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Manuela Blaum, Javier Marenco 2

Universidad Nacional de General Sarmiento, Instituto de Ciencias
J. M. Gutiérrez 1150, Malvinas Argentinas, (1613) Buenos Aires, Argentina

Ivo Koch 3

Universidad Nacional de General Sarmiento, Instituto de Industria
J. M. Gutiérrez 1150, Malvinas Argentinas, (1613) Buenos Aires, Argentina

Marcelo Mydlarz 4

Universidad Nacional de General Sarmiento, Instituto de Industria
J. M. Gutiérrez 1150, Malvinas Argentinas, (1613) Buenos Aires, Argentina

CONICET, Argentina

Abstract

Two sets XB ,XR ⊆ Rd are linearly separable if their convex hulls are disjoint, implying that a hyperplane
separating XB from XR exists. Such a hyperplane provides a method for classifying new points, according
to the side of the hyperplane in which the new points lie. In this work we consider a particular case of the
2-class classification problem, which asks to select the maximum number of points from XB and XR in such
a way that the selected points are linearly separable. We present an integer programming formulation for
this problem, explore valid inequalities for the associated polytope, and develop a cutting plane approach
coupled with a lazy-constraints scheme.
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1 Introduction

Classification problems with supervised learning involve separating training samples

into categories, in such a way that future samples can be automatically categorized

based on the categorization of the training samples. In this work, we are interested

in a particular case of the 2-class classification problem, an optimization problem

that arises within this context.

We are given a set X = {x1, . . . ,xm} ⊆ Rd of samples (also referred to as points)

and a partition of the index set [m] := {1, . . . ,m} into two classes B and R, defining

subsets XB = {xi : i ∈ B} and XR = {xj : j ∈ R}. The sets of points XB and

XR are said to be linearly separable if and only if conv(XB) ∩ conv(XR) = ∅, where
conv(X) denotes the convex hull of X. The linear separability of XB and XR is

characterized by the fact that no vector (λ1, . . . , λm) ≥ 0 satisfies

∑
i∈B

λixi =
∑
j∈R

λjxj , and
∑
i∈B

λi =
∑
j∈R

λj = 1.

The objective of the 2-class single-group classification problem is to determine sub-

sets of XB and XR that are linearly separable, maximizing the sum of their cardi-

nalities. Formally, we want to find XS ⊆ XB and XT ⊆ XR maximizing |XS |+ |XT |,
and such that XS and XT are linearly separable. The points in XO := X\(XS ∪XT )

are called outliers, and the objective function of the problem implies that |XO| is to
be minimized.

A wide range of continuous optimization methods for this problem, including

linear and quadratic programming, have been developed in the last years [4,6,8].

More recently, integer linear programming tools started to be used in conjunction

with continuous methods [7,9,10,11]. The 2-class single-group classification problem

is a particular case of the 2-class classification problem introduced in [3]. In this

more general setting, besides the set of points X partitioned into classes XB and

XR, we are given numbers nB, nR ∈ Z+, and the goal is to find a set XO as small

as possible of outliers so that XB \XO and XR \XO can be partitioned into nB and

nR subsets, respectively, and each of the nB subsets of XB \XO is linearly separable

from each of the nR subsets of XR \ XO.

Corrêa, Delle Donne, and Marenco [5] consider a mixed integer programming

formulation for the 2-class classification problem, and explore facet-inducing in-

equalities for the associated polytope. Here we present a pure integer program-

ming formulation (i.e., containing binary variables only) for the 2-class single-group

classification problem, extending and strengthening the results presented in [5] to

this particular setting. Our goal is to study the combinatorics associated with the

problem, with the objective of designing efficient integer-programming based com-

putational procedures for this problem. Besides the theoretical interest, such a

study is of practical relevance since the obtained computational methods could be

used within general classification tools. In order to give a first evaluation of this

potential, we also present preliminary computational results for this formulation.

The remainder of this paper is organized as follows. Section 2 presents the integer
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programming formulation for the problem and a general family of valid inequalities

for the associated polytope. Section 3 shows the lazy-constraints scheme used to

tackle the exponential number of constraints in the model. Section 4 introduces a

separation procedure for these inequalities, and Section 5 reports our computational

experience. Finally, Section 6 provides final remarks.

