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Abstract

Natural frequencies of tapered orthotropic rectangular plates with a central free hole and
edges restrained against rotation and translation are studied by using orthogonal polynomials

in the Rayleigh±Ritz method and applying a generalization of the Rayleigh±Schmidt method.
The two methods are quite general and can be used to study plates with any combinations of
boundary conditions, taper and geometric parameters. To demonstrate the accuracy of the
present approach natural frequency coe�cients are given for isotropic plates with a central

free hole, from which comparison results are available. New results are also given for ortho-
tropic plates with several complicating e�ects. The studied problems are of interest in several
®eld of engineering, since holes are present in plates due to operational conditions. # 2001

Elsevier Science Ltd. All rights reserved.

1. Introduction

The determination of natural frequencies in transverse vibration of uniform
thickness isotropic rectangular plates with complicating e�ects, such as elastically
restrained edges and presence of holes with free edges, is a problem that has been
extensively studied by several researches [1±6]. There is a comparatively limited
amount of information on the vibration of isotropic and orthotropic plates with
variable thickness and internal holes.
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The present paper deals with the determination of natural frequencies of rectan-
gular isotropic and orthotropic plates with thickness variation, elastically restrained
edges and a central rectangular free hole.
Frequency coe�cients and eigenfunctions are obtained for di�erent aspect ratios

using several terms in the assumed shape function, when using the Ritz method
along with orthogonal polynomials. On the other hand the fundamental frequency
coe�cient is obtained by using the Rayleigh±Schmidt method with various co-ordinate
functions containing optimization parameters. It is the purpose of the present paper
to present some technically interesting results for the natural frequencies of rectangular
plates having an internal hole, since these are present in plates due to operational
conditions, namely passage of conduits or ducts, electric conductors, and also con-
stitute common structures used in naval as well as in ocean engineering.

2. Analysis

The maximum kinetic energy of the plate freely vibrating with amplitude W x̂; ŷ� �
and radian frequency o is given by:

Tmax � �!
2

2

� �
R

h x̂; ŷ� �W2 x̂; ŷ� �dx̂dŷ �1�

where � is the mass density of the plate material, h x̂; ŷ� � is the non-uniform plate
thickness and the integration is carried out over the entire plate domain R. In the
present study, the variation of thickness has been taken into account considering
linear variation in x̂ and ŷ directions. The function that represents this variation is
given by:

h � h x̂; ŷ� � � h 1� �f x̂� �g ŷ� � �2�

f x̂� � � 1� c1
x̂

a

� �
g ŷ� � � 1� c2

ŷ

b

� �
�3�

where h 1� � is the value of h referred to edge 1, a and b are the side lengths of the plate
in the x̂ and ŷ directions and c1; c2 are the taper parameters (see Fig. 1). The max-
imum strain energy of the mechanical system is given by:

Umax � Up;max �Ur;max �Ut;max �4�

Up;max is the strain energy due to plate bending and is given by:

Up;max � 1

2

� �
R

Dx Wx̂x̂� �2�Dy Wŷŷ

ÿ �2�2�yDxWx̂x̂Wŷŷ � 4Dxy Wx̂ŷ

ÿ �2h i
dx̂dŷ �5�

where Dx and Dy are the ¯exural rigidities, Dxy is the torsional rigidity and they are
given by
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Dx x̂; ŷ� � � D 1� �
x f3 x̂� �g3 ŷ� �; D 1� �

x �
Ex h 1� �ÿ �3

12 1ÿ �x�y

ÿ �
Dy x̂; ŷ� � � D 1� �

y f3 x̂� �g3 ŷ� �; D 1� �
y �

Ey h 1� �ÿ �3
12 1ÿ �x�y

ÿ �
D 2� �

x � D 1� �
x f3 a� �g3 b� � � D 1� �

x C; D 2� �
y � D 1� �

y f3 a� �g3 b� � � D 1� �
y C; C � 1� c1� �3 1� c2� �3

Dxy x̂; ŷ� � � D 1� �
xy f

3 x̂� �g3 ŷ� �; D 1� �
xy �

Gxy h 1� �ÿ �3
12

where Ex and Ey are the Young's moduli in the x̂ and ŷ directions respectively, Gxy

is the shear modulus and �x, �y are the Poisson's ratios.
The maximum strain energy stored in rotational and translational springs at the

plate edges are, respectively:

