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Abstract

Simulations of percolation processes on random site square lattices are performed implementing
a di�erent occupation algorithm for both ordinary percolation (OP) and invasion percolation
(IP) problems. The main feature of the occupation process is the fact that it is performed in a
locally restricted way by inspecting the di�erence between the measure assigned to neighboring
sites. This restriction carries an intrinsic change in the distribution of invaded sites with a
di�erent percolation threshold and the same universality class. Conclusions are drawn concerning
physical problems of propagation phenomena with local barriers where these simulations prove
the possibility of controlling the wide spread of the invasor. c© 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Many physical phenomena can be modeled through classic and invasion percolation
processes. Examples of these range from viscous 
ow of a liquid phase into a bed of
glass beads to the problem of water leakage or oil recovery in a sedimentary rock. In
particular, invasion percolation phenomena have been an object of intensive study dur-
ing the last two decades due to both pure statistical mechanics interests and important
technological applications [1–6].
In some real problems, the presence of �elds or topological features makes the

description of the dynamics of the system more complicated than the one given by
classical percolation and invasion percolation models. For that reason, one can �nd
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works in the literature that try to take into account some of these aspects by introducing
modi�ed algorithms [6–8]. One example is the multiple invasion percolation model
developed by Onody et al. In that model a certain number of lattice sites can be
simultaneously invaded during one invasion step. Other works deal with the problem
of a classical invasion percolation process onto a correlated lattice trying to account
more realistically for the dynamics of a 
uid displacement through a rock reservoir,
where spatial correlations are frequently present [6,9,10].
Despite that, there are still open questions in this �eld like, for instance, what happens

if the occupation of a given site depends on locally de�ned rules, or, in other words,
if the occupation of the site depends on its surroundings? Is there any possibility of
frustration for some occupation conditions or rules?
In the present work, simulations of percolation processes on random site square

lattices are performed implementing a di�erent occupation algorithm for both ordinary
percolation (OP) and invasion percolation (IP) problems.
Assume a site network with d-dimensional measure r assigned to each of the sites.

Each vector component in each d-direction is sampled randomly from a uniform dis-
tribution in the interval (0; 1). One must not confound the random vector r with the
lattice itself, i.e., with the lattice site positions. One can think of a physical process
whose propagation through the network will depend on |ri − rj| to be less than some
given value �. In other words, assuming that the process is already occurring at site
i, it will proceed through junction ij only if |ri − rj|¡�. If this condition is ful�lled,
the process will also occur at site j, and so on. The results presented here correspond
to the one-dimensional problem, i.e., scalar measure of lattice sites (one-component
vectors r).
We can relate this one-dimensional case with interesting physical processes where the

propagation of a quantity through a system depends just on local di�erences between
the nearest neighbors. Continuum percolation is an example, where the spanning cluster
is built with those discs whose centers are close enough to touch or overlap each other
[11–13]. Another example is the propagation of a disease where it is necessary to
stay at a given local distance from an already infected specimen in order to become
sick. Furthermore, there exist physicochemical problems like, for instance, ion exchange
techniques to determine Cu surface areas where the testing molecule (N2) cannot adsorb
if the distance between two neighboring metallic atoms is greater than some critical
value [14,15].
The di�erence algorithm will be presented in the next section. Then, results and dis-

cussion will be addressed for the cases under study. Conclusions and future perspectives
will be presented in the last section.

2. Di�erence percolation algorithms

The main feature of these algorithms is the fact that occupation is performed in
a locally restricted way. In IP standard algorithms a site belonging to the interface
of occupied–unoccupied elements is occupied if it is of the lowest value, whereas, in
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OP the site is occupied if its value is less than the occupation probability. Here, the
necessary condition to occupy a site is tested on the di�erence between neighbors. In
the case of OP, this di�erence is compared to a �xed parameter. For IP, the front will
invade the least di�erence at the interface. In what follows, the way simulations were
performed is explained and the algorithms will be clari�ed.
Numbers between 0 and 1 are randomly assigned to the sites of a square network.