2 Integer programming formulation and valid inequal-
ities

The mixed integer programming formulation presented in [5] includes binary vari-

ables representing the assignment of points to groups, and continuous variables rep-

resenting the hyperplanes that separate each pair of groups from different classes. In

this work, we consider a formulation that only resorts to variables of the first kind,

that is, binary variables representing the assignment of points to groups. Since we

consider a single group for each class of points, these binary variables determine the

selected points (i.e., points that are not declared to be outliers). The formulation

can be extended to the multi-group case in a straightforward way.

For i ∈ [m], we introduce the binary variable zi representing whether xi is

chosen (zi = 1) or not (zi = 0). The 2-class single-group classification problem

can be modeled as the problem of maximizing
∑

i∈B zi +
∑

j∈R zj subject to the

constraint that the sets {xi : zi = 1, i ∈ B} and {xj : zj = 1, j ∈ R} are linearly

separable. Given an instance I = (X , B,R) of the problem, we call PI the convex

hull of the points z ∈ {0, 1}m satisfying the linear separability constraints. These

constraints imply that any feasible solution z satisfies the S, T -inequality
∑
i∈S

zi +
∑
j∈T

zj ≤ |S|+ |T | − 1 (1)

for every S ⊆ B and every T ⊆ R such that XS and XT are not linearly separable.

These inequalities restrict the selected points from each class to indeed correspond

to a feasible solution, and –together with the integrality constraints– can be used as

constraints defining PI . As we will show below, the inequality (1) is facet-inducing

when XS and XT are minimal with respect to being linearly inseparable (i.e., when

XS \ {xi} and XT \ {xi} are linearly separable for every i ∈ S ∪ T ).

Given two non-empty sets S ⊆ B and T ⊆ R such that XS and XT are not

lineary separable, any minimum cardinality set N ⊂ S ∪ T such that XS \ XN and

XT \ XN are linearly separable, plays a key role. We call N an N -set of S, T and

define N (S, T ) := {N ⊆ S ∪ T : N is an N -set of S, T}, and, for i ∈ S ∪ T ,

νS,T (i) := min{|N | : i ∈ N and N ∈ N (S, T )}, or ∞ if no N ∈ N (S, T ) contains i.

We denote νS,T (i) by νi when S and T are clear from the context. This setting

gives rise to what we call the N -inequality associated with S and T :

∑
i∈S

1− zi
νi

+
∑
j∈T

1− zj
νj

≥ 1, (2)
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where the coefficient of (1− zi) is null if νi = ∞. This inequality generalizes facet-

inducing inequalities explored in [5], corresponding to the cases where νi = 1 for

every i ∈ S ∪ T . The following result, adapted from [5], illustrates this situation.

Theorem 2.1 ([5]) The inequality (2) defines a facet of PI if (|T | = 1 or (|T | = 2

and xT ∩ conv(xS) = ∅)) and S is minimal with respect to the property conv(xT ) ∩
conv(xS) �= ∅ (i.e., conv(xT ) ∩ conv(xS′) = ∅ for every S′ � S).

A more general result is given by the following theorem, also settling a question

raised in [5]. To state this result, let GS,T = (S ∪ T,E) denote the safe graph of

S, T in which an edge ij exists if there exist two N -sets Ni and Nj of equal size ν

such that Ni�Nj = {i, j} and νk = ν, for all k ∈ Ni ∪ Nj . Observe that νi = νj
for each edge ij of GS,T , and by transitivity, νi′ = νj′ for each pair of vertices i′

and j′ connected in GS,T . In other words, νi = νj if i and j are two vertices in a

same connected component of GS,T . Let Gν
S,T = (V ν

S,T , E
ν
S,T ) denote the subgraph

of GS,T induced by V ν
S,T = {i ∈ S ∪ T | νi = ν}.

Theorem 2.2 The inequality (2) is valid for PI . Moreover, if

(i) for every ν ∈ N, V ν
S,T = ∅ or ν = 1 or (|V ν

S,T | > 1 and Gν
S,T is connected), and

(ii) for every i ∈ B \ S (resp. j ∈ R \ T ), there exists t ∈ S ∪ T and an N -set N

with |N | = νt and νk = νt for every k ∈ N such that XS∪{i} \ XN and XT \ XN

(resp. XS \ XN and XT∪{j} \ XN ) are linearly separable,

then (2) defines a facet of PI .

