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ABSTRACT.- We used microbial culture specific methods to assess the occurrence and diversity of fungal 
communities inhabiting symptomatic foliar tissue of Cape gooseberry (Physalis peruviana) at four different 
field plots in the northern Ecuadorian Andes. We categorized the isolated fungi based on their morphological 
characteristics and subsequently identified them through rDNA sequencing of the ITS region. We recovered 
75 ascomycetous isolates which represented 13 genera, revealing a total of 20 taxa. We found most isolates 
recovered from necrotic and straw-colored tissues to belong to the genus Alternaria. Other fungal taxa 
frequently found were Epicoccum, Diaporthe, and Xylaria. To our knowledge, this is the first study to 
report the mycobiota associated to P. peruviana plants showing disease symptoms, including 2 new genera 
of fungi for the first time in Ecuador. Our results are expected to provide useful information for future 
assessments of biological control on tropical commercial. 
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RESUMEN.- Utilizamos métodos cultivo-dependientes para evaluar la ocurrencia y diversidad de 
comunidades fúngicas que habitan en tejido foliar sintomático de uvilla (Physalis peruviana) en cuatro 
localidades del norte de los Andes ecuatorianos. Categorizamos los aislados basándonos en las características 
morfológicas de los cultivos obtenidos in vitro, los cuales identificamos al secuenciar la región de ADNr 
ITS. En total, recuperamos un total de 75 hongos ascomycetos que comprendían 13 géneros y 20 taxa.  
Encontramos que la mayoría de hongos recuperados de tejidos necróticos o cloróticos pertenecían al género 
Alternaria. Otros taxa que encontramos con frecuencia fueron Epicoccum, Diaporthe y Xylaria. A nuestro 
conocimiento, este es el primer estudio en reportar la micobiota asociada a plantas de P. peruviana que 
presenten hojas con síntomas de enfermedad, incluyendo 2 géneros de hongos nuevos para el Ecuador. 
Esperamos que nuestros resultados provean información útil para futuros estudios sobre control biológico 
aplicado a cultivos comerciales en los trópicos. 

 

PALABRAS CLAVE: Ascomycota, ADNr, ITS, patología vegetal, uvilla 
 
 

INTRODUCTION 
 

Cape gooseberry (Physalis peruviana L.) is a 
biannual shrub native from the Andean highlands 
of northern South America that can grow up to 1 m 

high (Legge 1974; Fischer 2000). In recent years, 
Cape gooseberries have gained increasing attention 
in the markets of South and Central America, due 
to the plant’s high tolerance to a broad variety of 
environments (Ramadan and Moersel 2003; Puente 
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et al. 2011). Given the variety of antioxidant types 
and high sugar content (Novoa et al. 2006), this 
crop is of great economic importance for industrial 
purposes worldwide (Morton 1987; Rehm and 
Espig 1991; McCain 1993; Ramadan and Moersel 
2003; Mazorra 2006), as it has also been widely 
used for its medicinal properties to treat cancer and 
diabetes (see review in Puente et al. 2011). 

 

In Ecuador, P. peruviana, localy known as uvilla, 
is grown in the northern region between 2 000 – 3 
000 m.a.s.l., where moderately cold temperatures 
prevail (Puente et al. 2011; Fischer et al. 2014). 
The production of P. peruviana has increased 
considerably in recent years across Ecuador due to 
its growing export demands to European countries 
(Muñoz 2003; Altamirano 2010; Fischer et al. 
2014). However, a wide array of selective pressures 
including biotic factors (herbivory, parasites) and 
abiotic stress (low nutrient availability, drought) 
may result in major production losses by inducing 
yellowing or necrosis in photosynthetic tissues 
(Douanla-Meli et al. 2013). As a result, several 
toxic pesticides (e.g. herbicides and fungicides) 
have been used in this region as agricultural 
practices to prevent plant diseases (Rodríguez- 
Amézquita et al. 2010). Yet, even though the main 
biological constraint to Cape gooseberry are fungi 
of the genera Cladosporium, Phoma, Alternaria, 
Botrytis and Colletotrichum (Angulo 2005; Fischer 
and Miranda 2012; De La-Rotta 2014), little is 
known on the mycobiota inhabiting symptomatic 
leaves of P. peruviana, which could provide useful 
information and assist crop management. 