Ur;max � 1

2

�
r1

�b
0

Wx̂ 0; ŷ� �� �2dŷ � r2

�b
0

Wx̂ a; ŷ� �� �2dŷ

� r3

�a
0

Wŷ x̂; 0� �ÿ �2
dx̂ � r4

�a
0

Wŷ x̂; b� �ÿ �2
dx̂

� �6�

and

Ut;max � 1

2

�
t1

�b
0

W 0; ŷ� �� �2dy� t2

�b
0

W a; ŷ� �� �2dŷ

� t3

�a
0

W x̂; 0� �� �2dx̂ � t4

�a
0

W x̂; b� �� �2dx̂
� �7�

Fig. 1. The mechanical system investigated in the present study.
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The constants ri and ti (i=1,...,4) are, respectively, the rotational and translational
spring parameters along the corresponding edges. In the case of the mechanical
system shown in Fig. 1, the governing boundary conditions which correspond to the
external boundary of the plate are given by:

r1Wx̂ � Dx Wx̂x̂ � �yWŷŷ

ÿ �
t1W � ÿ DxWx̂x̂x̂ � 4Dxy � �yDx

ÿ �
Wx̂ŷŷ

� � � x̂ � 0� � �8a�

r2Wx̂ � ÿDx Wx̂x̂ � �yWŷŷ

ÿ �
t2W � DxWx̂x̂x̂ � 4Dxy � �yDx

ÿ �
Wx̂ŷŷ

�
x̂ � a� � �8b�

r3Wŷ � Dy Wŷŷ � �xWx̂x̂

ÿ �
t3W � ÿ DyWŷŷŷ � 4Dxy � �xDy

ÿ �
Wx̂x̂ŷ

� � � ŷ � 0� � �8c�

r4Wŷ � ÿDy Wŷŷ � �xWx̂x̂

ÿ �
t4W � DyWŷŷŷ � 4Dxy � �xDy

ÿ �
Wx̂x̂ŷ

�
ŷ � b� � �8d�

On the other hand the boundary conditions which correspond to the central free
hole makes the exact treatment of the problem exceedingly complicated, since it is
extremely di�cult, if not impossible, to obtain co-ordinate functions which satisfy,
identically, all the boundary conditions. But, as it is well known it is not necessary to
subject the co-ordinate function to the natural boundary conditions. It is su�cient
that they satisfy the geometric ones since as the number of co-ordinate functions
approaches in®nity, the natural boundary conditions will be exactly satis®ed [7].
Consequently, when using the Rayleigh±Ritz method with a complete set of trial
functions it is possible to ignore the natural boundary conditions in (8) and all the
boundary conditions, which correspond to the free hole. On the other hand, in the
application of the Rayleigh±Schmidt method, since only a few number of co-ordinate
functions are used, it is convenient to replace the original natural boundary conditions
by the following more easily applied conditions:

R1Wx �Wxx

T1W � ÿWxxx

o
x � 0� � �9a�

R2Wx � ÿWxx

T2W �Wxxx

o
x � 1� � �9b�

R3Wy �Wyy

T3W � ÿWyyy

o
y � 0� � �9c�

R4Wy � ÿWyy

T4W �Wyyy

o
y � 1� � �9d�

where

R1 � r1a

D
1� �
x

; T1 � t1a
3

D
1� �
x

; R2 � r2a

D
2� �
x

; T2 � t2a
3

D
2� �
x

;
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R3 � r3b

D
1� �
y

; T3 � t3b
3

D
1� �
y

; R4 � r4b

D
2� �
y

; T4 � t4b
3

D
2� �
y

The change of variables x � x̂=a and y � ŷ=b has been used in Eq. (9) and will be
used in the following in order to work in more adequate intervals of integration.

3. The Rayleigh±Ritz method

The assumed shape function for using the Rayleigh±Ritz procedure are given by

W x; y� � �
X
i

X
j

cijpi�x�qj�y�
" #

�10�

where pi x� � and qj y� � are the orthogonal polynomials, and cij are the arbitrary coef-
®cients which are to be determined. The procedure for the construction of the
orthogonal polynomials has been developed by Bhat [8,9]. A brief description of the
procedure to obtain the set of orthogonal polynomials is given here.
The ®rst member of the set, p1 x� � is obtained as the simplest polynomial that

satis®es the geometrical boundary conditions. Assume

p1�x� �
X5
i�1

aix
iÿ1

" #
�11�

The arbitrary constants, ai are determined by substituting Eq. (11) in the mentioned
boundary conditions. The higher members of the set are obtained employing the
Gram±Schmidt orthogonalization procedure as"

p2 x� � � xÿ B2� �p1 x� �
pk x� � � xÿ Bk� �pkÿ1 x� � ÿ Ckpkÿ2 x� �

#
�12�

where Bk �
� 1

0
� x� �x pkÿ1 x� �� �2dx� 1

0
� x� � pkÿ1 x� �� �2dx

; Ck �
� 1

0
� x� �xpkÿ1 x� �pkÿ2 x� �dx� 1

0
� x� � pkÿ2 x� �� �2dx

where � x� � is a weight function used in the orthogonalization. For tapered plates
with thickness varying as Eq.(2), � x� � can be taken as h x� � itself.
The polynomials set along the y direction is also generated using the same procedure.
The natural frequencies are obtained from the Rayleigh quotient as:

