A journal for new directions in chemistry

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: M. E. Villanueva, M. Puca, J. Perez Bravo, J. G. Bafico, V. Campo Dall' Orto and G. J. Copello, New J. Chem., 2020, DOI: 10.1039/D0NJ02784G.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the Information for Authors.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms \& Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

Dual adsorbent－photocatalytic Keratin－TiO \mathbf{T}_{2} nanocomposite for trimethoprim removal from wastewater．

María Emilia Villanueva，，ab，c Mayra Puca，${ }^{\text {a }}$ Jonas Pérez Bravo，${ }^{\text {b，d Jonathan Bafico，}{ }^{\text {a }} \text { Viviana Campo }}$ Dall Orto ${ }^{\text {a，b }}$ and Guillermo Javier Copello ${ }^{*}, \mathrm{~b}$
Abstract Trimethoprim is a nemergent pollutant that has been found in ground water in a larming concentrations．Thus， the development of economical and efficient advanced water treatment technologies is crucially needed．In this paper，a keratin hydrogel with immersed TiO_{2} nanoparticles（ nTiO_{2} ）was developed．The material was characterized by $\mathrm{FT}-\mathrm{IR}$ and FT－Raman showing that a physical interaction between nTiO_{2} and keratin hydrogel took place．Dielectric spectroscopy confirmed the influence of this interaction with the keratinstructure．Swelling studies showed that it depended on the media pH ，being higher at basic pH values．Photocurre nt measurements revealed anenhanced photocurrent of the hydrogels which maybe due tothe improved transition of photogenerated carriers via the porous network structure．The model pollutant was trimethoprim，an emerging pollutant．These hydrogels showed the ability to adsorb and degrade trimethoprim in the presence of simulated solar light in batch conditions for at least four cycles with no signifficant decrease in the efficiency．Experimental variables（time，temperature， pH ）were studied in order to characterize the material adsorption and photodegradation performance，concluding that the temperature is a main variable to consider in the adsorption process．

Introduction

The a nthropogenic a ctivities constantly produce emerging pollutants which enter the environment and can be found in ground water，surface water，municipal wastewater，drinking water， and food sources．They generally a re organic compounds such as pharmaceuticals，a ntibiotics，hormones，endocrine disruptors， perfluorinated molecules，disinfection byproducts，sunscreens， flame retardants，algal toxins，dioxane or pesticides and their degra dation byproducts．${ }^{1-3}$ These chemicals a re not commonly controlled but have the potential to get in the environment and ca us e negative ecological and human health effects．In a ddition， they are persistent．Since rates of effluent introduction often exceed their half－lives in a receiving ecosystem，they have the tendency to a ccumulate in living tissues thus entering the food cha in a nd synergistic toxi city regularly occur associated to their presence．${ }^{4}$
The presence of a ntibiotics，such as trimethoprim，in natural water affects the environment in several ways．First，the presence of these kind of compounds alter the natural flora a nd may provoke bacterial resistance．${ }^{5-7}$ In this context，the development of

[^0]economical and efficient advanced water treatment technologies is crucially needed．
In recent years，a dvanced oxidation technologies（AOT），including photocatalytic degradation in heterogeneous phase，became a ttra ctive and important as they have great potential to contribute to wastewater remediation ${ }^{8-10}$ ．The photocatalytic process can completely mineralize organic compounds to water，carbon dioxide and other inorganic compounds without causing secondary conta mination．${ }^{11,12}$ For instance，tri metho prim has been mine ralized by TiO_{2} nanoparticles treatment ${ }^{13,14}$ ．One of the most important aspects of photocatalysis is the selection of materials． Semi conductors such as TiO_{2} a re usually used as a photocatalyst in the literature，since they a re relatively inexpensive and highly effective ${ }^{9,15,16}$ ．The photocatalytic a ctivity of TiO_{2} depends on several parameters，such as the crystal forms，percent crys tallinity， doping materials，surface a rea，and the density of s urface hydroxyl groups．${ }^{17} \mathrm{TiO}_{2}$ powder（Degussa， $\mathrm{P}-25$ ），which is a standard material in the field of photocatalytic reactions，contains a natase a nd rutile phases in a ratio of about $3: 1$ ．Photocatalytic degradation of pollutants is inefficient on pure a natase a nd rutile powders． However，the reaction is very efficient on a mixture of a natase and rutile particles．${ }^{18}$ Unluckily，the implementation of these na nomaterials in large water volumes is not easily a ccomplished． Decantation and／or filtration is needed to separate the na nophotocatalyst from the effluent．Thus，their inclusion within a 3D matrix s implifies the operational aspects，such as collection and separation of the materials from the liquid media．In addition，the matrix can contribute to the remediation process ifit shows a ffinity for the target contaminant．In these nanocomposites both a ds orption and degradation of the pollutants take place making this technology one of the most auspicious alternatives ${ }^{19-22}$ ．Ke ratin is considered an economical a nd high a ccessible biosorbent．It can be
obta ined from waste materials of the livestock a nd poultry industry such as hair，wool，hooves，horns，feathers，etc ${ }^{23-25}$ ．Generally，the obta ined keratin materials（sponge or film structures）have good flexibility but poor mechanical properties．Therefore，keratin have been conjugated with other polymers such as chitosan，gelatin，and silk fibroin，generating keratin－based hybrid materials ${ }^{26-28}$ ．This prote in hass hown biosorbent ca pacity ${ }^{29-31}$ ，thus，new materials taking advantage of this quality we re found in the literature．For example，with the incorporation of nanomaterials，a reinforcement of the structure ${ }^{32,33}$ a nd other properties such as catalytic or photocatalytic activity，we re observed．${ }^{34-36}$
The aim of this study was to deve lop a system for trim ethoprim remediation in waste waters using a keratin hydrogel a nd TiO_{2} nanoparticles $\left(\mathrm{nTiO}_{2}\right)$ ．The material was characterized by FT－IR，FT－ Raman，photocurrent measurements and dielectrical spectroscopy in order to analyse the nanoparticles－polymer interactions． Besides，these hydrogels showed the ability to a dsorb and degrade trimethoprim in the presence of simulated solar light in batch conditions．Experimental va riables（time，temperature， pH ）were studied in order to characterize the material photocatalytic performance．The principal goal of this work was to demonstrate the suitability and reusability of photocatalytic $n \mathrm{TiO}_{2}$ i mmobilized on a ke ratin hydrogel for the degradation of trimetho prim．

