > to ⊥ but does not collapse
the loop. If we split the constants, we obtain the (non-full) subcategory of
∆̂1 pictured below

1
⊥
//

> //
G α
gg

where 1 is terminal, αα = α and α⊥ = ⊥ = α>. (Notice that, we are not
drawing constant endos or the unique map to the terminal.) It is then clear
that we may describe an object of M̂ as a reflexive graph equipped with
an idempotent function on its edges that sends each edge x to a loop x · α
on the domain of x, preserving the identity loops. As suggested in [11] we
call x · α the preparation to do x. Alternatively, as a graph equipped with
a distinguished subset of loops containing the trivial ones, and a domain-
preserving retraction for the inclusion of distinguished loops into edges.

To calculate level ε of the pre-cohesive M̂ we split all idempotents. Let
s : D → G be the split monic that results from splitting α in ∆̂1 and let
r : G→ D be its retraction. We may picture the idempotent-splitting N of
M as the (non-full) subcategory of ∆̂1 suggested below

D

s

��

1

‡ //

⊥
//

> //
G α
gg

r

OO

with r⊥ = ‡ = r> : 1→ D and s‡ = ⊥ : 1→ G.
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It is then clear that the full subcategory N! → N is that determined by
D and 1 and, by Corollary 5.4, N̂! → N̂ ∼= M̂ is level ε of the pre-cohesive
M̂ → Set. It is then possible to check that the ε-skeletal objects in M̂ are
those that consist only of distinguished loops. On the other hand, the sheaves
for level ε are the objects such that for each distinguished loop d and each
node n there exists a unique edge to n with preparation d.

The topos M̂ does not have many levels so it is easy to see that the
Aufhebung of level ε coincides with the top level, that is, the whole of M̂ .
Similarly, level 1 must also be the top level in this case.

Consider again a small category C with a terminal object and such that
every object has a point, so that the canonical p : Ĉ → Set is pre-cohesive.

Definition 5.5. A morphism f : D → C in C is a pseudo-constant if for any
two points a, b : 1→ D in C, fa = fb : 1→ C.

In other words, the pseudo-constants are those morphisms that are con-
stant on points. We think of a pseudo-constant as a morphism that factors
through an object that has exactly one point. Notice that ifD has exactly one
point then every map D → C is a pseudo-constant.

Proposition 5.6. If J is a Grothendieck topology on C such that the subtopos
Sh(C, J)→ Ĉ is above the centre of p then the following are equivalent:

1. The subtopos Sh(C, J)→ Ĉ is a subquality of p.

2. For every C in C, the sieve of all the pseudo-constants with codomain
C is J-covering.

3. For every C in C, JC contains a sieve of pseudo-constants.

Proof. First consider the canonical φ : p∗ → p! in the present context. For
A in Set and C in C, the function φA,C : A = (p∗A)C → (p!A)C = AC(1,C)

sends a ∈ A to the constant function in AC(1,C) that collapses everything to
a.

If the first item holds then, for every A in Set, φA : p∗A→ p!A is J-
dense by Lemma 4.3. So φA must be locally surjective (w.r.t. J) by Corol-
lary III.7.6 in [17]. In particular, φC(1,C) must be so. Take the identity id
in codomain of φC(1,C),C : C(1, C)→ C(1, C)C(1,C). Local surjectivity im-
plies the existence of a J-cover (fi : Ci → C | i ∈ I) such that for every
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i ∈ I , id · fi = fi( ) ∈ C(1, C)C(1,Ci) is constant. In other words, each fi is a
pseudo-constant. So the third item holds. The third item trivially implies the
second. If the second item holds then we can use the sieve mentioned there
to prove that φA : p∗A→ p!A is locally surjective.

Notice that pseudo-constants in C form and ideal in the sense of Defini-
tion 2.6.

Proposition 5.7. If pseudo-constants in C form an idempotent ideal then
the pre-cohesive p : Ĉ → Set has a level ε and it coincides with the largest
subquality of p.

Proof. The Grothendieck topology J on C determined by the idempotent
ideal of pseudo-constants is such that a sieve on C is J-covering if and only
if it contains all the pseudo-constants with codomain C. It follows that the
terminal object is only covered by the identity so Sh(C, J)→ Ĉ is above the
centre of p by Lemma 3.3. Proposition 5.6 implies that the essential subtopos
Sh(C, J)→ Ĉ is a subquality of p and that every topology J ′ inducing a
subquality of p must satisfy J ⊆ J ′.