!2 � Umax

Tmax

� �
�13�

Minimization of the Rayleigh quotient (13) with respect to each parameter cij, leads
to the necessary conditions
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@!2

@cij
� 0

� �
�14�

Substituting the approximate function (10) into Eq.(14) one obtains:

X
i

X
j

Kijkh ÿ O2Mijkh

� �
cij � 0

" #
�15�

where 
 �
�������
�h 1� �

H
1� �
xy

r
!a2 is the non-dimensional frequency parameter and

H 1� �
xy ��yD

1� �
x � 2D 1� �

xy

Kijkh �D 1� �
x

H
1� �
xy

X4
r�1

Px1;rik Py
1;r
jh

 !
� D 1� �

y

H
1� �
xy

r4`

X4
r�1

Px2;rik Py
2;r
jh

 !

� �y
D 1� �

x

H
1� �
xy

r2`

X4
r�1

Px31;rik Py31;rjh � Px32;rik Py32;rjh

� �" #
� 4

D 1� �
xy

H
1� �
xy

r2`

X4
r�1

Px4;rik Py
4;r
jh

 !

� D 1� �
x

H
1� �
xy

R1Rx
1
ikRy

1
jh �

D 1� �
x

H
1� �
xy

CR2Rx
2
ikRy

2
jh �

D 1� �
y

H
1� �
xy

r4`R3Rx
3
ikRy

3
jh

� D 1� �
y

H
1� �
xy

r4`CR4Rx
4
ikRy

4
jh �

D 1� �
x

H
1� �
xy

T1Tx
1
ikTy

1
jh �

D 1� �
x

H
1� �
xy

CT2Tx
2
ikTy

2
jh

� D 1� �
y

H
1� �
xy

r4`T3Tx
3
ikTy

3
jh �

D 1� �
y

H
1� �
xy

r4`CT4Tx
4
ikTy

4
jh

Mijkh �
X4
r�1

CxrikCy
r
jh; r` � a

b

The analytical expressions of the terms Px1;rik ; Px
2;r
ik ; Px

31;r
ik ; Px32;rik ; Px4;rik ; Rx

r
ik;

Txrik; Cx
r
ik; Py

1;r
jh ; Py

2;r
jh ; Py

31;r
jh ; Py32;rjh ; Py4;rjh ; Ry

r
jh; Ty

r
jh; Cy

r
jh (r=1,...,4) are given in

the Appendix A.

4. The generalized Rayleigh±Schmidt method

The assumed shape function for using the generalized Rayleigh±Schmidt method
comprising several adjustable exponents is expressed in the form:

W x; y� � �
XN
i�1

AiXi x� �Yi y� �
" #

�16�
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Xi x� � �
Xi�3
j�0

ai;jx
ni;j ; Yi y� � �

Xi�3
j�0

bi;jy
ni;j

" #

where ai;j � bi;j � 1; i � 1; :::;N; j � 4; :::; i� 3, (the other coe�cients ai,j and bi,j are
determined from the approximate boundary conditions (9), ni;j � j; i � 1; . . . ;N; j �
0; :::; i� 2 and ni;i�3 are the adjustable exponents.
Minimization of the Rayleigh quotient (13) with respect to each parameter Ai,

leads to the necessary conditions:
@!2

@Ai
� 0; i � 1; :::;N

This results in the follow eigenvalue problem

K� � ÿ
2 M� � � 0
� � �17�

where:

Kkl �D 1� �
x

H
1� �
xy

X4
r�1

Px1;rkl Py
1;r
kl �

D 1� �
y

H
1� �
xy

r4`

X4
r�1

Px2;rkl Py
2;r
kl

� �y
D 1� �

x

H
1� �
xy

r2`

X4
r�1

Px31;rkl Py31;rkl � Px32;rkl Py32;rkl

ÿ �� 4
D 1� �

xy

H
1� �
xy

r2`

X4
r�1

Px4;rkl Py
4;r
kl

� R1
D 1� �

x

H
1� �
xy

Rx1klRy
1
kl �

D 1� �
x

H
1� �
xy

CR2Rx
2
klRy

2
kl �

D 1� �
y

H
1� �
xy

r4`R3Rx
3
klRy

3
kl

� D 1� �
y

H
1� �
xy

r4`CR4Rx
4
kl �

D 1� �
x

H
1� �
xy

T1Tx
1
klTy

1
kl �

D 1� �
x

H
1� �
xy

CT2Tx
2
klTy

2
kl

� D 1� �
y

H
1� �
xy

r4`T3Tx
3
klTy

3
kl �

D 1� �
y

H
1� �
xy

r4`CT4Tx
4
klTy

4
kl

Mkl �
X4
r�1

CxrklCy
r
kl

The analytical expressions of the terms Px1;rkl ; Px
2;r
kl ; Px

31;r
kl ; Px

32;r
kl ; Px

4;r
kl ; Rx

r
kl;