Materials and Methods

Materials

Sodium hydroxide，Potassium hydrogen phosphate a nd Potassium dihydrogen phosphate were purchased from Anedra（Argentina）． Etha nol 96\％was acquired from Soria（Avellaneda，Argentina）．Ethyl Acetate was purchased from Sintorgan（Argentina）， TiO_{2} na noparticles（AEROXIDE TiO ${ }_{2}$ P－25，Evonik）were kindly donated by Evonik Degussa Argentina SA．Trimethoprim was a cquire din Sa poriti（Argentina）．All other reagents we re of a nalytical gra de． Whole cow＇s horns（Bos taurus，He reford）were kindly donated by Frigorina（La Plata，Buenos Aires，Argentina）a nd used as keratin source．

Hydrogel synthesis

Horn was pulverized and sieved through a $250 \mu \mathrm{~m}$ sieve．After that， the horn powder was rinsed three times with distilled water and with ethyl acetate to remove fat．Then，the powder was dried at 37° C overnight．A 18.0 mL dilution of 0.3 N NaOH in Ethanol（ 25 mL ） was added to 1 g of the keratin powder．The mixture wasleft at 45 ${ }^{\circ} \mathrm{C}$ for 4 h ．Afterwards，it was mixed with differe nt amounts of nTiO_{2} （in order to obtain a 1,5 and $10 \% \mathrm{w} / \mathrm{wnTiO}_{2}$ keratin hydrogels）， the mixtures were homogenized through a syringe a nd left until complete drynessat $45^{\circ} \mathrm{C}$ ．The final product was a dry block of ke ratin that was easily hydrated in water to form the hydrogel and it was named $\mathrm{K}-\mathrm{TiO}_{2} 1 \%, \mathrm{~K}-\mathrm{TiO}_{2} 5 \%$ and $\mathrm{K}-\mathrm{TiO}_{2} 10 \%$ ．A control without the a ddition of the nanoparticles was prepared and named K．The obtained keratin blocks were thoroughly rinsed with deionized wa ter in order to remove all NaOH residue．

Characterization

Spectroscopic characterization

ATR－FTIR（diamond attenuated total reflectance）of keratindticle Online materials were recorded using a Nicolet iS50Adva．heed D0NJ02784G Spectrometer（Thermo Scientific）．ATR－FTIR spectra we re recorded with 32 scans and a resolution of $4 \mathrm{~cm}^{-1}$ ．FT－Ra man spectra were a cquired with a n excitation laser beam of $1064 \mathrm{~nm}, 0.25 \mathrm{~W}$ Iaser power，resolution of $4 \mathrm{~cm}^{-1}, 400$ scans．All samples were previously dried for 24 h at $60^{\circ} \mathrm{C}$ to a void water related bands interference． Amide I band（1690－1640 cm^{-1} ）was deconvoluted for the a nalysis of the α－helix（ $1655 \mathrm{~cm}^{-1}$ ）and β－sheets（ $1679 \mathrm{~cm}^{-1}$ ）components． Spectral baselines were set between 1750 a nd $1503 \mathrm{~cm}^{-1}$ ，ta king in consideration the overlapping of the $v(C=C)$ olefinic band（ 1604 cm － ${ }^{1}$ ）with the a mide I band．Spectra decomposition was performed using Fityk software ${ }^{37}$ a ssuming a Lorentzian shape for narrow peaks（ α－helix and olefinic band）a nd a Gaussian form for broad peaks（ β－sheets）${ }^{38}$ ．
X－ray diffraction（XRD）patterns from keratin and composites were obta ined using a Rigaku diffractometer with Bragg Brentano ge ometry and $\mathrm{CuK}_{\text {® }}$ ra diation（ $/=0.1542 \mathrm{~nm}, 40 \mathrm{kV}, 20 \mathrm{~mA}$ ）in the range of $2 \theta=3-50^{\circ}$ at a scanning rate of $1^{\circ} / \mathrm{min}$ a nd a scan step of 0.05° ．Mea surements were performed at a mbient conditions． Swelling behavior
In order to assess the swelling behavior of the materials， $0.0500 \pm$ 0.0020 g of a keratin block were equilibrated in 10 mM phosphate solutions ranging from pH 4 to pH 8 ．After equilibrium was reached， the hydrogels were removed from the solution a nd a ccurately weighted．
Dielectric spectroscopy
Dielectric spectroscopy s pectra were a cquired using a Palm Sense 4 electrochemical workstation（Netherlands）．Measurements were ca rried out in the frequency ra nge $0.01 \mathrm{~Hz}-1 \mathrm{MHz}$ at room temperature．Glassy carbon（diameter： 3 mm ）a nd gra phite electrodes were employed as the working a nd the counter electrode respectively．Hydrogels with a swelled thickness of 0.55 mm were used as test pieces．