 

Studies based solely on morphology have failed to 
be conclusive at taxonomic species level for fungi 
associated to P. peruviana (Crozier et al. 2006), 
while fungal isolates often fail to form fruiting 
structures in culture (Gazis and Chaverri 2010). 
Thus, considering that leaves, as ecological niches, 
might influence the diversity and composition of 
fungal symbionts (Kriel et al. 2000), the present 
study is aimed at understanding the community 
structure and diversity of fungi isolated from 
symptomatic leaves of Cape gooseberry in the 
Andean highlands of northern Ecuador. 

 

MATERIALS AND METHODS 
 

Sample collection.- We collected unhealthy leaf 
samples showing necrosis symptoms or straw- 
colored tissues in plantations of Physalis peruviana 
during June 2015 at four different sites of the 
Pichincha Province in the northern Ecuadorian 

Andes: La Merced (00º17.635´  S,  078º24.158´  
W, 2 611 m.a.s.l.), Virgen de Lourdes (00º17.311´ 
S, 078º24.384´ W, 2 628 m.a.s.l.), Tumbaco 
(00º13.539´   S,   078º23.979   W,   2   450 m.a.s.l.), 
and  Yaruquí   (00º11.596´   S,   078º19.710´   W,  2 
579  m.a.s.l.).  We   randomly  selected  14  mature 
P. peruviana (2 to 7 plants per site > 0.5 m in height) 
and then transported 75 leaf samples (5 x 5 mm) to 
the laboratory in sterile plastic bags. We stored the 
leaves for 2 d at -10 °C before the isolation of fungi. 

 

Isolation of fungi.- To isolate fungi, we followed  
a modified protocol from Crous et al. (2009). In 
order to induce sporulation, we surface-disinfected 
the samples through immersion in 70 % ethanol 
for 1 min and 3 % sodium hipochlorite for 5 min. 
We rinsed the samples with sterile distilled water 
three times before transferring them to Petri  
dishes (90 mm) that contained a sterile Potato 
Dextrose Agar (PDA, Difco Laboratories, Detroit, 
MI) supplemented with streptomycin to suppress 
bacterial proliferation. We incubated the plates at 
25 °C with a 12-h photoperiod and checked them 
regularly for fungal growth for 7 to 15 days. After 
fungal growth was visible, we subcultured different 
colonies on new Petri dishes with the same medium 
for further purification and identification (Crozier et 
al. 2006). We categorized and divided filamentous 
fungi isolates based on the morphology of the 
colonies. 

 

DNA  extraction.-  We  collected  about  10   mg 
of fresh fungal tissue using a sterile scalpel and 
extracted genomic DNA using the Wizard Genomic 
DNA Purification Kit (Promega, Madison, WI) in 
accordance with the manufacturer’s instructions. 
To each tissue sample, we added 600 μl of nuclear 
lisis solution and vortexed the resulting solution 
for 15 min at 65 °C, followed by  15  min  of 
water immersion at 37 °C. Then, we added 3 μl   
of RNAase solution and incubated the resulting 
solution at room temperature for 5 min, before we 
mixed it with a protein precipitation solution. We 
vortexed the samples for 15 s and centrifuged the 
protein precipitation solution at 13 000–16 000 g 
for 3 min. We transferred the supernatant liquid into 
a 1,5 mL fresh tube mixed with 600 μl ethanol at 
room temperature and centrifuged the columns at 
13 000–16 000 g for 1 min, before we discarded 
the flow-through. Finally, we washed the samples 
as per manufacturer’s protocol and we quantified 
the purified DNA concentration with a Qubit® 
2.0 Quantitation Starter Kit (Invitrogen, USA) 
following instructions provided by the manufacturer 
and stored the tubes at -20 ºC. 
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PCR amplification.- Weused PCR toamplifyprimer 
pairs of the Internal Transcribed Spacers (ITS), 
ITS4 (5′-TCCTCCGCTTATTGATATGC-3′) and 
ITS5 (5′-GGAAGTAAAAGTCGTAACAAGG-3′), 
which are rDNA genes commonly used for fungal 
barcoding (White et al. 1990). We performed PCR 
using GoTaq Green Master mix (Promega, Madison, 
WI) according to manufacturer’s instructions. We 
carried out reactions in 25 µl volume samples as 
follows: first initial denaturation at 94 °C for 5 min, 
followed by 30 cycles at 94 °C for 30 s, 55 °C for 
30 s, 72 °C for 30 s, and a final elongation at 72 °C 
for 10 min in a mixture of 22 µl GoTaq® Green 
Master Mix, 10 µM of primers and 2 µl of template. 
We analyzed PCR products by electrophoresis on  
a 2,5 % (w/v) agarose gel containing Sybr Safe 
(Invitrogen, Mulgrave, Australia) and visualized 
them under UV light. We purified the samples using 
the Wizard SV Gel and PCR Clean-up System 
(Promega). Reaction mixtures were sequenced by a 
private biotechnology company (Macrogen, Seoul, 
South Korea). 

