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Abstract. In this work we numerically study the stability of the steady state displacement of a
liquid plug in a capillary tube when gravity, inertia and surface forces are important.  The
methodology  employed  is  based  on  the  analysis  of  steady  state  solutions  and  has  been
presented in previous publications.  Gravity is assumed to act only along the axis of the tube.

1.  Introduction
The propagation of liquid plugs in small conduits has been studied for many applications including the
extraction of oil from a porous rock and medical treatments requiring a liquid plug to be instilled in the
pulmonary airway such as in mechanical ventilation and surfactant replacement therapy.  Also, due to
their small size distal airways are prone to closure in various respiratory disorders creating liquid plugs
which obstruct the airflow.

A simplified model of those problems is the motion of a liquid slug inside a capillary whose wall is
coated with a thin film of the same fluid.  Therefore, the liquid plug propagates on that preexisting
film, the precursor film, whose thickness is H∞

F and leaves behind a trailing film with thickness H∞
T

which,  for  a  given  liquid  and  tube  radius,  depends  on  the  speed  of  plug  propagation.   If  the
displacement of the plug is steady, mass conservation requires  H∞

T= H∞
F= H∞ since otherwise liquid

would accumulate in (H∞
F > H∞

T) or evacuate from (H∞
F < H∞

T) the plug.  This quantity (H∞) as well as
the length of the slug, LP, will depend on the relative strength of capillary, inertia, viscous and gravity
forces.  When the length of the plug exceeds a certain value (LP

max) which depends on the magnitude of
the forces acting on the system, the phenomena is similar to the propagation of the  rear and front
menisci of two consecutive semi-infinite bubbles separated by a distance  LP

max. The propagation of
semi-infinite bubbles has received considerable attention since the pioneering work by Bretherton [9];
in fact it has been studied analytically ([1], [2]), experimentally ([3]-[5]), and numerically ([6]-[8]) by
a number of authors.

When the plug is short, the flow is affected by the interaction between the menisci and the velocity
and pressure  fields  must  be  simultaneously  solved in  the  whole  domain.   This  case  has  received
considerable less attention in the literature, and most works have been published by the team led by
Professor Grotberg; they are motivated by the displacement of liquid plugs in the pulmonary airways.
In particular, Fujioka and Grotberg [10] presented a numerical study on the steady propagation of a
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liquid plug in the gap formed by two horizontal parallel plates separated by a small distance.  The
governing equations and their boundary conditions were solved using the finite volume technique; the
authors could not obtain solutions for capillary numbers larger than 0.4 and plugs shorter than half the
gap of the channel.  Based on this issue, they conjecture that the lack of convergence of the numerical
algorithm employed might be related to the non existence of stable steady states, meaning that if the
steady state solution is perturbed, the distance between the menisci will either continuously increase or
decrease until the collapse of the plug occurs.

To determine if the above speculation was correct, we numerically investigated the stability of the
displacement of a liquid plug in a capillary tube under the effects  of surface, inertia, and viscous
forces.  The following two cases were considered in previous papers: i) an instant perturbation to the
plug length occurs [11],  and b) the pressure drop between the rear and front gas phases suffers a
perturbation [12].   The main outcome of those works is that the stability of a liquid plug may be
derived from the shape of the curves illustrating the steady state film thickness as a function of the
plug length. In none of those papers the effect of gravity was considered.  From a practical point of
view,  the  more  attractive  case  is  that  in  which  the  disturbance  affects  the driving pressure  drop;
therefore, in this work we apply the methodology presented in [12] to study the effect of gravity on the
stability of a liquid plug moving inside a capillary tube when the constant pressure difference applied
between the front and rear gas phases is slightly perturbed.  We consider the case in which the tube
radius is small enough so that the flow can be regarded as symmetric around the centre of the tube.
The Bond number that measures the ratio between gravity and surface tension forces may be positive
or  negative  depending  on  whether  the  plug  propagates  against  or  with  the  direction  of  gravity,
respectively.

The paper is organized as follows. In the next section we present the governing equations with their
boundary conditions and briefly discuss the numerical methodology used to solve them. In Section 3,
we present selected numerical results that show how gravity affects the stability of the plug. Finally,
Section 4 concludes the paper.