Scanning electron microscope

Scanning Electron Microscopy images were obtained using a Zeiss SUPRA 40 Sca nning Electron Microscope．The samples were previously coated with gold．

Trimethoprim quantification

The quantification was performed using a HPLC system consisting in a Hewlett Packard 1050 pump with a 20μ Linjection loop，a Supelco column RP $18150 \times 0.4 \mathrm{~mm}$ mobile and a Pharmacía－LKB UV detector．Separation was performed at room temperature by is ocratic elution of the analyte using a mobile phase containing a ce tonitrile－water（40：60）a nd a flow rate of $1 \mathrm{~mL} / \mathrm{min}$ ．

Trimethoprim adsorption in dark conditions

Trimethoprim adsorption was evaluated in dark conditions at different pH va lues at $25^{\circ} \mathrm{C}$ ．A weight of $0.0500 \pm 0.0020 \mathrm{~g}$ of K, K－ $\mathrm{TiO}_{2} 10 \%$ and TiO_{2} were left in contact with 5.00 mL of a 0.172 mM trimethoprim solution at $\mathrm{pH} 4,5,6,7$ a nd $8(10 \mathrm{mM}$ phos phate solutions）．After $18 \mathrm{~h}, 0.050 \mathrm{~mL}$ of supernatant were collected， centrifuged a nd re served for quantification．
The influence of temperature was a Iso studied by weighting 0.0500
$\pm 0.0020 \mathrm{~g}$ of K and $\mathrm{K}-\mathrm{TiO}_{2} 10 \%$ were left in contact with a 0.172
mM trime thoprim solution at different te mperature conditions（25， 45 and $60^{\circ} \mathrm{C}$ ）．After a certain amount oftime， 0.050 mL were collected，centrifuged a nd reserved for quantification．A trimethoprim solution was also exposed at different temperatures as a control．

Photocatalytic Experiments

The photocatalytic activity was evaluated by the decomposition of the trimethoprim under a simulated solarlightusinga Xenonlamp． The irradiation intensity for all assays was 28000lux，withless than 5% variation．Aqueous solutions of trimeth oprim（ $50 \mathrm{~mL}, 0.172 \mathrm{mM}$ ） were placed in a vessel，and $0.0500 \pm 0.0020 \mathrm{~g}$ of the samples were added．Priorto irradiation，the suspensionswereleftinthedarkfor 30 min ．At certain time intervals，aliquots were sampled，centrifuged and reserved for quantification．This assay was conducted in different conditions in order to evaluate the materials performance． Hydrogels with different $n \mathrm{TiO}_{2}$ concentrations（ $1 \%, 5 \%$ and 10% ） were exposed to a 4 h intervals at $25^{\circ} \mathrm{C}$ ．These samples werealso exposed to 4 reuse cycles in the same conditions described above． Since the results showed a betterperformance for K － $\mathrm{TiO}_{2} 10 \%$ ，the following assays were performed usingthis nanocomposite and Kas a control．Differentinteraction times and values ofpH（4．0，5．0，6．0， 7.0 and 8．0）were evaluated．Solution of trimethoprim without adding any hydrogel photocatalyts was investigated in order to perform a control study under the same condition．
The influence of the pH in the trimethoprim photocataly sis by nTiO_{2} was evaluated by placing a nTiO_{2} suspension（ $50 \mathrm{mg} / \mathrm{mL}$ ）in a 5.00 mL vessel with a trimethoprim solution at different pH values．The trimethoprim concentration in the control vessel was 0.172 mM and the nTiO_{2} concentration was $1 \mathrm{mg} / \mathrm{mL}$ ）．The optical absorption area was $1.75 \mathrm{~cm}^{2}$ ．Prior to the 4 h irradiation，the suspensions were left in the dark for 30 min ．

Photocurrent

The photocurrent measurements for $\mathrm{TiO}_{2}, \mathrm{~K}-\mathrm{TiO}_{2} 10 \%$ and K samples were tested using a Palm Sense 4 electrochemical workstation（Netherlands）with a standard three－electrode sy stem．${ }^{22}$ Two platinum electrodes were employed as the working and the counter electrode． $\mathrm{Ag} / \mathrm{AgCl}$ electrode was used as reference electrode．The samples were milled and dispersed in deionized water （the final concentration of nTiO_{2} in the suspensions was the same in $\mathrm{K}-\mathrm{TiO}_{2} 10 \%$ and TiO_{2} assay）．A Xenon lamp was selected as the light source．

Statistical analysis

All experiments and their corresponding measure ments were conducted in triplicate under identical conditions and statistically a nalyzed by one－way ANOVA and Bo nferroni comparison post test if ANOVA $p<0.05$ ．

Results and discussions

Surface characterization and Physico－chemical properties evaluation

Figure $1 A$ and B showed the FT－IR s pectra of the hydrogels a nd the nTiO 2 ．In the nTiO_{2} spectrum the typical bands（ $3322 \mathrm{~cm}^{-1}$ a nd 1605 cm^{-1} ）could be observed．They were assigned to the stretching vibrations of the $\mathrm{O}-\mathrm{H}\left(3322 \mathrm{~cm}^{-1}\right)$ and the bending vibrations of the
ads orbed water molecules，（ $1605 \mathrm{~cm}^{-1}$ ）．${ }^{39,40}$ In the hydrogel spectra ke ratin characteristic bands could be found！peaks wepeobsserved G at $1636 \mathrm{~cm}^{-1}$ ，which corresponded to the vi bration of the $\mathrm{C}=\mathrm{O}$ bond （Amide I band），and at $1524 \mathrm{~cm}^{-1}$ ，which corresponded to a combination of the $\mathrm{C}-\mathrm{N}$ stretching and $\mathrm{N}-\mathrm{H}$ deformation vi brations （Amide II）${ }^{9}$ ．The lack of TiO_{2} related bands may be due to the low concentration of the nanoparticles and the low infrared a bsorption of the TiO_{2} groups．
Figure S1，S2 and S3（Supplementary Information）showed the FT－ Raman spectra of the nTiO_{2} and the different keratin hydrogels．In the $n \mathrm{TiO}_{2}$ spectrum，the characteristic peaks could be found．The