It is interesting to note that the minimality hypothesis in Theorem 2.1 implies

the hypothesis (ii) of Theorem 2.2. It is worth remarking that the facetness con-

ditions specified by Theorem 2.2 hold for many simple structures, including those

depicted in Fig. 1 for d = 2 and d = 3.

3 Checking for feasibility

Since the number of constraints in the model is exponential, we resort to the fol-

lowing lazy constraint scheme in order to quickly detect infeasible integral points.

According to [5], a fractional solution z̄ belongs to the linear relaxation of the integer

programming formulation if and only the following linear programming formulation

max 2M − (M + 1)
(∑

i∈B
υiz̄i +

∑
j∈R

υj z̄j

)

s.t.
∑
i∈B

υixi =
∑
j∈R

υjxj

∑
i∈B

υi =
∑
j∈R

υj

υi ≤ z̄i, i ∈ B

υj ≤ z̄j , j ∈ R

(υB, υR) ≥ 0
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(f)
5∑

i=1
zi + 2z6 + 2z7 ≤ 7. Safe

graph has two connected compo-
nents.

Fig. 1. Facet defining structures according to Theorem 2.2. Solid segments represent the convex hull of
their endpoints.

has a nonnegative optimal value, where M is a big positive number. This follows

from the application of a classical result by Balas [2] to the mixed integer program-

ming formulation for the 2-class classification problem considered in [5]. Since this

model is a linear programming formulation, then it can be solved efficiently, hence

such a feasibility check is of practical use.

Note that the feasibility of this linear programming model does not depend on

the actual value of M , namely if M is small then some solutions are lost but the

problem remains feasible. However, small values of M will lead to meaningless

mathematical solutions. As observed in [1], setting M to a value a few orders of

magnitude larger than the size of the box encapsulating the data points typically

suffices to produce good quality solutions.
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4 Separation procedures

The family of N -inequalities to consider has exponential size, hence separation

procedures are needed for a practical implementation. We describe in this section

an integer programming approach for performing such a separation. Although not

guaranteed to run in polynomial time, the proposed approach turned out to be quite

effective in practice.

4.1 Convex inclusion inequalities

Consider first the inequalities given by Theorem 2.1 when |T | = 1, called convex

inclusion inequalities in [5] (see figures 1a and 1c for illustrations). Given a solution

z̄ of the relaxed model, the separation problem for these inequalities consists in

finding a point xj , j ∈ R, and a set S ⊆ B, such that xj ∈ conv(XS), and such

that z̄j +
∑

i∈S z̄i > |S|. We call xj to be the center of the inequality. We restrict

ourselves to a subset of the variables with fractional values, by considering the

subsets BF = {i ∈ B | LB ≤ z̄i ≤ UB} and RF = {j ∈ R | LB ≤ z̄i ≤ UB}, where
LB and UB are two parameters such that 0 ≤ LB < UB ≤ 1.

The separation can be accomplished with the following integer programming

model. For each j ∈ R, we introduce the binary variable bj specifying whether xj

is the center of the inequality or not. For each i ∈ B, we introduce the binary

variable bi specifying whether i ∈ S. We also have a continuous variable λi ∈ [0, 1]

for each i ∈ B, in such a way that {λi}i∈B represent the multipliers associated with

the points in XB showing that xj is a convex combination of the points selected to

be included in the set S. In this setting, the separation problem can be formulated

as follows.

max
∑
i∈BF

(z̄i − 1)bi +
∑
i∈RF

z̄ibi

s.t.
∑
i∈BF

λixi =
∑
j∈RF

bjxj (3)

∑
i∈BF

λi =
∑
j∈RF

bj = 1 (4)

∑
i∈BF

bi = d+ 1 (5)

0 ≤ λi ≤ bi, i ∈ BF (6)

bi ∈ {0, 1}, i ∈ BF ∪RF

The objective function asks to maximize the difference between the left-hand

side and the right-hand-side of the inequality z̄j +
∑

i∈S z̄i ≤ |S|. Constraint (3)

ensures that the selected point xj is indeed a convex combination of the points

selected to form S. Constraint (4) asserts that exactly one point in R is selected

(and this point will be xj in the inequality), and that the variables {λi}i∈B indeed

represent a convex combination of the selected points from XB. Constraint (5) asks
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to select exactly d+1 points, which corresponds to the maximum number of points

generating a minimal set S such that xj ∈ conv(XS). Finally, constraints (6) ensure

that the convex combination in constraint (3) is taken among the selected points in

S.