 

Fungal identification.- To identify the fungal 
isolates based on ITS, we compared nucleotide 
sequences against GenBank’s database using the 
basic local alignment search tool (BLASTn) with 
the National Center for Biotechnology Information 
(NCBI, Bethesda, MD) database. Whenever 
possible, we defined fungi species considered in 
this study using an ITS similarity threshold of 97 % 
to sequences deposited in GenBank (Nilsson et al. 
2008). If the ITS sequence was not discriminant at a 
species level, we assigned the isolates to the closest 
taxonomic unit. We deposited all gene sequences 
retrieved in this work in the GenBank database under 
the accession numbers: MF434350.1–MF435178.1. 
Fungal classification follows MycoBank (http:// 
www.mycobank.org) database. 

 

Statistical analysis.- We measured fungal 
occurrence considering both, the colonization 
frequency (CF) and the relative frequency of 
isolation (RF). We calculated CF as the total 
number of segments colonized by a given fungus 
divided by the total number of segments in that 
sample, expressed as percentage. We determined 
RF as the total number  of  segments  colonized  
by a given taxon divided by the total number of 
taxa. We calculated fungal species dominance, 
diversity, and richness using Simpson’s, Shannon’s 
and Margalef’s indices, respectively. We included 
singlets (occurrence of ≤ 2 isolates) for all 
analyses as they are likely to be keystone species 
of symptomatic foliar tissues (Gazis and Chaverri 

2010). We calculated all diversity indices with 
PAST, version 1.9 (Paleontological Statistics) 
software (Hammer et al. 2001), in accordance to the 
following formulas: 

 

1. Simpson’s diversity (1-D) = 1-Σ(pi)2 

2. Shannon-Wiener index (H’) = -Σp
i 
(log

2
p

i
) 

3. Margalef’s (Dmg) = (S-1) / ln N 
 

where, pi is the proportion of colonization frequency 
of a given taxon, S is the total number of taxa 
isolated, and N is the number of species recorded. 

 

RESULTS 
 

Identification by ITS rDNA sequencing showed 
that all fungal isolates recovered in this study were 
Ascomycota, placed in seven orders: Pleosporales, 
Xylariales, Capnodiales, Glomerellales, 
Dothideales, Diaporthales  and  Hypocreales.  
Most  isolates  belonged  to  the   Pleosporales   
(40 %) and Xylariales (20 %) orders. BLAST 
analysis revealed 13 different  genera  associated 
to symptomatic tissues of P. peruviana, while we 
were not able to identify the genus of two isolates 
and limited their categorization to the order level 
(Table 1). From a total of 20 identified taxa, the 
most frequently recovered fungal genera were 
Alternaria, Epicoccum and Diaporthe (Table 2), 
while 20 % of the isolates occurred as doubletons 
(occurrence of 2 isolates) and 50 % occurred only 
once. Fungal communities showed a low overall 
isolation rate of 5 ± 7.50 %, while diversity indices 
displayed high values for species dominance (1-D 
= 0,85), diversity (H’ = 3,33), and richness (Dmg = 
4,40). 

 

DISCUSSION 
 

To date, almost all species in the  plant kingdom 
are known to host bacteria or fungi within the intra 
and inter-cellular spaces of their vegetative tissues 
(Petrini 1996; Arnold and Lutzoni 2007; Mondal et 
al. 2007; Hyde and Soytong 2008, Ghimire et al. 
2011, Rocha et al. 2011, Douanla-Meli et al. 2013). 
Despite the fact that there is no apparent harm caused 
by these microorganisms on the plant’s health, many 
fungal species have been reported to enter the plant 
trough stomata or wounds (Andersen and Walker 
1985; Schulz and Boyle 2006; Sieber 2007), while 
some species may act as latent pathogens during the 
host’s senescence (Photita et al. 2004; Promputtha 
et al. 2007; Rodríguez and Redman 2008; Prihastuti 
et al. 2009). 
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Tabla 1. ITS-based identification of fungal isolates recovered from symptomatic leaves of Physalis 
peruviana in the Ecuadorian Andes. 