In the case of reflexive graphs, simplicial sets, or the Gaeta topos de-
termined by the theory of distributive lattices, the site satisfies that every
pseudo-constant factors through a point so, in these cases, level ε exists and
coincides with the centre.

Definition 5.8. We say that C has enough little figures if for every pseudo-
constant D → C there is a commutative diagram

D

  

// B

��

C

such that B has exactly one point.

The intuition behind the terminology is that a mapB → C whose domain
has exactly one point is to be thought of as a ‘little figure’ of C, or a figure
of C with ‘little’ domain.

Corollary 5.9. If C has enough little figures then Ĉ! → Ĉ is level ε of the
pre-cohesive p : Ĉ → Set and it coincides with the largest subquality of p.
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Proof. An object C in C has exactly one point if and only if the identity
on C is a pseudo-constant. So a little figure (which is of course a pseudo-
constant) factors trivially as a composite of pseudo-constants. Therefore, if
C has enough little figures then the ideal of pseudo-constants is idempotent.
Proposition 5.7 implies that level ε exists and that it coincides with the largest
subquality of p. It remains to show that level ε coincides with the indicated
presheaf subtopos, but notice that the Grothendieck topology determined by
the ideal of pseudo-constants is rigid because a sieve on C is covering if and
only if it contains all the little figures of C; that is all the morphisms whose
domain has exactly one point. The irreducible objects w.r.t. to this topology
are exactly those in C! so level ε coincides with Ĉ! → Ĉ.

6. The Weil subquality of the Gaeta topos of C

All algebras we consider are commutative and unital as in [1]. The follow-
ing is a straightforward generalization of Definition 2.14 in [3] allowing an
arbitrary base field instead of R. Let k be a field.

Definition 6.1. A Weil algebra (over k) is a k-algebra A such that:

1. A is local, say, with unique maximal ideal m.

2. The composite k → A→ A/m is an isomorphism.

3. A is a finite k-algebra (i.e. it is finitely generated as a k-module).

4. mn = 0 for some n.

It is known that there is some redundancy in this definition. Compare
with the definition of algèbre local in [21], or the definition in I.16 of [9].
What we need to relate Weil algebras with the material in the present paper
is the following, surely folk, result.

Lemma 6.2. For any local C-algebra A the following are equivalent:

1. A is a Weil algebra over C.

2. A is finitely generated.

3. A is Artinian.
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Proof. The first item implies the second because, as A is a finite k-algebra
by hypothesis, then it is finitely generated. Indeed, any basis for the finite
dimensional vector space A generates A as a k-algebra.

If A is finitely generated then it is a Jacobson ring by Exercises 5.23
and 5.24 in [1], so every prime ideal is an intersection of maximal ideals.
As A is local, it has a unique prime ideal (which must coincide with the
maximal one). In this case, the algebra is Artinian by Exercise 8.2 op. cit.

Finally, if A is Artinian and m is the unique maximal ideal of A then the
composite C→ A→ A/m must be an iso by the ‘weak’ version of Hilbert’s
Nullstellensatz (Corollary 7.10 op. cit.). Also, A is a finite k-algebra by Ex-
ercise 8.3 op. cit. Moreover, m must be the nilradical of A, so m is nilpotent
by Proposition 8.4 op. cit.

Let Ring be the category of rings and C/Ring be the coslice category of
C-algebras. The full subcategory of finitely generated C-algebras will be de-
noted by (C/Ring)f.g. → C/Ring. The categoryD = ((C/Ring)f.g.)

op is
essentially small and extensive. The associated Gaeta topos will be denoted
by G = G(D) and call it the Gaeta topos of C.

The Gaeta topos of C is well-known to be a presheaf topos. To recall
that description define a ring to be (directly) indecomposable if it has ex-
actly two idempotents and let (C/Ring)f.g.i. → (C/Ring)f.g. be the full
subcategory of those finitely generated algebras that are indecomposable.
Let C = ((C/Ring)f.g.i.)

op so that the obvious inclusion C → D is the sub-
category of those objects inD that are ‘connected’ in the sense that they have
no non-trivial coproduct decompositions.