Txrkl; Cx
r
kl; Py

1;r
kl ; Py

2;r
kl ; Py

31;r
kl ; Py

32;r
kl ; Py

4;r
kl ; Ry

r
kl; Ty

r
kl; Cy

r
kl (r=1,...,4) are given in

the Appendix B.
The corresponding fundamental frequency coe�cient is a function of the para-

meters ni;i�3; introduced in Eq. (16), therefore it can be written O11 � O11 ni;i�3
ÿ �

:
The Rayleigh- Schmidt procedure requires the minimization of this coe�cient with
respect to ni;i�3: Obviously, the procedure of di�erentiation in Eq. (17), for the pur-
pose of minimization is very di�cult. Nevertheless the variation of the adjustable
exponents parameter ni;i�3 in a neighbourhood of the corresponding integer value
i� 3 is su�cient to determine the approximate value for the minimum frequency
coe�cient.
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5. Numerical results

A great number of problems were solved and since the number of cases is prohi-
bitively large, results are presented for only a few cases. All calculations have been
performed taking the Poisson ratios �y � 0:3.
Table 1 depicts the fundamental and higher frequency coe�cients in the case of a

square plate of side a with concentric square perforations of side a0 � b0, for three
types of boundary conditions.

Table 1

Values of 
11; 
12; 
22 with 
ij �
�������
�h 1� �

H 1� �
xy

r
!ija

2 for a uniform square plate with a concentric square hole

ra � a0
a r` � a=b � 1

rb � b0
b 
11 
12 
22

(I)a (II)b (III)c (IV)d (II) (III) (V)e (II) (III) (V)

ra � 0:1 19.87 19.87 19.43 19.87 49.35 49.13 ± 78.43 78.31 ±

rb � 0:1
ra � 0:2 20.20 20.19 19.11 20.19 49.39 47.78 ± 77.47 76.02 ±

rb � 0:2
ra � 0:3 20.80 20.70 ± 20.70 49.51 ± ± 76.05 ± ±

rb � 0:3
ra � 0:4 21.84 21.09 20.75 21.82 45.00 41.00 ± 73.48 71.34 ±

rb � 0:4

ra � 0:1 29.27 29.27 28.69 ± 54.75 54.53 55.13 93.92 93.83 94.41

rb � 0:1
ra � 0:2 30.31 30.21 ± ± 54.84 ± 55.29 92.40 ± 93.34

rb � 0:2
ra � 0:3 32.49 32.19 31.09 ± 55.04 49.13 55.86 91.30 88.26 92.71

rb � 0:3
ra � 0:4 36.67 36.42 35.55 ± 55.11 46.50 57.50 91.52 86.08 94.16

rb � 0:4

ra � 0:1 36.54 36.50 35.67 ± 73.41 72.83 74.33 107.33 106.82 107.80

rb � 0:1
ra � 0:2 38.34 38.11 36.67 ± 73.63 69.90 74.73 105.47 104.15 106.46

rb � 0:2
ra � 0:3 42.25 41.79 40.58 ± 73.98 65.50 76.19 104.34 100.15 105.97

rb � 0:3
ra � 0:4 50.28 49.90 49.13 ± 74.75 65.92 80.57 105.04 99.19 108.67

rb � 0:4

a Rayleigh±Schmidt method.
b Rayleigh±Ritz method.
c Finite element solution.
d Reference [3].
e Reference [4].
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Table 2 depicts the fundamental and higher frequency coe�cients in the case of
a rectangular plate with aspect ratio r` � a=b � 1:5, for three types of boundary
conditions.
Tables 1 and 2 both depict comparisons of frequency coe�cients as obtained: (1)

by means of the Rayleigh±Schmidt method and (2) by means of the Rayleigh±Ritz
method with orthogonal polynomials. The frequency coe�cients have been veri®ed
using a ®nite element algorithmic procedure and also compared with those available
in the literature [3,4]. The agreement of results obtained with the Rayleigh±Ritz
method and the F.E.M is adequate from engineering viewpoint. For the case of