B

Figure 1． FT －IR spectra of nTiO 2 ， K a nd $\mathrm{K}-\mathrm{TiO}_{2} 10 \%$ ．

Figure 2．XRD spectra of the samples．
appeared，which were in agreement with the characteristic peaks of a natase and rutile form of $\mathrm{TiO}_{2} .{ }^{44}$ This meant that nTiO_{2} crys talline structure was not affected by the incorporation in the keratin matrix．As the concentration（ $w t \%$ ）of $n \mathrm{niO}_{2}$ increased，the cha ra cteristic nTiO_{2} peaks also increased a nd became the major peaks in the composites．
Dielectric spectroscopy（DS）provides information on the molecular dyna mics by monitoring the relaxation processes．Figure 3 showed the DS spectra for the K and $\mathrm{K}-\mathrm{TiO}_{2}$ hydrogels．For all samples at low frequencies high permittivity values can be seen corresponding to interfacial polarization（also known as Maxwell－Wagner－Sillar effect）．This type of polarization becomes from the limited dis placement of free charges，such as ions，and their a ccumulation at interfacial a reas，such as water－protein interfaces，when the different constituents of the material possess distinct permittivities ${ }^{47}$ ．The permittivity values at the low frequency region a re higher for the K hydrogel than for the $\mathrm{K}-\mathrm{TiO}_{2}$ hydrogels．This decrease is probably due to the lower permittivity of TiO_{2} in comparison with the water medium or its influence on the material dipole carriers ${ }^{48}$ ． From permittivity plots two main changes in the permittivity trend can be seen．One at the low frequency region and other at the high frequency region．The first would a ccount for keratin segmental relaxation and the second would be due to local relaxations．From ε^{\prime} a nd $\varepsilon^{\prime \prime}$ vs Frequency plots（Figure 3 A and B ）it could be seen that the presence of nanopartides influenced the relaxation processes of keratin in the hydrogel．The loss factor plot（Figure 3 C ）showed a peak between $1-10 \mathrm{~Hz}$ that is shifted towards higher frequencies when TiO_{2} is present，which was more evident at higher frequencies．Probably，the moieties ca pable offorming hydrogen bonds in the protein interacted with the TiO_{2} s urface，in particular with Ti －OH groups，which had faster relaxation dynamics．This effect had been reported for other hydrophilic polymers ${ }^{49}$ ．The Cole－Cole plot was obtained from the dependence ε^{\prime} on $\varepsilon^{\prime \prime}$ on the complex plane and was presented in Figure 3 D．As could be seen，for all sa mples this plot presented two semicircles that were tilted toward the low frequency region（top－right）．The two semicircles confirmed that two relaxation processes were taking place within the 0．1－1 MHz frequency range and that there was a contribution to the profile due to the bulk conductivity ${ }^{50}$ ．For the nanocomposites the bulk conductivity contribution was lower than for K hydrogels，

Journal Name

Figure 3．A）Real permittivity，B）Imaginary permittivity，C）Loss fa ctor a nd D）Cole－Cole plot．
which was seen as lower values at the low frequency zone（top－ right of the plot）．This was probably related to a decreasein the free cha rge carriers in the matrix，as in the case of keratin ionized groups counterions．Both DS and Raman results confirmed that the na noparticles had influence on ke ratin structural organization probably due to hydrogen bonding and keratin ionic groups interaction with the surface of the nanoparticle．As it is well known， the interaction of the surrounding media with the nanoparticle surfa ce could have and impact in its photocatalytic performance．

Swelling

The hydrogel swelling was studied at different pH values（Figure S6）． Both K and $\mathrm{K}-\mathrm{TiO}_{2} 10 \%$ presented different swelling values depending on the pH media，being low（around 150\％）at low pH values（ 4 and 5 ）and higher since pH 6 （a bove 600% ）．The difference between pH 5 and 6 was significant for both hydrogels（ $p<0.05$ ）． The mechanism of this behaviour was established in a prior study．${ }^{51}$ As could be seen in Figure S 6 ，as pH wasincreased from pH 6 to 7 ， the K hydroge Is also increased their swelling．Neither K nor $\mathrm{K}-\mathrm{TiO}_{2}$ hydrogels presented significant differences between the swellings at pH 7 and 8 （ $p>0.05$ ）．Also，when comparing the swellings at pH 7 and at pH 8 it could be seen that there were significant differences （ $p<0.05$ ）between K and $\mathrm{K}-\mathrm{TiO}_{2}$ hydrogel swellings showing lower swellings for the nanocomposites．This could be originated in a mobility restriction of keratin chains due to the ordering induced by the na noparticles as was observed from FT－Raman a nd dielectric spectroscopyresults．

Adsorption properties

Adsorption at different pH values
The de pendence of pH on the adsorption of trimethoprim in the dark was shown in Figure 4．1．It could be observed that for the tested samples（ $\mathrm{K}, \mathrm{K}-\mathrm{TiO}_{2} 10 \%$ and nTO_{2} ）there were no significant differences among the different a ssayed pH values（ $p>0.05$ ）．These