 

 

 
 
 

 
Proposed fungal taxon 

a GenBank
 

 

QC Id 

 

Sequence 

b Top BLAST 

search results 

 
 

Reference 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a All sequences were deposited in the NCBI GenBank (Accession No. column). QC: query cover, Id: identity. b 

 
Sequences available in GenBank used for comparisons with sequences obtained in this study via BLAST software. 

 Accesion No. (%) (%) length (bp) (GenBank 

accession No.) 

 

Alternaria sp. MF435050.1 100 100 568 KM215624.1 Raja et al. 2015 

 
Bipolaris cynodontis 

 
MF435062.1 

 
100 

 
100 

 
541 

 
KJ909767.1 

 
Manamgoda et al. 2014 

 
Cercospora dubia 

 
MF435168.1 

 
99 

 
100 

 
537 

 
KX287277.1 

 
Videira et al. 2016 

 
Colletotrichum boninense 

 
MF435150.1 

 
100 

 
98.99 

 
592 

 
JX258799.1 

 
Weir et al. 2012 

 
Colletotrichum gloeosporioides 

 
MF435164.1 

 
100 

 
100 

 
571 

 
KM257026.1 

 
Waculicz-Andrade et al. 2017 

 
Diaporthe helianthi 

 
MF435054.1 

 
98 

 
97.73 

 
579 

 
AJ312356.1 

 
Rekab et al. 2004 

 
Diaporthe sp. 

 
MF435071.1 

 
100 

 
99.65 

 
572 

 
KC339218.1 

 
Panno et al. 2013 

 
Didymella glomerata 

 
MF435166.1 

 
100 

 
99.81 

 
538 

 
AY183371.1 

 
Catal 2002 

 
Dothideales sp 

 
MF435051.1 

 
99 

 
99.64 

 
553 

 
HQ607988.1 

 
Rodrigues et al. 2011 

 
Epicoccum nigrum 

 
MF435053.1 

 
100 

 
100 

 
544 

 
KX869965.1 

 
Kernaghan et al. 2017 

 
Fusarium equiseti 

 
MF435058.1 

 
100 

 
100 

 
547 

 
KR094440.1 

 
Kaur et al. 2016 

 
Fusarium venenatum 

 
MF435064.1 

 
100 

 
100 

 
523 

 
KP295496.1 

 
Stefańczyk et al. 2016 

 
Nigrospora oryzae 

 
MF435092.1 

 
100 

 
100 

 
550 

 
EU272503.1 

 
Miles et al. 2012 

 
Periconia byssoides 

 
MF435088.1 

 
97 

 
99.82 

 
577 

 
MK370654.1 

 
Herrmann et al. 2019 

 
Phoma sp. 

 
MF435059.1 

 
100 

 
99.26 

 
538 

 
JN207257.1 

 
Loro et al. 2012 

 
Pleosporales sp. 

 
MF435097.1 

 
100 

 
99.62 

 
533 

 
HQ631051.1 

 
Shrestha et al. 2011 

 
Stagonosporopsis cucurbitacearum 

 
MF435112.1 

 
100 

 
100 

 
552 

 
GU045304.1 

 
Ling et al. 2010 

 
Xylaria multiplex 

 
MF435085.1 

 
99 

 
99.66 

 
588 

 
KP133436.1 

 
Thomas et al. 2016 

Xylaria sp. MF435158.1 100 98.45 576 FJ799949.1 Van Bael et al. 2009 

Xylaria venosula MF435102.1 97 99.65 587 EF026149.1 Hsieh et al. 2010 
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Tabla 2. Total number of isolates, isolation rate (%) and relative frequency of ascomycetous fungi 
recovered from symptomatic foliar tissues of Physalis peruviana in the Ecuadorian Andes. 