Table 2

Values of 
11; 
12; O22 with 
ij �
�������
�h 1� �

H
1� �
xy

r
!ija

2 for a uniform isotropic rectangular plate with a concentric

rectangular hole

ra � a0
a r` � a=b � 1:5

rb � b0
b 
11 
12 
22

(I)a (II)b (III)c (IV)d (II) (III) (V)e (II) (III) (V)

ra � 0:1 31.88 32.25 ± 32.25 98.72 ± ± 112.7 ± ±

rb � 0:1
ra � 0:2 32.01 32.63 ± 32.62 98.76 ± ± 114.53 ± ±

rb � 0:2
ra � 0:3 33.23 33.12 ± 33.11 98.59 ± ± 124.26 ± ±

rb � 0:3
ra � 0:4 34.63 34.38 ± 34.41 96.63 ± ± 123.69 ± ±

rb � 0:4

ra � 0:1 39.60 39.60 38.42 ± 102.25 101.01 103.3 138.81 137.85 139.7

rb � 0:1
ra � 0:2 41.47 40.98 38.86 ± 102.37 92.62 104.2 136.15 133.15 137.6

rb � 0:2
ra � 0:3 45.61 44.58 43.00 ± 100.55 84.00 107.6 135.04 128.05 137.9

rb � 0:3
ra � 0:4 54.84 53.73 52.54 ± 98.39 86.15 115.4 136.66 128.76 143.7

rb � 0:4

ra � 0:1 62.20 62.02 60.55 ± 148.88 146.46 151.6 177.91 148.32 179.6

rb � 0:1
ra � 0:2 67.10 66.41 64.73 ± 149.33 135.46 154.2 175.20 156.23 177.6

rb � 0:2
ra � 0:3 79.12 77.46 75.84 ± 151.04 139.49 165.2 175.34 168.59 179.7

rb � 0:3
ra � 0:4 ± 90.82 86.47 ± 174.59 172.31 198.0 181.04 177.53 191.2

rb � 0:4

a Rayleigh±Schmidt method.
b Rayleigh±Ritz method.
c Finite element solution.
d Reference [3].
e Reference [4].
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square plate (shown in Table 1) the maximum di�erences are of the order of 3%. In
the case of a rectangular plate, depicted in Table 2, the maximum di�erences are of
the order of 5%. The numbers of mesh elements used are 40�40 in Table 1 and
40�60 in Table 2. The values obtained with the Rayleigh±Schmidt method are less
accurate with respect to the values obtained with a Rayleigh±Ritz method in almost
all cases.
On the other hand, the eigenvalues determined in reference [4] constitute, in some

cases, extremely high upper bounds (in general they are rather high upper bounds
but a single term polynomial approximation was used in that study).
Table 3 depicts values of the ®rst ®ve modes frequency coe�cients 
i; with 
i ��������
�h 1� �

H
1� �
xy

r
!ia

2; (i=1,...,5) obtained by the application of the Rayleigh±Ritz method with

orthogonal polynomials, for the general case of a tapered orthotropic plate with
elastically restrained ends and with a rectangular hole.
It is observed that for all the situations depicted for isotropic plates (Table 1 and

Table 2), the values of the fundamental frequency increases with respect to the well-
known values of the fundamental frequency of the solid plate. This e�ect is de®ned
as `dynamic sti�ening' [5]. In the general case of a tapered orthotropic plate with a
concentric hole, the dynamic sti�ening can also be observed (see Fig. 2). It