ARTICLE

Figure 4．1）Trimethoprim a dsorption at different pH values．2） Trimethoprim adsorption kinetics at different temperatures． C_{0} ： initial trimethoprim concentration（ 0.172 mM ），C：trimethoprim concentration after 18 h of interaction．
equilibrium uptake of trimethoprim to the hydrogel results showed that there was no re lationship between the swelling，which was significantly higher at a Ikaline pH va lues，and the adsorption，hence the adsorption mechanism was due to chemical（ion exchange）and physical（H bonds，van der Waals）interactions between the active sites a nd the pollutant．Besides，no adsorption was observed in $\mathrm{nTiO} \mathrm{O}_{2}$ in the different assayed pH values．Since these nanoparticles were non－porous ${ }^{52}$ and the nTO_{2} s urface was not prone to be alte red or a ctivated，i．e．by changing its surface charge，in the pH range tested，these nanoparticles would not be good adsorbents for
this type of organic molecule．More over，the TiO_{2} surface would hardly be able to interact with trimethoprim by electrostatic attraction or by hydrophobic interactions．

Adsorption kinetics at different temperatures．

Trime thoprim adsorption was evaluated at different temperatures and time intervals．As shown in Figure 4．2，equilibrium was achieved in 30 min when the temperatures were 45 and $60^{\circ} \mathrm{C}$ ，and remained constant until 240 min ．At $25^{\circ} \mathrm{C}$ a very low adsorption was verified during the time of the experiment．These results showed that the adsorption was temperature dependent．At higher temperatures a higher number of a ctive cites were available to interact with tri methop rim molecules，indicating the adsorption process was endothermic．Thus，the extent of a dsorption increased along with te mperature．${ }^{53,54}$

Photocurrent

Photocurrent determination was conducted to investigate the separation performance of photogenerated electron－hole pairs． Us ually，the va lue of photocurrent indirectly represented the ca pa city of generating a nd tra nsferring the photo－excited charge ca rrier，which related to the photocatalytic a ctivity ${ }^{20}$ ．As shown in Figure 5，with the visible light turn on a nd off，the photocurrent
dis played a relatively stable trend，indicating that the electrons and hol es generated by $\mathrm{K}-\mathrm{TiO}_{2} 10 \%$ hydrogel could be separated during the degradation of the pollutant．Trimethoprim adsorption and photocatalytic degradation synergy by K － $\mathrm{TiO}_{2} 10 \%$ was also explored by photocurrent measurement．It could be observed that both TiO_{2} a nd $\mathrm{K}-\mathrm{TiO}_{2} 10 \%$ had a photoelectric re sponse．The photocurrent of $\mathrm{K}-\mathrm{TiO}_{2} 10 \%$ was enhanced in comparison with nTiO 2 sample．The enhanced photocurrent of the hydrogels may be due to the improved transition of photogenerated carriers via the porous network structure，these results a re supported by the DS results．The porous network has been described in previous works． 23，55，56 In the Khydrogel the photocurrent presents negative values， contra sting with the theoretical expectation that for this sample the value of the photocurrent would be null．Thiseffect could be a warded to electrolyte residues lodged in the anode，which upon receiving light can re lease electrons，that prompted by the potential will tra vel to the cathode，producing this negative current． Photol uminescence spectroscopy (PL) and optical a bsorption（OA） were used to examine the photoinduced charge carrier trapping， migration and transfer behaviour of semiconductor particles．${ }^{57}$ The photoluminescence emission spectrum of the TiO_{2} was reported in a previous study of the group．${ }^{9}$ The luminescence spectrum of TiO_{2} obta ined using an excitation wavelength of 320 nm exhibits one main emission peaks at 375 nm ．The emission band at 375 nm was due to the direct band to band transitions．The spectrum result of the photoluminescence signal depended mainly on the electron transition from the conduction band to the valence band．As it could be seen in Figure 57 in the Supplementary Information，no significant changes in the $n \mathrm{TiO}_{2}$ absorption UV－Vis spectra was observed when they we re immersed in the keratin hydrogel．The results from PL a nd OA would support the results obtained from the photocurrent a ssay from which it was proposed that the main res ponsible from enhanced photocurrent of the hydrogels may be due to the improved tra nsition of photogenerated carriers via the porous network structure．

Figure 5．Photocurrent of the materials under light i irradiation．

Degradation efficiency of Trimethoprim

To assess whether the photocatalysis was pH dependent，a solution of trimethoprim was treated with the different samples stabilized at different pH values and exposed to light for 2 h ．In the results （Figure 6），it could be seen that in nTiO_{2} there was no significant difference among the different assayed pH values（ $p>0.05$ ）． Although the photocatalytic a ctivity of a given material could be affected by the media pH ，the nTO_{2} s urface is not prone to change its surface characteristics in the pH range tested，thus，no difference between the pH values were observed．These results implied that the developed material would be useful at a wide range of pH values，diversifying the nature of the effluents to be treated．The decrease in trimethoprim concentration in the samples treated with K was due to the a dsorption mechanism，in the TiO_{2} ，was only due to photocatalysis a nd in $\mathrm{K}-\mathrm{TiO}_{2} 10 \%$ both mechanisms took place． The difference between nTO_{2} and $\mathrm{K}-\mathrm{TiO}_{2} 10 \%$ may a ccount for the lowe r diffusion of the pollutant in the hydrogel than in a solution．