2.  Mathematical formulation and numerical solution

2.1 Governing equations and boundary conditions
We investigate  the  stability  of  the  displacement  of  an incompressible  and Newtonian liquid plug
following the methodology presented in [12].  To that end, we consider the steady-state propagation of
a plug of length  LP inside a capillary tube of radius  R coated with a film of the same liquid whose
thickness is uniform and equal to H∞

F.  Viscosity (µ), density (ρ), and surface tension (σ) are constant,
and the gas phase is regarded as inviscid.  The pressure drop,  ∆P = PBT – PBF, between the rear and
front air phases drives the motion of the liquid plug with a constant velocity U.  The pressure of the
leading bubble, PBF is taken as reference and it is arbitrarily set equal to zero.  As the plug displaces
inside  the  tube,  it  leaves  behind  a  liquid  film,  the  trailing  film,  with  thickness  H∞

T.   Since  the
displacement is steady, H∞

T= H∞
F = H∞; i.e., the trailing and precursor films have the same thickness.

In this formulation, the frame of reference moves with the displacement velocity of the liquid plug, U.
Then, the flow is described by the Navier-Stokes and continuity equations, that in dimensionless form
read as follows,

zCa
Bop

Ca
Ca evvv +∇+∇−=∇⋅ 21λ , (1)

0=⋅∇ v , (2)

where v(vr, vz) is the velocity vector scaled with U, the pressure is scaled with σ/R, and the coordinates
(r,  z) are scaled with  R;  2µρσλ RCaRe ==  is the Laplace number,  σµUCa =  is the capillary
number,  and  σρ 2gRBo =  is  the Bond number and measures  the ratio between gravitational and
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surface tension forces.  It is worth to note that a positive value of the Bond number represents a plug
moving  in  the  opposite  direction  of  the  gravity  force;  on  the  contrary,  a  negative  value  of  that
parameter corresponds to a plug which moves in the direction of gravity (see Fig. 1).

Figure 1. Sketch of the flow domain and coordinate system adopted.

The radius of the tube is small enough so that surface tension tends to dominate over other forces
and the flow can be regarded as symmetric around the tube centerline; at the tube wall the no-slip
condition is imposed,

,0=
∂
∂

=
r
v

v z
r  at r=0, (3)

1,0 == zr vv , at r=1. (4)
At  both ends of the domain, the interfaces are parallel to the  z-axe and the flow is fully developed;
therefore, the following conditions must be satisfied at the ends of the domain (see Fig. 1):

( )[ ] 1ln121
4

,0 22 +−−−−== ∞ rhr
Ca
Bovv zr , at z=0, (1-h∞)≤ r ≤ 1; (5)

,0=
∂
∂

z
vz  at z=lBD+lP+ lBT, (1-h∞)≤ r ≤ 1. (6)

In (6)  lP is  the dimensionless  length of the plug.   The gas/liquid interfaces  are material  surfaces;
therefore, the kinematic condition applies at both free surfaces

0=⋅nv . (7)
The  tangential  component  of  the  stress  balance  vanishes  at  the  interfaces  and  the  normal

component adopts the following expression, 





−
−

=+−
BT

nn p
SCap

H
H

2
02

, (8)

where  nSn ⋅⋅=nnS ,  S being the rate of strain tensor and  n⋅∇−= s2/1H  the interface curvature.
The governing equations (1) and (2) with boundary conditions (3) – (8) are numerically solved as
described in the next paragraphs; their solution provide pressure and velocity fields as well as the
location of the free surface.  Since under steady state propagation the length of the plug is fixed, the
position of the tips of the front and rear gas bubbles is fixed. The symmetry of the interface at those
points  supplies  the  two  additional  equations  needed  to  obtain  the  film  thickness,  h∞,  and  the
dimensionless pressure of the back gas phase, pBT, to complete the solution.
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2.1.  Numerical method.
The numerical technique employed uses the Galerkin/finite element method with the parameterization
of the free surface by means of spines.  The physical domain is tessellated into quadrilateral elements;
mixed interpolation is used to approximate the velocity and pressure fields, and the coefficients that
locate the free surface are interpolated by the one-dimensional specialization of the bi-quadratic basis
functions that interpolate the velocity.