Table 3

Values of 
i with 
i �
�������
�h 1� �

H
1� �

xy

r
!ia

2; i=1,...,5, for a tapered orthotropic rectangular plate with a concentric

rectangular hole and with rotational restraint R2 and translational restraint T2

R2=10 T2=100

r` � a=b ra � a0=a rb � b0=b 
1 
2 
3 
4 
5

c1 � 0 0.5 0.1 0.1 10.492 13.549 21.273 24.120 29.726

c2 � 0 0.2 0.2 10.575 13.841 21.211 24.188 30.258

0.3 0.3 10.696 14.383 21.251 24.401 30.680

1 0.1 0.2 11.847 26.513 27.803 48.810 54.408

0.1 0.3 11.872 26.495 27.905 49.030 54.355

0.2 0.3 11.926 26.350 28.392 50.093 54.299

1.5 0.2 0.1 14.819 30.971 54.232 59.250 78.311

0.2 0.2 14.834 30.995 54.334 59.122 79.092

0.2 0.3 14.849 31.039 54.427 59.054 79.823

c1=ÿ0.2 0.5 0.1 0.1 10.613 13.606 20.901 24.713 29.744

c2=0.2 0.2 0.2 10.712 13.887 20.804 24.819 29.916

0.3 0.3 10.850 14.407 20.797 25.143 30.309

1 0.1 0.2 11.844 26.551 27.087 48.351 55.631

0.1 0.3 11.868 26.479 27.237 48.607 55.601

0.2 0.3 11.922 26.269 27.790 49.729 55.631

1.5 0.2 0.1 14.410 30.861 50.671 59.914 76.968

0.2 0.2 14.418 30.930 50.730 59.782 77.951

0.2 0.3 14.427 30.019 50.798 59.661 78.956

a (R1 � R3 � T1 � T3 � 1, R4 � T4 � 0, R2 � r2a

D
2� �
x

; T2 � t2a
3

D
2� �
x

;
D 1� �

x

H
1� �
xy

� 0:5;
D 1� �

y

H
1� �
xy

� 1; �y � 0:3).
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seems reasonable to assume that the dynamic sti�ening e�ect becomes noticeable for
ra � rb > 0:25:
Figs. 3 and 4 show the variation of the square of the fundamental frequency

coe�cient (
2
11) with the orthotropic parameters �D�1�x =H�1�xy � and �D�1�y =H�1�xy �; for a

square tapered plate c1 � 0:2; c2 � ÿ0:2� � having a central free hole ra � rb � 0:3� �:
In Fig. 3 the plate is simply supported and in Fig. 4 is clamped. It would appear
from these ®gures that the variation in the square of the frequency with either

Fig. 2. Variation of fundamental frequency parameter 
11 with perforation ratio ra � rb, of a square

plate, for six di�erent orthotropic parameters. Taper parameters: c1 � 0:2; c2 � 0:4. Boundary conditions:

clamped on edge 1, simply supported on edges 3 and 4, elastically restrained on edge 2 T2 � 50;R2 � 10� �.

Fig. 3. Fundamental frequency parameters 
2
11 against D 1� �

x =H
1� �
xy and D 1� �

y =H
1� �
xy for a simply supported

tapered c1 � 0:2; c2 � ÿ0:2� � orthotropic square plate, having a central free hole �ra � rb � 0:3�.
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�D 1� �
x =H

1� �
xy � or �D 1� �

y =H
1� �
xy � is linear in almost all cases, with the slopes on Fig. 4 greater

than those on Fig. 3. These slope variations can also be observed in Fig. 5, in which
the square of the fundamental frequency parameter (
2

11) for a square tapered plate
c1 � 0:2; c2 � ÿ0:2� � having a central free hole ra � rb � 0:3� �; is plotted against the
orthotropic parameter �D 1� �

x =H
1� �
xy � for several values of the rotational restraints

R1 � R2 � R3 � R4� � and for �D 1� �
y =H

1� �
xy � � 1:5: It's interesting to point out that the

curve slope increases as Ri increases.

Fig. 4. Fundamental frequency parameters 
2
11 against D 1� �

x =H
1� �
xy and D 1� �

y =H
1� �
xy for a clamped tapered

c1 � 0:2; c2 � ÿ0:2� � orthotropic square plate, having a central free hole �ra � rb � 0:3�.

Fig. 5. Variation of fundamental parameters 
2
11 of a square tapered plate c1 � 0:2; c2 � ÿ0:2� �, having a

central free hole �ra � rb � 0:3�: with orthotropic parameter D 1� �
x =H

1� �
xy , for various values of rotational

restrains parameters R1 � R2 � R3 � R4� �: D 1� �
y =H

1� �
xy � 1:5;Ti � 1; i � 1; . . . ; 4.
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6. Conclusions

The Rayleigh±Ritz and Rayleigh±Schmidt methods have been used to obtain
computationally e�cient and accurate approximate approaches in the determination
of frequencies of free vibration of plates with a central free hole. The algorithms
developed are very general and take into account a great variety of complicating
e�ects, such as non-uniform cross sections, ends elastically restrained against rota-
tion and translation. Several particular cases were solved and the results obtained
were compared with previously published results to demonstrate the accuracy and
¯exibility of the present approaches. New results for tapered orthotropic plates with
generally restrained ends and central holes were included.
The algorithms presented have a great ¯exibility and good accuracy and constitute

an e�cient tool for the rapid and inexpensive determination of natural frequencies
in an important number of plate vibrating problems, being in consequence, of
interest in design works.
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Appendix A. De®nitions of variables and parameters in Eq. (15)

ra � a0

a
; rb � b0

b

Px1;1ik �
�1

2 1ÿra� �

0

f3�x�p00i p00kdx; Px1;2ik �
�1

2 1�ra� �

1
2 1ÿra� �

f3�x�p00i p00kdx;