4.2 S, T -Inequalities

We can extend the idea discussed above in order to separate the S, T -inequalities (1).

To this end, we again introduce a binary variable bi for each i ∈ B and a binary

variable bj for each j ∈ R, representing whether the associated point is selected to

belong to S and T , respectively. In this setting, we need conv(XS)∩ conv(XB) �= ∅,
and this is enforced with the introduction of a variable λi ∈ [0, 1] for each i ∈ B

and a variable λj ∈ [0, 1] for each j ∈ R. The resulting model is as follows.

max 1 +
∑

i∈BF∪RF

(z̄i − 1)bi

s.t.
∑
i∈BF

λixi =
∑
j∈RF

λjxj (7)

∑
i∈BF

λi =
∑
j∈RF

λj = 1 (8)

∑
i∈BF

bj ≥ 2 (9)

∑
j∈RF

bj ≥ 2 (10)

∑
i∈BF

bi +
∑
j∈RF

bj ≤ d+ 2 (11)

0 ≤ λt ≤ bt, t ∈ BF ∪RF (12)

bt ∈ {0, 1}, t ∈ BF ∪RF

Again, the objective function asks to maximize the difference between the left-

hand-size and the right-hand-side of constraint (1) at the solution z̄. Constraint (7)

asks for a nonempty intersection of conv(XS) and conv(XT ), by ensuring the ex-

istence of coefficients {λi}i∈S and {λj}j∈T representing coincident convex combi-

nations from each set. Constraint (8) asks these coefficients to indeed represent a

convex combination. Constraints (9) and (10) ensure that |S| ≥ 2 and |T | ≥ 2,

respectively, in order to avoid generating convex inclusion cuts. Constraint (11)

asks to select at most d + 2 points, since this is the maximum value of |S| + |T |
generating a minimal set of linearly inseparable points. Finally, constraints (12)

ensure that the convex combination in constraint (3) is taken among the selected

points in S and T .
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4.3 Enforcing fractional variables

Contrary to the aim of the lazy constraints discussed in Section 3 (ensuring the

feasibility of integral solutions), the purpose of the separation procedures described

above is to cut fractional solutions. Since not all the constraints (1) are included in

the model, a fractional solution can violate some of them –defined by subsets S and

T corresponding to integral variables. Hence, in order to force fractional variables

in the generated cut, we add the constraint
∑

i∈BF
fz̄ibi ≥ F , where fz̄i = 1 if

Dz̄i < LB+UB and fz̄i = 0 otherwise, for suitable values F,D ∈ R. The parameter

D is set to a value such that fz̄i = 1 only if z̄i lies in the interval (LB,UB). The

parameter F corresponds to a lower bound on the number of fractional variables in

the generated cut.

5 Experiments

We have implemented a branch and cut procedure for the 2-class single-group clas-

sification problem, based on the results and algorithms mentioned in the previous

sections. In this section we provide some preliminary computational experiments

with separation heuristics for some special cases of N -inequalities in order to explore

such combinatorial methods as effective tools for solving classification problems.

Our main goal with these experiments is not to provide a competitive algorithm

for the 2-class single-group classification problem, since continuous optimization

methods are much more effective than cutting-plane algorithms for this problem.

Instead, we intend to assess whether combinatorial tools can potentially improve

the overall efficiency when coupled to existing solution methods. To this end, we

implemented a branch and bound algorithm to solve the basic formulation.

The initial model is composed by the z-variables with no constraints, and lazy

constraints are dynamically added with the procedure mentioned in Section 3. This

implementation was compared with the same algorithm when cuts are incorporated

with the integer-programming-based separation procedures described in Section 4.

The algorithm was coded in the Java programming language, using Cplex 12.8 as

the linear programming solver (for the linear relaxations and checking for feasibility)

and mixed integer programming solver (for the separation problems).

Table 1 summarizes the preliminary experiments with synthetic 2-class instances

generated with the following random procedure. Initially, two points are defined in

opposite sides and at distance 1 of a given hyperplane of dimension d− 1 to act as

the centers of the two classes. Then, for each one of the centers, a cluster of points

is created normally distributed about vertices of a d-dimensional hypercube with

sides of length 2. Finally, a number of noise points are introduced in each class.