Weighted  residuals  are  built  in  the  usual  form and  the  resulting  set  of  algebraic  equations  is
simultaneously solved through a Newton loop.  The iterative process is stopped when the norm of the
difference between two consecutive iterations is smaller  than or equal to 10-6.   Further details are
provided in refs. [11] and [12].

Similar tests to those described in ref. [12] were carried out to select an appropriate finite element
mesh; in particular we seek for the invariance of the film thickness and the pressure drop with the
mesh and elements size. As a result of those trials, the meshes used to compute the solutions presented
in this work have between 10016 and 12608 elements depending on lP.

Figure 2. Comparison of the predictions of the film thickness of a large plug (lines) with those for a
semi-infinite bubble reported by Hazel and Heil (symbols).

When the plug is sufficiently large, the front and rear menisci do not interact and the problem can
be split into two smaller ones. Moreover, under these circumstances the film thickness is determined
by the propagation of a semi-infinite bubble for the same value of λ, Ca, and Bo.  Hazel and Heil [13]
investigated the propagation of an air finger into a tube when gravity acts parallel to the tube axis.
Even when that paper considers flexible tubes of elliptical or rectangular sections, the authors report
numerical solutions for a circular tube within a wide range of capillary number, when inertia forces are
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negligible and the Bond number is equal to 0.45 and -0.45.  In order to validate our numerical code,
we carried out computations for a large plug and the same values of  Ca and  Bo used by Hazel and
Heil; in Figure 2 we compare our prediction for the film thickness with those reported in ref. [13].

3.  Results
As we have mentioned in the Introduction to establish whether or not the steady displacement of a
liquid plug is stable, it suffices to analyze the steady state results conveniently organized. To that end
the curves of h∞ for a fixed value of both the capillary number and the driving pressure drop are drawn
as a function of lP for selected values of the Bond and Laplace numbers.  The analysis presented in ref.
[12] for  Bo=0, shows that the slope of those curves can be related to the stability of a given plug
driven by a constant pressure drop (∆p) as follows: 

A liquid plug corresponding to a point where ( ) 0>∂∂
∆∞ pplh , is stable to small disturbances

of ∆p.
Any steady plug located at a point where ( ) 0<∂∂

∆∞ pplh  is unstable.
Briefly, this result can be understood from the following analysis: when the driving pressure is

perturbed, the speed of plug propagation is also affected, leading to a corresponding variation in the
thickness of the trailing film (the precursor film is not affected by the perturbation).  The resulting
inflow/outflow  imbalance  modifies  the  volume  —i.e.  length—  of  the  liquid  plug.   Once  the
perturbation disappears, whatever the change underwent by lP,  h∞ will suffer a variation of the same
sign if ( ) 0>∂∂

∆∞ pplh , leading to a new inflow/outflow imbalance that tends to recover the original
plug  volume.  At  this  point  the  inflow/outflow  ratio  becomes  one.   The  opposite  happens  when
( ) 0<∂∂

∆∞ pplh .
The selection of the range of values of the dimensionless parameters that characterize the problem

depends on the particular application.  In this work we consider a liquid with properties  ρ=1 g/cm3,
µ=6 cP, and σ=50 dyn/cm; therefore for liquid plugs propagating with velocity between 0.08 m/s and
0.8  m/s  in  a  conduit  of  radius  approximately  equal  to  0.7mm,  the  resulting  set  of  dimensionless
parameters is λ=1000, Bo=0.1 and 0.01≤Ca≤0.1.  This set may represent a liquid slug moving in the
lung airways [14].  It is important to remember that in the coordinate system adopted, a positive Bond
number represents a plug propagating against the direction of gravity while a negative Bond number
accounts for the opposite situation (see Fig. 1).  Also, the radius of the conduit chosen in this work is
consistent with the assumption that gravity force does not affect the axial symmetry of the flow.

We carried out computations for plug lengths between 0.05 and 4.3 and Bo equal to ±0.1 and ±0.2.
The predictions of h∞ and ∆p for each set (Ca, lP) were used to build the stability charts corresponding
to a selected value of the Laplace and Bond numbers.  Each of the charts shown in Figs. 3-6 demanded
about 400 individual simulations; curves for a fixed value of Ca (thin dashed blue lines) were plotted
directly, while those for a fixed value of  ∆p (black solid lines) were obtained by interpolation.  In
Figures 3-6, we illustrate the maps for Bo equal to 0.1, 0 and -0.1.  In those figures, the stable region is
approximately enclosed by the thick-red-dashed line.