The Gaeta topos G may be identified with the topos Ĉ of presheaves on
C. By Hilbert’s Nullstellensatz, every object in C has a point so the canon-
ical geometric morphism p : G→ Set is pre-cohesive. Moreover, there are
certainly objects in C that have more than one point so p is Sufficiently Co-
hesive.

If we let W → (C/Ring)f.g.i. be the full subcategory of Weil algebras
then W = SetW is the Weil topos discussed in [3].

Proposition 6.3. The Weil topos W is an essential subquality of the Gaeta
topos G.

Proof. By Lemma 6.2, the full subcategory C!op → Cop = (C/Ring)f.g.i.

- 468 -



F. MARMOLEJO AND M. MENNI LEVEL ε

coincides with W → (C/Ring)f.g.i.. So W = SetW = Ĉ! → Ĉ = G is an
essential subquality by Lemma 5.2.

7. The Weil subquality is level ε of the Gaeta topos

Let D be a category with terminal object and let L : D• → D be the full
subcategory determined by the objects whose points are jointly epic.

Lemma 7.1. If LA has a point and e : LA→ V in D is an epic pseudo-
constant then V = 1.

Proof. As e is epic and the points of LA are jointly epic, the family of all
composites

1 // LA e // V

is jointly epic but, as e is pseudo-constant, there is only one such map, so we
have an epic 1→ V which of course is also split monic, so V is terminal.

Natural further hypotheses allow us to deal with more pseudo-constants.

Lemma 7.2. Assume that L : D• → D has an epic-preserving right adjoint
with monic counit. If X has a point then, for every epic pseudo-constant
f : X → Y , Y has exactly one point.

Proof. Let R be the right adjoint to L and denote the counit by β. As
L(R1) = 1, L(RX) must have a point because X does by hypothesis. Also,
the mapRf is epic by hypotheses and then so isL(Rf) : L(RX)→ L(RY ).
Moreover, it is a pseudo-constant because, βY : L(RY )→ Y is monic and
βY (L(Rf)) = fβX . Lemma 7.1 implies that L(RY ) = 1. As every point of
Y factors through β : L(RY )→ Y , Y has exactly one point.

The next result supplies many little figures.

Proposition 7.3. If every map in D factors as an epi followed by a mono
and L : D• → D has an epi-preserving right adjoint with monic counit then
every pseudo-constant whose domain has a point factors via an object with
exactly one point.
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Proof. Let f be pseudo-constant whose domain has a point. By hypothesis,
f = me for some monic m and epic e. Then the codomain of e has exactly
one point by Lemma 7.2.

The proof of Proposition 7.3 is, in essence, that in [2]. This will become
evident below where we discuss the context of Cornulier’s Mathoverflow
answer.

Let Ring be the category of (commutative unital) rings and consider
the full subcategory Red→ Ring of reduced rings (i.e. those whose only
nilpotent element is 0).

Lemma 7.4. This inclusion Red→ Ring has a left adjoint that preserves
monomorphisms. Moreover, the unit of the adjunction is regular epic.

Proof. The left adjoint sends R in Ring to R/Nil(R) where Nil(R) is the
nilradical of R. See Proposition 1.7 in [1]. The unit R→ R/Nil(R) is a
regular epimorphism and the left adjoint Ring→ Red preserves monos be-
cause ifm : R→ S is a monomorphism thenm∗Nil(S) = Nil(R) as subsets
of R.

Let C be the field of complex numbers and consider the coslice category
C/Ring of C-algebras.

Lemma 7.5. A finitely generated C-algebra R is reduced (as a ring) if and
only if the family of all maps R→ C is jointly monic.

Proof. If the family of maps R→ C is jointly monic then R is, as a ring, a
subobject of a power of C so it is reduced. Conversely, assume that R is re-
duced. That is, the nilradical Nil(R) is trivial. For finitely generated algebras
over a field, the nilradical equals the Jacobson radical (see Exercise 5.24 in
[1]), so the intersection of the maximal ideals in R is 0. In other words, the
collection of all maps R→ C is jointly monic.

Let (C/Ring)f.g. be the category of finitely generated C-algebras.

Lemma 7.6. Every pseudo-constant in ((C/Ring)f.g.)
op whose domain has

a point factors via an object with exactly one point.
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Proof. It is enough to check that D = ((C/Ring)f.g.)
op satisfies the hy-

potheses of Proposition 7.3. It is well-known that D has epi/regular-mono
factorizations so it remains to show that the inclusion D• → D has an epi-
preserving right adjoint with monic counit. We show that the inclusion
D•op → (C/Ring)f.g. satisfies the dual conditions. Bear in mind that, by
Lemma 7.5, the full subcategory D•op → (C/Ring)f.g. may be identified
that of f.g. algebras that are reduced as rings.