Px1;3ik �
�1

1
2 1�ra� �

f3�x�p00i p00kdx;

Px1;4ik � Px1;2ik ; Px2;1ik �
�1

2 1ÿra� �

0

f3�x�pipkdx; Px2;2ik �
�1

2 1�ra� �

1
2 1ÿra� �

f3�x�pipkdx;

Px2;3ik �
�1

1
2 1�ra� �

f3�x�pipkdx; Px2;4ik � Px2;2ik ; Px31;1ik �
�1

2 1ÿra� �

0

f3�x�p00i pkdx;

Px31;2ik �
�1

2 1�ra� �

1
2 1ÿra� �

f3�x�p00i pkdx; Px31;3ik �
�1

1
2 1�ra� �

f3�x�p00i pkdx; Px31;4ik � Px31;2ik ;
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Px32;1ik �
�1

2 1ÿra� �

0

f3�x�pip00kdx; Px32;2ik �
�1

2 1�ra� �

1
2 1ÿra� �

f3�x�pip00kdx;

Px32;3ik �
�1

1
2 1�ra� �

f3�x�pip00kdx

Px32;4ik � Px32;2ik ; Px4;1ik �
�1

2 1ÿra� �

0

f3�x�p0ip0kdx; Px4;2ik �
�1

2 1�ra� �

1
2 1ÿra� �

f3�x�p0ip0kdx;

Px4;3ik �
�1

1
2 1�ra� �

f3�x�p0ip0kdx; Px4;4ik � Px4;2ik

Rx1ik � p0i 0� �p0k 0� �; Rx2ik � p0i 1� �p0k 1� �; Rx3ik �
�1
0

pi x� �pk x� �dx; Rx4ik � Rx3ik

Tx1ik � pi 0� �pk 0� �; Tx2ik � pi 1� �pk 1� �; Tx3ik � Rx3ik; Tx4ik � Tx3ik

Cx1ik �
�1

2 1ÿra� �

0

f�x�pipkdx; Cx2ik �
�1

2 1�ra� �

1
2 1ÿra� �

f�x�pipkdx;

Cx3ik �
�1

1
2 1�ra� �

f�x�pipkdx; Cx4ik � Cx2ik

Py1;1jh �
�1
0

g3�y�qjqhdy; Py1;2jh �
�1

2 1ÿrb� �

0

g3�y�qjqhdy; Py1;3jh � Py1;1jh

Py1;4jh �
�1

1
2 1�rb� �

g3�y�qjqhdy; Py2;1jh �
�1
0

g3�y�q00j q00hdy; Py2;2jh �
�1

2 1ÿrb� �

0

g3�y�q00j q00hdy

Py2;3jh � Py2;1jh ; Py2;4jh �
�1

1
2 1�rb� �

g3�y�q00j q00hdy; Py31;1jh �
�1
0

g3�y�q00j qhdy;

Py31;2jh �
�1

2 1ÿrb� �

0

g3�y�q00j qhdy; Py31;3jh � Py31;1jh ; Py31;4jh �
�1

1
2 1�rb� �

g3�y�q00j qhdy;

Py32;1jh �
�1
0

g3�y�qjq00hdy; Py32;2jh �
�1

2 1ÿrb� �

0

g3�y�qjq00hdy; Py32;3jh � Py32;1jh

Py32;4jh �
�1

1
2 1�rb� �

g3�y�qjq00hdy; Py4;1jh �
�1
0

g3�y�q0jq0hdy; Py4;2jh �
�1

2 1ÿrb� �

0

g3�y�q0jq0hdy

Py4;3jh � Py4;1jh ; Py4;4jh �
�1

1
2 1�rb� �

g3�y�q0jq0hdy;

302 L.G. Nallim, R.O. Grossi / Applied Acoustics 62 (2001) 289±305



Ry1jh �
�1
0

qj y� �qh y� �dy; Ry2jh � Ry1jh; Ry3jh � q0j 0� �q0h 0� �; Ry4jh � q0j 1� �q0h 1� �

Ty1jh �
�1
0

qj y� �qh y� �dy; Ty2jh � Ty1jh; Ty3jh � qj 0� �qh 0� �; Ty4jh � qj 1� �qh 1� �

Cy1jh �
�1
0

g�y�qjqhdy; Cy2jh �
�1

2 1ÿrb� �

0

g�y�qjqhdy; Cy3jh � Cy1jh;