Photocatalysis kinetic

The photocatalytic ability of $\mathrm{K}-\mathrm{TiO}_{2} 10 \%$ hydrogel was studied by a nalyzing the remaining trimethop rim kinetics under visible light．As shown in Figure 6，this study was performed twice with the same material，each time with fresh trimethoprim solution．In the first experiment non significant difference was found between K and K－ TiO_{2} ．Thus，the main mechanism involved was adsorption and in the other one photocatalysis．In the a dsorption process，a $\mathrm{C} / \mathrm{C}_{0}$ a round 0.20 was achieved in both K and $\mathrm{K}-\mathrm{TiO}_{2} 10 \%$ at 7 h of interaction time．In the second use of the materials，a difference was observed between the different treatments．In the K hydrogel a low decay was observed while in the $\mathrm{K}-\mathrm{TiO}_{2}$ a $\mathrm{C} / \mathrm{C}_{0}$ a round 0.25 was a chieved after 7 h interaction．In this case，photocatalysis was the predominant mechanism．In the first 2 h ，trimethoprim in solution was ra pidly degraded a nd then，the degradation rate decreased until equilibrium was achieve ap proximately in 7 h ．
Taking into account the photocurrent experiment results（Figure 5）， it would be expected that the $\mathrm{K}-\mathrm{TiO}_{2} 10 \%$ performance would be better than the $n \mathrm{TiO}_{2}$ ．However，in the pollutant degradation studies（Figure 6），no significant difference could be found between
them（ $p>0.05$ ）．This could have been due to the difficulty in the diffusion of the involved chemical species in the gel matrix． The apparent first－order kinetic model that was derive from the La ngmuir－Hinshelwood kinetic equation was used in this study to determine the photocatalytic degradability of the trimethoprim and was described in the Supplementary Information．${ }^{9}$ The a pparent first－order rate constant（ $\mathrm{k}_{\text {app }}$ in h^{-1} ），equivalent to the slope of the linear regression was applied to evaluate the photocatalytic degra dation rates of K－TiO $\mathrm{O}_{2} 10 \%$ ．In Figure S 8 （Supplementary Informationn）the plotting $\ln \mathrm{C}_{0} / \mathrm{C}$ as a function of reaction time yielded a straight line for the second cycle demonstrating that the degra dation follows the a pparent first－order kinetic law and confirming trimethoprim decomposition due to photocatalysis． However，the fit did not converge for the first cycle probably beca use of the releva nt contribution of the a dsorption step．

Comparison between different materials and reuse．

Hydroge ls prepared with different content of $n \mathrm{TiO}_{2}, \mathrm{~K}-\mathrm{TiO}_{2} 1 \%, \mathrm{~K}$－ $\mathrm{TiO}_{2} 5 \%$ and $\mathrm{K}-\mathrm{TiO}_{2} 10 \%$ ，degradation efficiency was evaluated at 4 h interaction time at $25^{\circ} \mathrm{C}$ ．Higher concentrations were not as sayed since the obtained hydrogels were too brittle to manipulate．The re maining tri methoprim was significantly lower in $\mathrm{K}-\mathrm{TiO}_{2} 10 \%$ than in $\mathrm{K}-\mathrm{TiO}_{2} 1 \%$ and $\mathrm{K}-\mathrm{TiO}_{2} 5 \%$（ $p<0.05$ ）（Figure 4）． These results proved that increasing the photocatalyst concentration provided higher photocatalytic efficiencies．This suggested that the $\mathrm{K}-\mathrm{TiO}_{2} 10 \%$ was the appropriate material for trimethoprim remediation．
This assay was repeated 4 times with fresh trimethoprim solution each time．There was no significant difference between the use number and the C / C_{0}（ $p>0.05$ ），showing that the efficiency of the developed material was maintained during at least 4 cycles and the refore these nanocomposites have suitable reusability． As it was established in the Introduction，immobilized photocatalytic systems presented many advantages for water decontamination processes．The stability of the immobilized photocatalyst was reported as a key factor in the development of these materials since the loss of the photocatalytic particles into the water decreased the photocatalytic performance of the process．In the K－TiO2 hydrogel there was no significant differen ce among the different cycles，showing that the developed material presented good stability．

Conclusions

In this work，a keratin hydrogel containing nTiO_{2} with photocatalytic a ctivity was developed．This material was characterized a nd its efficiency in the degradation of the emergent contaminant trimethoprim was evaluated．The spectroscopic results showed the typical signals of the materials a nd proved the presence of the $\mathrm{nTiO} \mathrm{T}_{2}$ immersed in the 3D hydrogel．These hydrogelss howed the a bility to a dsorb a nd degrade tri methoprim in the presence of UV－ Vis ible light in batch conditions．Experimental va riables（time， temperature， pH ）were va ried in order to characterize the material performance．The equilibrium uptake of trimethoprim to the hydrogel was endothermic，it was a chieved within 30 min a nd no dependence of pH wasfound．The photocatalytic activity was a lso not influenced by the pH of the media．In the $\mathrm{K}-\mathrm{TiO}_{2}$ samples，the mechanism involve din the decrease of trimethoprim concentration
 different pH values．2）2）Degradation \％of TMP a fter light irra diation at different number of uses．Degradation \％of cycle 1 was considered 100% ．3）Remaining trimeth oprim after light irradiation at different times A）First cycle and B）second cycle．
were adsorption and photocatalysis while in K s amples only a ds orption was the responsible．The $\mathrm{K}-\mathrm{TiO}_{2}$ samples could be reus ed for at least 4 times maintaining a similar efficiency．When performing the photocurrent tests，it wasobserved that it was greater in the hydrogels than in the nanoparticles．However，in the photocatalysis a nalysis，the decrease in trimethoprim concentration was equivalent in both treatments．This unexpected difference may be due to the lower diffusion of the pollutant in the hydrogel matrix．Nevertheless，the hydrogels had the a dvantage of its easy handle a nd subsequent re use compared with $n \mathrm{TiO}_{2}$