The reflective subcategory Red→ Ring of Lemma 7.4 induces another
one such C/Red→ C/Ring. Also, the left adjoint C/Ring→ C/Red is
again obtained by quotienting by the nilradical so the unit is again regular
epic. Moreover, it preserves monos because the canonical C/Red→ Red
reflects monos.

By Noetherianity, the nilradical of a finitely generated algebra is finitely
generated so the left adjoint C/Ring→ C/Red restricts to finitely gener-
ated algebras. That is, we have the reflective D•op → (C/Ring)f.g. satisfy-
ing the necessary conditions.

Recall from Proposition 6.3 that the Weil topos W is a subtopos W→ G
of the Gaeta topos G and that the subtopos is actually and essential subqual-
ity of the pre-cohesive G→ Set.

Theorem 7.7 (The Weil subquality is level ε of the Gaeta topos). The es-
sential subquality W→ G is level ε of the pre-cohesive p : G→ Set and it
coincides with the largest subquality of p.

Proof. We identify the Gaeta topos G with Ĉ where C is the opposite of the
category of finitely generated complex algebras with exactly two idempo-
tents. By Corollary 5.9 it is enough to prove that C has enough little figures
so let f : X → Y be a pseudo-constant in C. Then f is a pseudo-constant in
D andX has a point because every object of C has a point. By Lemma 7.6, f
factors (in D) via a object with exactly one point. This object is necessarily
in C so the factorization of f is inside C.

We see Theorem 7.7 as a confirmation of Lawvere’s suggestion (quoted
in the beginning of the paper) that “the infinitesimal spaces may well negate
the largest essential subtopos of the ambient one which” has the property
that “the four adjoint functors relating their topos to the base topos coalesce
into two”.
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8. The Weil subquality is level ε of the Zariski topos of C

We show that the level ε of the Gaeta topos for C factors through the Zariski
topos and, as a level of the latter, it is level ε. Some of the ideas involving
restricted subqualities may be formulated at an elementary level. We deal
with these first. Let p : E → S be a local geometric morphism.

Proposition 8.1. Let j : Ej → E and k : Ek → E be subtoposes of E and
assume that k is above j. If Ej → E is above the centre of p (so that Ek → E
is also above the centre of p) then the following hold:

1. The subtopos Ej → Ek is above the centre of pk : Ek → S.

2. If Ej → E is a subquality of p, then the subtopos Ej → Ek is a sub-
quality of pk : Ek → S.

3. If Ej → E is essential, then so is Ej → Ek.

4. If a subtopos El → Ek is above the centre of pk : Ek → S, then the
subtopos El → Ek → E is above the centre of p.

Proof. 1. According to Corollary 2.3 (and with the same notation introduced
there) the unit of Ej → Ek is (k∗νk∗) · ξ′

−1. When we apply p∗k∗ : Ek → E
we observe that p∗k∗k∗νk∗ is an iso since p∗k∗k∗ ' p∗, given that k is above
the centre of p, and p∗ν is an iso, given that j is above the centre of p.

2. This follows at once since Ej → S is a quality type regardless of
whether we consider Ej as a subtopos of E or of Ek.

3. This follows at once form Remark 2.2.
4. We must show that p∗ inverts the unit of El → Ek → E assuming that

p∗k∗ inverts the unit of El → Ek; but this follows at once since p∗ inverts the
unit of k : Ek → E because Ek is above the centre of p.

Proposition 8.1 allows to show that, if level ε is not just that but is also
the largest subquality then we can restrict it to subtoposes that contain it.
More precisely:

Corollary 8.2. Assume that p : E → S has a largest subquality Ej → E and
that it is essential (so that Ej → E is level ε of p). If k : Ek → E is a subtopos
above j then the subtopos Ej → Ek is the largest subquality of pk : Ek → S
and it is essential (so that Ej → Ek is level ε of pk).
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Proof. By the second item of Proposition 8.1, the subtopos Ej → Ek is a sub-
quality of pk : Ek → S and it is essential by the third item. Now assume that
El → Ek is a subquality of pk : Ek → S. Then El → Ek → E is a subqual-
ity of p by the fourth item. So it is above Ej → E by hypothesis and then,
El → Ek is above Ej → Ek.