Cy4jh �
�1

1
2 1�rb� �

g�y�qjqhdy

Appendix B. De®nitions of variables and parameters in Eq. (17)

ra � a0

a
; rb � b0

b

Px1;1kl �
�1

2 1ÿra� �

0

f3�x�X00kX00l dx; Px1;2kl �
�1

2 1�ra� �

1
2 1ÿra� �

f3�x�X00kX00l dx;

Px1;3kl �
�1

1
2 1�ra� �

f3�x�X00kX00l dx;

Px1;4kl � Px1;2kl ; Px2;1kl �
�1

2 1ÿra� �

0

f3�x�XkXldx; Px2;2kl �
�1

2 1�ra� �

1
2 1ÿra� �

f3�x�XkXldx;

Px2;3kl �
�1

1
2 1�ra� �

f3�x�XkXldx; Px2;4kl � Px2;2kl ;Px
31;1
kl �

�1
2 1ÿra� �

0

f3�x�X00l Xkdx;

Px31;2kl �
�1

2 1�ra� �

1
2 1ÿra� �

f3�x�X00l Xkdx; Px31;3kl �
�1

1
2 1�ra� �

f3�x�X00l Xkdx; Px31;4kl � Px31;2kl ;

Px32;1kl �
�1

2 1ÿra� �

0

f3�x�X00kXldx; Px32;2kl �
�1

2 1�ra� �

1
2 1ÿra� �

f3�x�X00kXldx;

Px32;3kl �
�1

1
2 1ÿra� �

f3�x�X00kXldx;

Px32;4kl � Px32;2kl ;Px4;1kl �
�1

2 1ÿra� �

0

f3�x�X0kX0ldx;Px4;2kl �
�1

2 1�ra� �

1
2 1ÿra� �

f3�x�X0kX0ldx;
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Px4;3kl �
�1

1
2 1�ra� �

f3�x�X0kX0ldx;Px4;4kl � Px4;2kl

Rx1kl � X0k 0� �X0l 0� �; Rx2kl � X0k 1� �X0l 1� �; Rx3kl �
�1
0

XkXldx; Rx4kl � Rx3kl

Tx1kl � Xk 0� �Xl 0� �; Tx2kl � Xk 1� �Xl 1� �; Tx3kl � Rx3kl; Tx4kl � Tx3kl

Cx1kl �
�1

2 1ÿra� �

0

f x� �XkXldx; Cx2kl �
�1

2 1�ra� �

1
2 1ÿra� �

f x� �XkXldx;

Cx3kl �
�1

1
2 1�ra� �

f x� �XkXldx; Cx4kl � Cx2kl

Py1;1kl �
�1
0

g3 y� �YkYldy; Py1;2kl �
�1

2 1ÿrb� �

0

g3 y� �YkYldy; Py1;3kl � Py1;1kl ;

Py1;4kl �
�1

1
2 1�rb� �

g3 y� �YkYldy

Py2;1kl �
�1
0

g3 y� �Y00kY00l dy; Py2;2kl �
�1

2 1ÿrb� �

0

g3 y� �Y00kY00l dy; Py2;3kl � Py2;1kl ;

Py2;4kl �
�1

1
2 1�rb� �

g3 y� �Y00kY00l dy

Py31;1kl �
�1
0

g3 y� �Y00kYldy; Py31;2kl �
�1

2 1ÿrb� �

0

g3 y� �Y00kYldy; Py31;3kl � Py31;1kl ;

Py31;4kl �
�1

1
2 1�rb� �

g3 y� �Y00kYldy

Py32;1kl �
�1
0

g3 y� �YkY
00
l dy; Py32;2kl �

�1
2 1ÿrb� �

0

g3 y� �YkY
00
l dy; Py32;3kl � Py32;1kl ;

Py32;4kl �
�1

1
2 1�rb� �

g3 y� �YkY
00
l dy

Py4;1kl �
�1
0

g3 y� �Y0kY0ldy; Py4;2kl �
�1

2 1ÿrb� �

0

g3 y� �Y0kY0ldy; Py4;3kl � Py4;1kl ;

Py4;4kl �
�1

1
2 1�rb� �

g3 y� �Y0kY0ldy

Ry1kl �
�1
0

YkYldy; Ry2kl � Ry1kl; Ry3kl � Y0k 0� �Y0l 0� �; Ry4kl � Y0k 1� �Y0l 1� �
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Ty1kl �
�1
0

YkYldy; Ty2kl � Ty1kl; Ty3kl � Yk 0� �Yl 0� �; Ty4kl � Yk 1� �Yl 1� �

Cy1kl �
�1
0

g y� �YkYldy; Cy2kl �
�1

2 1ÿrb� �

0

g y� �YkYldy; Cy3kl � Cy1kl

Cy4kl �
�1

1
2 1�rb� �

g y� �YkYldy
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