These numbers are sampled from a uniform distribution. In all the present simulations
the occupation process always begins through the central site in the network (one-site
cluster) and a breakthrough is achieved when the percolating front �rst touches one of
the lattice edges. No trapping is allowed.
A local rule is imposed through a parameter � that can take any value belonging

to the interval (0; 1). Once � is chosen, it remains �xed for the rest of the run. If
a non-occupied site belonging to the occupied–unoccupied interface with a random
number r1 has an already occupied neighbor whose measure is r2 in such a way that
|r1 − r2|¡�, it can be occupied, otherwise, it cannot. This will be the �rst condition
checked before performing any occupation step in any of the algorithms presented here.
The following question then arises: which is the lowest value for � needed for the

cluster to percolate?
To study the e�ect of this restriction in the percolation patterns three di�erent cases

were studied.
Case A: Multiple occupation. Each already occupied site belonging to the interface

is visited. Assume that it has a measure r. All its unoccupied nearest neighbors are
inspected: if a neighbor has a value that belongs to the interval r±�, it is automatically
occupied. Thus, multiple occupation can occur. Once all the neighbors are checked, the
site is killed. Then, another site is visited until all the sites of the interface are inspected.
To kill a site means that after all its neighbors have been inspected for the �-condition
to be full�lled, it is no more useful to consider that site as a part of the active interface.
A set of 500 equivalent runs was performed for each � value and square site networks
of (1000× 1000) size were used.
Case B: Occupation of the minimum neighbor. Each already occupied site on the

network is visited. All its neighbors are inspected as explained above; however, in
this case, only the neighbor with the minimum measure out of the ones ful�lling the
�-condition, is occupied. Thus, at the most one neighbor per site is occupied in each
step. After the inspection of the neighbors, the site is no longer useful and then killed
as in case A. Consequently, the occupation propagates through a one-dimensional path
according to the minimum measure route within the �-condition. If the site being visited
does not have at least one neighbor ful�lling the required condition, then the process
stops because there is no way to continue it and the entire sample is discarded.
Simulations on (1000× 1000) site networks were performed using uniform distribu-

tions of random numbers. The results were averaged over 500 equivalent runs for each
� value used.
Case C: Invasion percolation. In this case, the invasion is performed with a classical

invasion percolation algorithm. Accordingly, no multiple invasion occurs and no sites
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Fig. 1. Percolation probability as a function of �. Breakthrough is not achieved until � is greater than a
critical value of the order of 0.27.

are deleted. Here, the invasion front advances through the site at the interface with the
smallest di�erence �ij =min|ri − rj| between its random measure, ri, and the one rj of
its already invaded neighbor. This means that there is no externally imposed � value,
the system by itself will look for the smallest one at the interface.
Simulations were run over (500×500) site networks and results were averaged over

103 samples.
The quantities measured for the three cases were the percolation probability, the

dependence of the spanning cluster’s mass on the gyration radius, and the density of
the invaded sites as a function of their measure. The results obtained as a function of �
and for each case are presented and discussed in the next section. Statistical uncertainty
is less than 0.4% in all the results shown below.

3. Results and discussion

Case A. Simulations for � values ranging from 0.2 to 0.5 were done. The percolation
probability as a function of � is plotted in Fig. 1. As can be seen, breakthrough is not
achieved until � is greater than a critical value. We can de�ne a critical threshold, �c,
as the value of � for which the percolation probability is for the �rst time di�erent from
zero (recall the initial �nite cluster seed) thus, from Fig. 1, �c = 0:27. This behavior
shows two important aspects. First, it seems that the system can easily percolate when
multiple invasion is performed into all the neighbors related “locally” with an already
invaded site through the �-condition with �¿�c. Finite-size e�ects must be taken into
account in order to establish with a good accuracy the value for �c. In the present
simulations �nite-size trends are hard to detect for network sizes ¿ 1000.
Secondly, to know the � values which make the invasion cluster unable to percolate

is an important aspect to take into account when a physical problem of propagation
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Fig. 2. Probability density pro�le of occupied sites as a function of their random values for
� = 0:3; 0:37; 0:4; 0:45 and 0:5. These values are indicated explicitly only for the extreme cases 0.3 and
0.5. Each frequency pro�le is normalized by its most probable value. The inset shows the same pro�le as
a function of the di�erence between the values of the sites.