For the results reported, the instances have 2500 random and 16 noise points and

dimensions ranging from d = 2 to d = 6. An illustration of the instance for d = 2

is shown in Fig. 2.

For every instance, we report the number of nodes in the enumeration tree, the

number of generated lazy constraints, the total running time in seconds, and the

optimality gap (in %). The parameter M was set to 200 in all cases, which is two
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Fig. 2. Instance for d = 2.

orders of magnitude larger than the coordinates of the instance points. The columns

labeled “No cuts” correspond to the execution of the procedure with no additional

cuts, besides the mandatory lazy constraints. The columns labeled “Inclusion cuts”

correspond to the dynamical addition of the convex inclusion cuts, with the sepa-

ration model presented in Section 4.1. The columns labeled “S, T -cuts” correspond

to the dynamical addition of the S, T -cuts, with the separation model presented in

Section 4.2. In both cases, the inequality found is added only if the objective value of

the corresponding separation model is larger than a parameter V IOL. Finally, the

results corresponding to the dynamical addition of S, T -cuts and, if it fails, followed

by the dynamical addition of convex inclusion ones, appear in the columns labeled

“Mixed”. Note that the parameters LB and D used in the separation procedures

ensure that only fractional solutions are separated (such parameters for the convex

inclusion and S, T -inequalities are identified with indices I and S, T , respectively).

We conducted experiments with several combinations of values for LB and D. The

results in Table 1 correspond to the best configuration for each case.

As Table 1 suggests, the separation procedures are able to generate a large

number of cuts and provide upper bounds that are competitive with those of the

pure branch and bound. In almost all cases (there is only one exception, with

d = 2), the addition of cuts drastically reduces the addition of lazy constraints

within the time limit of 1 hour. Another characteristic that can be observed is that

the S, T -cuts are more effective than convex inclusion cuts.

6 Concluding remarks

We have presented in this work a first computational study of the effectiveness

of the valid inequalities introduced in [5] for the 2-class classification problem, by
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d m BEST Nodes Lazy Time Cuts Gap

No cuts

2 2516 2479 1725 5880 60.46 – –

3 2516 2474 65493 4746 738.50 – –

4 2516 2469 80835 11921 3600 – 0.32

5 2516 2484 324859 4102 3587.73 – –

6 2516 2480 105174 8215 3600 – 0.28

d m BEST Nodes Lazy Time Cuts Gap

Mixed

(LBS,T = 0.7,DS,T = 1.75)/(LBI = 0.5,DI = 1.61)

2 2516 2479 812 4771 81.51 54/82 –

3 2516 2474 758 1602 662.27 339/357 –

4 2516 2469 656 4902 3600 1734/4020 10.4

5 2516 2484 380 877 3600 2011/4338 98.1

6 2516 2480 2784 3928 3600 1128/1174 4.03

S, T -cuts

(LBS,T = 0.7,DS,T = 1.75)

2 2516 2479 1276 8715 84.46 69 –

3 2516 2474 8094 2242 490.15 1336 –

4 2516 2469 34287 6987 3600 2055 0.27

5 2516 2484 39722 2904 2022.35 1189 –

6 2516 2480 37905 3841 3600 2410 0.25

Inclusion cuts

(LBI = 0.6,DI = 1.61)

2 2516 2479 805 4440 73.79 82 –

3 2516 2474 946 1745 783.51 862 –

4 2516 2469 3166 7437 3600 3457 0.87

5 2516 2484 4455 2532 3600 393 0.37

6 2516 2480 3638 3617 3600 582 1.09

Table 1
Computational results for the procedure introduced in Section 5. We have used M = 200, F = 1,

V IOL = 0.2, and UB = 1.0 in these experiments. Column BEST indicates the value of the best solution
found in all configurations.

resorting to the particular case of single groups for each class. The number of

constraints in the initial model makes it necessary to resort to lazy constraints,

which can be readily separated by a linear programming model. The separation

of families of valid inequalities appears to be a tougher issue, and we resorted to

mixed integer programming models for accomplishing this task. Our computational

experience suggests that this strategy may be effective. As a future work, we intend

to perform extensive computational experiments with the proposed cut generating

procedure appended to other optimization methods for classification problems.
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