When the effect of gravity is negligible, i.e. when the axis of the tube is normal to gravity, the
stable region encompasses  short  plugs (lP<0.6) moving with a  velocity  corresponding to capillary
numbers between 0.0562 and 0.112, approximately (see fig.3).

The  map  illustrated  in  Figure  4  represents  plugs moving against  gravity.   If  these  results  are
compared with those depicted in Figure 3 for Bo=0, we see that the stable region is now smaller.  The
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length of the largest stable plugs is now equal to or smaller  than 0.5 and the range of displacing
velocities in which the steady motion is not affected by a perturbation of ∆p is slightly narrower.

Figure 3. Steady state film thickness as a function of the plug length for λ=1000, Bo=0, and selected
values of the capillary number (thin dashed blue lines).  Black solid lines are curves of constant ∆p.
Steady  state  solutions  within  the  region  delimited  by  the  thick  dashed  red  line  —where
( ) 0>∂∂

∆∞ pplh — are stable.

Solutions presented in Figure 5 for Bo= -0.1, i.e. for plugs moving in the same direction as gravity,
show two regions of stable displacements.  The upper one expands the stable zone delimited in Figure
3 for  Bo=0: it comprises larger plugs which can propagate within a wider range of velocities.  The
lower one appears for  Ca smaller than approximately 0.017 where it can be easily verified that the
numerical  predictions  of  the  film  thickness  for  a  given  value  of  the  driving  pressure  drop
monotonically increases with the length of the plug.

The above results point out that depending on the direction of the displacement of the slug with
respect to gravity, the steady state propagation of a given plug may be stable or unstable.  Also, for the
three Bo considered the upper limit of the stable region seems to be a line where h∞ is approximately
constant for a certain ∆p.  This limit represents marginally stable plugs which move with decreasing
velocity as the length of the plugs increases.  Also, the propagation of a long liquid plug may be stable
depending on the values of the capillary and the Bond number when  λ is fixed.  For instance, for
λ=1000 and Bo= -0.1, the above statement is true for Ca< 0.013335, approximately.

Numerical solutions computed for other values of the Bond number (see Figure 6) show that the
size of the stable region continuously increases (or decreases) as that parameter becomes bigger for
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liquid  plugs  moving  in  the  same  (opposite)  direction as  gravity  force.   Moreover,  the  two stable
regions present for Bo= -0.1 have merged into a larger one when that parameter is equal to -0.2.

Figure 4. Steady state film thickness as a function of the plug length for λ=1000, Bo=0.1, and selected
values of the capillary number (thin dashed blue lines).  Black solid lines are curves of constant ∆p.
Steady  state  solutions  within  the  region  delimited  by  the  thick  dashed  red  line  —where
( ) 0>∂∂

∆∞ pplh — are stable.

4.  Conclusion
In this paper we have applied the methodology presented in a previous work to analyze the effects of
gravity on the stability of the steady state propagation of a liquid plug in a capillary tube lined with a
uniform thin liquid film.

The stability maps show that the size of the stable region for a given Laplace number shrinks as the
Bond number is augmented when the plug moves against gravity.  On the other hand, if the plug
propagates in the direction of gravity, one or two stable regions are detected depending on the value of
Bo.  Moreover, in this case the steady displacement of large plugs can be stable, a situation which is
not observed when gravity effects are negligible.

FLUIDOS 2010: XI Meeting on Recent Advances in the Physics of Fluids and their Applications IOP Publishing
Journal of Physics: Conference Series 296 (2011) 012018 doi:10.1088/1742-6596/296/1/012018

7



Figure 5. Steady state film thickness as a function of the plug length for λ=1000, Bo=-0.1, and selected
values of the capillary number (thin dashed blue lines).  Black solid lines are curves of constant ∆p.
Steady  state  solutions  within  the  region  delimited  by  the  thick  dashed  red  line  —where
( ) 0>∂∂

∆∞ pplh — are stable.
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Figure 6. Marginally stable plugs for λ=1000 and selected Bond.
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