We can now start to discuss the example. It is convenient to give first an
alternative presentation of the Gaeta topos of C discussed in Section 6. As
in that Section, let D be the opposite of the category of finitely generated
C-algebras. Let JG be the Gaeta coverage onD. The basic covering families
are those of the form

(Di → D | i ∈ I)

such that I is finite and the induced
∑

i∈I Di → D is an isomorphism. The
intimate relation between products in Dop and idempotents implies that the
JG-cocovering families in Dop are those of the form

(A→ A[a−1i ] | i ∈ I)

where I is a finite set,
∑

i∈I ai = 1 and, for every i, j ∈ I , i 6= j implies
aiaj = 0.

Let C → D be the full subcategory determined by the (f.g.) algebras that
have exactly two idempotents. As every object of D is a finite coproduct
of objects in C, the inclusion C → D is JG-dense and so the Comparison
Lemma (C2.2.3 in [5]) implies that restricting along the inclusion C → D
underlies an equivalence Sh(D, JG)→ Ĉ = G between the topos of sheaves
Sh(D, JG) and the topos of presheaves Ĉ that we used to define the Gaeta
topos in Section 6.

Let JZ be the Zariski coverage onD. It is well-known that JZ-cocovering
basic families in Dop are those of the form

(A→ A[a−1i ] | i ∈ I)

where I is a finite set and the ideal generated by (ai | i ∈ I) contains 1.
The topos Sh(D, JZ) will be denoted by Z and is called the Zariski topos
(determined by the field C) and Z = Sh(D, JZ)→ Set is pre-cohesive (see
[14] and also Example 1.5 in [6]).
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The above description of JZ and JG implies that every JG-cover is a
JZ cover. That is, the Zariski topos is a subtopos of the Gaeta topos. This
presentation of the Zariski topos as a subtopos

Z = Sh(D, JZ) // Sh(D, JG) ∼=
// Ĉ = G

(of the Gaeta topos) whose direct image is restriction along C → D is moti-
vated by the discussion starting at the end of p. 109 in [10].

Lemma 8.3. The subtopos Z→ G is above the Weil subquality W→ G.

Proof. Recall from Section 6 that we identified the Weil subquality with
the geometric inclusion induced by the full subcategory C! → C. Consider
now the full inclusion C! → C → D. By Lemma C2.3.9 in [5] there exists a
smallest coverage K on C! such that the inclusion into D is cover reflecting.
In that result, K is defined as the Grothendieck coverage generated by the
sieves of the form R ∩ C! where R is JZ-covering. We show below that all
these sieves contain an iso, which will allow us to conclude that K is trivial.

Consider an object A in C!op. Since it has a unique maximal ideal, Exer-
cise 5.24 in [1] implies that the nilradical of A is a maximal ideal. Thus, by
Exercise 1.10 loc. cit., every element ofA is either nilpotent or invertible. As
A is non-trivial, a Zariski cover cannot be generated by nilpotents, so every
JZ-cocover of A contains an isomorphism. In other words, for every C in C!,
the only JZ-covering sieve of C as an object of D is the maximal one. This
implies that K is trivial.

The proof of Lemma C2.3.9 cited above shows that the outer square be-
low

Sh(C!, K)

� �

// Sh(D, JZ)

{{
��

Ĉ! // Ĉ // D̂

is a pullback. As the right vertical map factors through Ĉ → D̂, the inner
polygon is also a pullback and, since the left vertical map is an isomorphism,
Sh(D, JZ)→ Ĉ is above Ĉ! → Ĉ.

We may now identify level ε of the Zariski topos of C.
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Theorem 8.4 (The Weil subquality is level ε of the Zariski topos). The subto-
pos W→ Z is level ε of the pre-cohesive p : Z→ Set and it coincides with
the largest subquality of p.

Proof. By Theorem 7.7, the subtopos W→ G is level ε of the pre-cohesive
p : G→ Set and it coincides with the largest subquality of p. Lemma 8.3
shows Z→ G is above W→ G so Corollary 8.2 applies.

Corollary 8.2 suggests the question: what is the largest subtopos of the
Zariski topos that contains the Weil topos? In any case, the calculation of
the Aufhebung of ε still needs to be carried out.
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