 

 

 
 

Taxa No. Isolates Isolation rate Relative 

                  (%) frequency 

Capnodiales    

Cercospora malayensis 1 0.775 0.0244 

Diaporthales    

Diaporthe helianthi 3 2.326 0.0732 

Diaporthe sp. 11 8.527 0.2683 

Dothideales    

Dothideales sp. 1 0.775 0.0244 

Glomerellales    

Colletotrichum boninense 1 0.775 0.0244 

Colletotrichum gloeosporioides 1 0.775 0.0244 

Hypocreales    

Fusarium equiseti 2 1.550 0.0488 

Fusarium venenatum 1 0.775 0.0244 

Pleosporales    

Alternaria sp. 22 17.054 0.5366 

Bipolaris cynodontis 2 1.550 0.0488 

Didymella glomerata 2 1.550 0.0488 

Epicoccum nigrum 15 11.628 0.3659 

Periconia byssoides 1 0.775 0.0244 

Phoma sp. 2 1.550 0.0488 

Pleosporales sp. 1 0.775 0.0244 

Stagonosporopsis cucurbitacearum 1 0.775 0.0244 

Xylariales    

Nigrospora oryzae 3 2.326 0.7320 

Xylaria multiplex 3 2.326 0.0732 

Xylaria sp. 1 0.775 0.0244 

Xylaria venosula 1 0.775 0.0244 

 

 

In the  present  study,  we  used  ITS  sequencing  
to identify fungal communities inhabiting 
symptomatic leaves of P. peruviana. Our results 
are consistent with previous studies that have also 
shown a dominance by Ascomycota members 
within fungal assemblages of tropical plants (Arnold 
and Lutzoni 2007; Gonzaga et al. 2015). Previous 
studies on fungal assemblages of commercial 
crops have reported Alternaria, Colletotrichum, 
Epicoccum, Fusarium, Nigrospora, Phoma, and 
Xylaria taxa inhabiting foliar tissues (Crous et al. 
1995; Gazis and Chaverri 2010; Parsa et al. 2016). 
However, most studies have focused on isolating 
fungal endophytes inhabiting asymptomatic aerial 
organs, while very few of them have investigated 
the fungal species from symptomatic tissues 
(Maher et al. 2012; Bruez et al. 2014; Dávila et   
al. 2018). This work constitutes the first report 

of mycobiota on Cape gooseberry, from which 
Alternaria, Bipolaris, Cercospora, Colletotrichum, 
Didymella, Epicoccum, Fusarium, Nigrospora, 
Phoma and Xylaria taxa have been previously 
reported in Ecuador (Evans and Reeder 2000; Pacin 
et al. 2003; Ramírez et al. 2006; Thomas et al. 
2008; Cornejo-Espinoza 2014; Moya-Maldonado 
2016; Dávila et al. 2018), whereas Periconia and 
Stagonosporopsis represent new records for the 
mycoflora of continental Ecuador and are reported 
for the first time in P. peruviana within its center of 
origin. 

 

The overall colonization of fungal species screened 
in the present study is low when compared to that 
reported in asymptomatic tissues of other plant 
species (Arnold and Lutzoni 2007; Sun et al. 2008). 
However, the diversity and richness of species is 
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similar to other studies of fungal communities 
inhabiting symptomatic tissues in tropical crops 
(Dávila et al. 2018). Furthermore, the most dominant 
genera isolated in the current study were Alternaria 
and Epicoccum, which coincides with other fungal 
communities from tropical angiosperms (Parsa et 
al. 2016). Within the fungal isolates obtained here, 
we detected common Cape gooseberry pathogens 
belonging to the genera Alternaria, Fusarium, 
Colletotrichum, Phoma and Cercospora (Rao and 
Subramonian 1976; Zapata et al. 2002; Angulo 
2005; Fischer and Miranda 2012; De La-Rotta 2014) 
although only the Alternaria genus was isolated 
considerably in this study. As we did not conduct 
Koch’s postulates for the isolates obtained in this 
study, our results do not imply that the isolated taxa 
are pathogenic. 

 

The great diversity of fungal species reported in this 
study is expected to provide novel information for 
the crop management and biological control on the 
Ecuadorian Cape gooseberry, when dealing with 
necrosis symptoms in leaves. The current inventory 
of fungal species in P. peruviana suggests potential 
sources of culturable secondary metabolites 
isolated from decaying foliar tissues  (Paparu  et 
al. 2008), which may help to establish healthier 
agricultural practices, while it also contributes to 
the ecological understanding of specificity patterns 
shown by fungal communities. Further research of 
fungal interactions in Cape gooseberry is needed  
to comprehend the role that the most abundant 
species isolated in this study play within the fungal 
assemblages of symptomatic leaf tissues. 
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