Conflicts of interest

There are no conflicts to declare．

Acknowledgements

J．P．B．is grateful for his posdoctoral fellowship granted by Consejo Nacional de Investigaciones Científicas y Técnicas （CONICET）．This work was supported with grants from Universidad de Buenos Aires（UBACYT 20020130100780BA） and Agencia Nacional de Promoción Científica y Tecnológica （PICT 2015－0714，PICT 2016－1997）．

Notes and references

1 D．Bunke，S．Moritz，W．Brack，D．L．Herráez，L．Posthuma and M．Nuss，Environmental Sciences Europe，2019，31， 32.
2 V．Dulio，B．Van Bavel，E．Brorström－Lundén，J．Harmsen，J． Hollender，M．Schlabach，J．Slobodnik，K．Thomas and J．
Koschorreck，Environmental Sciences Europe，2018，30， 5.
3 Z．Visanji，S．Sadr，M．Johns，D．Savic and F．A．Memon， International Hydroinformatics Conference， 2018.
4 M．Gavrilescu，K．Demnerová，J．Aamand，S．Agathos and F． Fava，New Biotechnology，2015，32，147－156．
5 R．Rosal，A．Rodríguez，J．A．Perdigón－Melón，A．Petre，E． García－Calvo，M．J．Gómez，A．Agüera and A．R．Fernández－Alba，

Water research，2010，44，578－588
6 F．Hernández，N．Calısto－Ulloa，C．Gómez－Fuentes，M．Gómez， J．Ferrer，G．González－Rocha，H．Bello－Toledo，A．Botero－Coy，C． Boix and M．Ibáñez，Journal of hazardous materials，2019，363， 447－456．
7 J．M artínez－Costa，M．M．Rubio and R．Ley va－Ramos，Catalysis Today，2020，341，26－36．
8 A．Bernabeu，R．F．Vercher，L．Santos－Juanes，P．J．Simón，C． Lardín，M．A．Martínez，J．A．Vicente，R．González，C．Llosá，A． Arques and A．M．Amat，Catalysis Today，2011，161，235－240． 9 M．E．Villanueva，G．J．Copello and V．C．Dall＇Orto，New Journal of Chemistry，2018，42，15405－15412．
10 F．Wesarg，F．Schlott，J．Grabow，H．－D．Kurland，N．Heßler，D． Kralisch and F．A．Müller，Langmuir，2012，28，13518－13525．
11 Q．Cai and J．Hu，Journal of hazardous materials，2017，323， 527－536．
12 M．Ghosh，M．Lohrasbi，S．S．Chuang and S．C．Jana， ChemCatChem，2016，8，2525－2535．
13 M．Abellán，J．Giménez and S．Esplugas，Catalysis Today，2009， 144，131－136．
14 I．Michael，E．Hapeshi，V．Osorio，S．Perez，M．Petrovic，A． Zapata，S．Malato，D．Barceló and D．Fatta－Kassinos，Science of the total environment，2012，430，167－173．
15 W．H．Abdelraheem，M．K．Patil，M．N．Nadagouda and D．D．
Diony siou，Applied Catalysis B：Environmental，2019，241，598－ 611.

16 A．Giampiccolo，D．M．Tobaldi，S．G．Leonardi，B．J．Murdoch， M．P．Seabra，M．P．Ansell，G．Neri and R．J．Ball，Applied Catalysis B：Environmental，2019，243，183－194．
17 T．Kawahara，Y．Konishi，H．Tada，N．Tohge，J．Nishii and S． Ito，Angewandte Chemie International Edition，2002，41，2811－ 2813.

18 T．Ohno，K．Sarukawa，K．Tokieda and M．Matsumura，Journal of Catalysis，2001，203，82－86．
19 X．Chen，Q．Chen，W．Jiang，Z．Wei and Y．Zhu，Applied Catalysis B：Environmental，2017，211，106－113．
20 J．Yang，Z．Li and H．Zhu，Applied Catalysis B：Environmental， 2017，217，603－614．
21 M．Zhang，W．Jiang，D．Liu，J．Wang，Y．Liu，Y．Zhu and Y． Zhu，Applied Catalysis B：Environmental，2016，183，263－268．
22 M．Zhang，W．Luo，Z．Wei，W．Jiang，D．Liu and Y．Zhu， Applied Catalysis B：Environmental，2016，194，105－110．
23 G．Galaburri，M．L．P．Ramos，J．M．Lázaro－M artínez，R．F．de Luis，M．I．Arriortua，M．E．Villanueva and G．J．Copello，European Polymer Journal，2019，118，1－9．
24 T．R．Ham，R．T．Lee，S．Han，S．Haque，Y．Vodovotz，J．Gu，L． R．Burnett，S．Tomblyn and J．M．Saul，Biomacromolecules，2015， 17，225－236．
25 M．E．Villanueva，M．L．Cuestas，C．J．Pérez，V．C．Dall and G．
J．Copello，Journal of colloid and interface science，2019，536，372－ 380.