phenomena with local barriers is modeled because these simulations prove the possi-
bility of frustration of the information propagation, or, in other words, the possibility
of controlling the wide spread of the invasor. This range is not very much a�ected by
�nite-size e�ects in the sense that, at most, the critical threshold will move to greater
values of �.
A study of the behavior of the cluster’s mass dependence on the gyration radius was

performed for di�erent values of �. As known, the mass M (number of invaded sites)
scales as M ∼ Rdf , where df is the fractal dimension of the cluster. Only for �= 0:3
the cluster presented a fractal structure with df = 1:91, but, for greater values of �, it
was completely compact with df ∼ 1:99 for all � values.
A more interesting behavior was found for the probability density of occupied sites

as a function of their measure. Fig. 2 shows this behavior for several values of �.
There, each frequency pro�le is normalized by its most probable value. For classic
IP in a �nite network, for instance, this probability density pro�le is close to a step
function where the discontinuity is located at the critical ordinary percolation threshold
pc = 0:5928 [8,16]. But here it is not expected to occur that way because of the
di�erence in the occupation rules, and, in fact, we can see that the pro�le can easily
be �tted by a parabolic function centered at r = 0:5 and their widths increase with �.
Thus, one is able to span a cluster with an acceptance pro�le that can be described by
a particular parabolic function depending on the � value associated with the simulated
problem.
A plot of the same pro�le but as a function of the di�erence between the value of

the newly occupied site and the value of the already occupied neighbor giving rise to
that new occupation is shown in the inset of Fig. 2.
Case B. For all the simulations performed, occupation never reached the break-

through stage, even for �=1. Although the mass of the incipient cluster increases with
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Fig. 3. Probability density pro�le of occupied sites as a function of their random values for case B. (a) For
uniformly distributed random numbers and � = 1; (b) for Gaussian distributions and � = 1.

�, the system does not percolate. This result demonstrates that this occupation proce-
dure, similar to a self-avoiding random walk but through the minimum neighbor of the
growing tip, is also frustrated as its random counterpart. Other random distributions of
the site measure lead to the absence of percolation as well.
The main di�erence between the two distributions used to generate the random num-

bers was the occupied sites pro�les. Fig. 3(a) and (b) shows the di�erence. For the
case of uniformly distributed random numbers the pro�les could be �tted by a straight
line. As expected, for greater � values the dispersion of the data was lower. Fig. 3(a)
shows the pro�le for � = 1. On the other hand, for Gaussian distributions the pro�le
was Gaussian. This di�erence in the pro�les is helpful to characterize each process, i.e.,
if one just knows the occupied sites pro�les, the complete distribution of site values
can be inferred.
Case C. The invaded sites pro�le as a function of � is shown in Fig. 4. As can

be seen those sites with di�erences greater than � ∼ 0:3 are never invaded and the
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Fig. 4. Probability density pro�le of invaded sites for case C. Frequency is normalized.

threshold for percolation agrees very well with the one found for the OP counterpart
of this model, i.e., �c =0:27. The shape of the curve is di�erent from the step behavior
expected in classic IP.
In what follows the mass behavior of the percolating cluster is concerned, it was

found to be fractal for all �¿�c, and the fractal dimension found using M ∼ Rdf was
df = 1:90 for all �¿�c. This fractal dimension was checked more carefully by using
the well-known scaling law M ∼ Ldf , where L is the size of the network. Simulations
with L=100–600 were performed giving a value of df = 1:89, coincident with that of
invasion percolation without trapping [3]. Thus, the fractal properties of the clusters
generated by this model in case C are similar to the ones of classic invasion percolation.

4. Conclusions

Simulations of OP and IP on random site square lattices were performed implement-
ing a di�erent occupation process. The main feature of the occupation process is the
fact that it is performed in a locally restricted way by inspecting the di�erence between
the measure assigned to neighboring sites.
The same critical values for � were found for cases A and C. This is an important

aspect to be taken into account when a physical problem of propagation phenomena
with local barriers is modeled because these simulations prove the possibility of con-
trolling the wide spread of the invasor.
With the rules de�ned for case A, one can sample a di�erent pro�le for the invaded

sites than in the conventional way, i.e., parabolic distributions.
For case B, frustrations were always found, even for �= 1.
For case C, the shape of the invaded sites pro�le is di�erent from the step behavior

expected in classic IP and the fractal properties of the clusters are similar to the ones
of classic IP.
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In conclusion, the restriction imposed by the �-condition carries an intrinsic change
in the distribution of invaded sites with a di�erent percolation threshold although
belonging to the same universality class.
At present, application of this model to characterize di�erent �-Si surface structures

is being developed with promising results [17].
These results encourage further study to introduce restricted occupation algorithms

on correlated networks, to investigate the dependence of �c on the degree of site
correlation, as well as to avoid frustrations.
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