26 Z．Davoudi，M．Rabiee，B．Houshmand，N．Eslahi，K．Khoshroo， M．Rasoulianboroujeni，M．Tahriri and L．Tay ebi，Drug development and industrial pharmacy，2018，44，40－55．
27 T．Posati，D．Giuri，M．Nocchetti，A．Sagnella，M．Gariboldi，C． Ferroni，G．Sotgiu，G．Varchi，R．Zamboni and A．Aluigi，European Polymer Journal，2018，105，177－185．
28 M．Zhai，Y．Xu，B．Zhou and W．Jing，Journal of Photochemistry and Photobiology B：Biology，2018，180，253－258．
29 M．W．Donner，M．Arshad，A．Ullah and T．Siddique，Science of The Total Environment，2019，647，1539－1546．
30 S．Z．Mousavi，M．Manteghian，S．A．Shojaosadati and H．
Pahlavanzadeh，Advances in Environmental Technology，2018，4， 83－93．
31 S．Saha，M．Zubair，M．Khosa，S．Song and A．Ullah，Journal of Polymers and the Environment，2019，1－15．

32 L．Chen，Z．Jia，Y．Tang，L．Wu，Y．Luo and D．Jia，Composites Science and Technology，2017，144，11－17．DOI：10．1039／DONJO2784G 33 Y．Song and Q．Zheng，Progress in Materials Science，2016，84， 1－58．
34 J．Zhao，J．Yin，J．Zhong，T．Jiao，Z．Bai，S．Wang，L．Zhang and Q．Peng，Nanotechnology，2019，31， 085603.
35 Y．Feng，J．Yin，S．Liu，Y．Wang，B．Li and T．Jiao，ACS Omega， 2020，5，3725－3733．
36 J．Zhu，R．Wang，R．Geng，X．Zhang，F．Wang，T．Jiao，J．Yang， Z．Bai and Q．Peng，RSC advances，2019，9，22551－22558．
37 M．Wojdyr，Journal of Applied Crystallography，2010，43， 1126－1128．
38 R．Paquin and P．Colomban，Journal of Raman Spectroscopy：An International Journal for Original Work in all Aspects of Raman Spectroscopy，Including Higher Order Processes，and also Brillouin and Rayleigh Scattering，2007，38，504－514．
39 K．Dai，T．Peng，D．Ke and B．Wei，Nanotechnology，2009，20， 125603.

40 M．Hamadanian，A．Reisi－Vanani and A．Majedi，Journal of the Iranian Chemical Society，2010，7，S52－S58．
41 W．Su，J．Zhang，Z．Feng，T．Chen，P．Ying and C．Li，The Journal of Physical Chemistry C，2008，112，7710－7716．
42 J．Shao，J．Zheng，J．Liu and C．M．Carr，Journal of Applied Polymer Science，2005，96，1999－2004．
43 H．G．M．Edwards，D．E．Hunt and M．G．Sibley，Spectrochimica Acta Part A：Molecular and Biomolecular Spectroscopy，1998，54， 745－757．
44 H．Y．Zhu，J．A．Orthman，J．－Y．Li，J．－C．Zhao，G．J．Churchman and E．F．Vansant，Chem．Mater．，2002，14，5037－5044．
45 M．Ghosh，J．Liu，S．S．Chuang and S．C．Jana，ChemCatChem， 2018，10，3305－3318．
46 D．Wu，M．Yi，H．Duan，J．Xu and Q．Wang，Carbon，2016，108， 394－403．
47 F．Bibi，M．Villain，C．Guillaume，B．Sorli and N．Gontard， Sensors，2016，16， 1232.
48 A．Wypych，I．Bobowska，M．Tracz，A．Opasinska，S．
Kadlubowski，A．Krzy wania－Kaliszewska，J．Grobelny and P．
Wojciechowski，Journal of Nanomaterials，2014，2014，1－9．
49 R．J．Sengwa，S．Choudhary and S．Sankhla，Colloids and
Surfaces A：Physicochemical and Engineering Aspects，2009，336， 79－87．
50 A．El Nahrawy，A．Abou Hammad，G．Turky，M．Elnasharty and A．Youssef，Intl J Adv Eng，Technol Comput Sci，2015，2，9－14．
51 M．L．P．Ramos，J．A．González，L．Fabian，C．J．Pérez，M．E．
Villanueva and G．J．Copello，Materials Science and Engineering： C，2017，78，619－626．
52 M．Ovcharov，V．Shvalagin，N．Shcherban，M．Nazarkovskii and V．Granchak，Theoretical and Experimental Chemistry，2013，49， 172－177．
53 Z．Aksu，Separation and Purification Technology，2001，21， 285－294．
54 Y．Ho，C．Huang and H．Huang，Process Biochemistry，2002，37， 1421－1430．
55 M．L．P．Ramos，J．A．González，L．Fabian，C．J．Pérez，M．E．
Villanueva and G．J．Copello，Materials Science and Engineering： C，2017，78，619－626．
56 M．L．P．Ramos，G．Galaburri，J．A．González，C．J．Pérez，M．E． Villanueva and G．J．Copello，Journal of environmental chemical engineering，2018，6，7021－7028．
57 Z．Liu，D．D．Sun，P．Guo and J．O．Leckie，Nano letters，2007， 7，1081－1085．

$338 \times 190 \mathrm{~mm}(96 \times 96$ DPI）

[^0]: a．Universidad de Buenos Aires（UBA），Facultad de Farmacia y Bioquím ica，
 Departamento de Química Analítica y Fisicoquímica，（UBA），Junín 956，C1113AAD， Buenos Aires，Argentina
 b．CONICET－Universidad de Buenos Aires（UBA）．Instituto de Química y Metabolismo del Fármaco（IQUIMEFA），Buenos Aires，Argentina；
 ${ }^{\text {c Universidad Nacional de Luján（UNLu）Departamento de Ciencias Básicas，Ruta } 5 \text { y }}$ 7 Luján，Buenos Aires，Argentina；
 ${ }^{\text {d．CONICET－Universidad de Buenos Aires（UBA）．Instituto de Tecnología de Polímeros }}$ y Nanotecnología（ITPN），Buenos Aires，Argentina．
 ＊gcopello＠ffyb．uba．ar．
 Electronic Supplementary Information（ESI）available：［details of any supplementary information available should be included here］．See DOI：10．1039／x0xx00000x

