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Graphical abstract 

 

HIGHLIGHTS 

 No vaccine is available against Neospora caninum . 

 We demonstrated the DIVA-like character of rNcSAG1+rAtHsp81.2 vaccine in 

mice. 

 rNcSAG1+rAtHsp81.2 immunization elicited high tIgG, IgG1 and IgG2a titers. 

 rNcSAG1+rAtHsp81.2 conferred partial protection against vertical transmission. 

 rNcSAG1+rAtHsp81.2 significantly increased pups median survival time. 
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Neospora caninum is the etiological agent of neosporosis, a worldwide 

infectious disease recognized as the major cause of abortions and reproductive failures 

in livestock, responsible for significant economic losses in cattle industries. Currently, 

there are not cost-effective control options for this pathology, and the development of a 

vaccine involving new and integrated approaches is highly recommended. In this study, 

we evaluated the immunogenic and protective efficacy, as well as the potential DIVA 

(Differentiation of Infected from Vaccinated Animals) character of a recombinant 

subunit vaccine composed by the major surface antigen from N. caninum (NcSAG1) 

and the carrier/adjuvant heat shock protein 81.2 from Arabidopsis thaliana (AtHsp81.2) 

in a mouse model of congenital neosporosis. BALB/c female mice were intraperitoneal 

(i.p.) immunized with a mixture of equimolar quantities of rNcSAG1 and rAtHSP81.2 

or each protein alone (rNcSAG1 or rAtHsp81.2). The vaccine containing a mixture of 

rNcSAG1 and rAtHsp81.2 significantly enhanced the production of specific anti-

rNcSAG1 total IgG (tIgG), IgG1 and IgG2a antibodies in immunized mice when 

compared to control groups (non-vaccinated and rAtHsp81.2 immunized mice) as well 

as to the group of mice immunized only with the antigen (rNcSAG1). In addition, 

partial protection against vertical transmission and improvement of the offspring 

survival time was observed in this group. On the other hand, rAtHsp81.2 induced the 

production of specific anti-rAtHsp81.2 tIgG, allowing us to differentiate vaccinated 

from infected mice. Despite further experiments have to be made in cattle to test the 

capability of this vaccine formulation to differentiate vaccinated from infected animals 

in the field, our results suggest that the formulation composed by rNcSAG1 and 

rAtHsp81.2 could serve as a basis for the development of a new vaccine approach 

against bovine neosporosis. 
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Introduction 

 Neospora caninum is an apicomplexan parasite and the causative agent of 

neosporosis, a worldwide distributed infectious disease (Dubey et al., 2007), which can 

infect a wide range of mammalian hosts (Donahoe et al., 2015). Neosporosis is regarded 

as the major infectious cause of abortions and reproductive failures in cattle (Reichel et 

al., 2007), leading to global estimated losses in cattle industries exceeding US $1.300 

million per annum (Reichel et al., 2013). Despite the economic impact related to bovine 

neosporosis, there is no available treatment for this pathology. In addition, the potential 

development of chemotherapeutics and the implementation of their use would not be 

adequate, since they probably generate unacceptable residues in milk and meat that 

would avoid commercialization and consumption (Dubey and Schares, 2011). Although 

many control strategies have been proposed, the development of a prophylactic vaccine 

results the most appropriate one (Horcajo et al., 2016; Reichel and Ellis, 2009). 

Vaccines based on N. caninum-naturally attenuated strains have demonstrated to be 

useful in preventing abortions (Rojo-Montejo et al., 2013; Williams et al., 2007), 

however, none have proven to completely prevent transplacental transmission (Reichel 

et al., 2015). In addition, live vaccine approaches have been associated with several 

disadvantages, including questionable safety due to the risk of virulence reversion 

(Innes et al., 2011), costly production and distribution channels, and latency in the 

intermediate host (McAllister 2014). In contrast, recombinant subunit vaccines offer 

safer alternatives (Innes et al., 2011) and may provide the best long-term sustainable 

solution. However, recombinant antigens are often less immunogenic than live vaccines 

and require the addition of adjuvants to enhance the magnitude of the adaptive immune 
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response or to modulate it to produce the most effective form of immunity against each 

pathogen (Pérez et al., 2008; Petrovsky and Aguilar, 2004). In fact, Pinheiro et al., 

(2018) have demonstrated that vaccine formulations including recombinant NcSRS2 of 

N. caninum and adjuvanted with water-in-oil, alum hydroxide, or xanthan gum in 

BALB/c mice, depicted completely different humoral and cellular immune responses 

dynamics depending on the adjuvant used, confirming that the choice of adjuvant might 

play an important role in vaccine response. Although several different adjuvants have 

been included in subunit vaccines against N. caninum, none of them have proven to 

stimulate proper immune responses and immunoprotection (Innes and Vermeulen, 

2006), thus search for more appropriate and effective adjuvants is still one of the main 

challenges in this research area. Moreover, there is an increasing interest in new and 

integrated approaches, including the development of marker vaccines, which allow the 

differentiation of infected from vaccinated animals (DIVA) by serological techniques 

(Marugán-Hernandez, 2017). 

  A promising alternative in adjuvant research is the use of Heat Shock Proteins 

(Hsps). Several Hsps from different organisms have been reported as strong immune-

modulators (Tsan and Gao, 2009). In addition, different studies have demonstrated that 

the immunization of mice with Hsp-peptide/protein complex (naturally or artificially 

reconstituted) or Hsp-antigen fusion proteins, in the absence of exogenous adjuvants 

elicited strong antigen-specific immune response (Echeverría et al., 2006; Rico et al., 

1999; Srivastava 2002; Valentinis et al., 2008). Moreover, in a recent study of our 

group, we have demonstrated that plant cytosolic Hsp90 isoforms from Arabidopsis 

thaliana (AtHsp81.2) and Nicotiana benthamiana (NbHsp90.3) expressed in E. coli are 

B cells mitogens (Corigliano et al., 2011). Also, in a follow-up study, we have shown 

that when recombinant NbHsp90.3 was incorporated as adjuvant in a vaccine 
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formulation, it elicited a strong immune response against a reporter antigen (Corigliano 

et al., 2013).  

 Several marker vaccines and compliant diagnostic tests for veterinary use have 

been successfully applied in different pathologies including blue tongue virus, bovine 

tuberculosis, foot-and-mouth disease, highly pathogenic avian influenza and classical 

swine fever (Anderson et al., 2014; Pasick 2004; Uttenthal et al., 2010; Vannie et al., 

2007). However, no veterinary DIVA vaccine against parasite infections has been 

developed yet. The aim of the present report is to verify the capability of differentiate 

infected from vaccinated animals, as well as, to evaluate the immunogenic capacity and 

the protective efficacy of a recombinant subunit vaccine composed by one of the best 

characterized antigen from N. caninum, the major surface antigen (NcSAG1) (Hemphill 

et al., 1997), and the carrier/adjuvant heat shock protein 81.2 from Arabidopsis thaliana 

(AtHsp81.2) in a mouse model of congenital neosporosis.  

 

2. Material and Methods 

2.1. Neospora caninum tachyzoite culture and parasite purification 

 N. caninum tachyzoites of the Nc-1 strain (gently provided by Dr. M. Cecilia 

Venturini) were maintained by serial passages in Vero cells or HFF (Hemphill 1996). 

Parasites were harvested as described previously by Hemphill (1996). The eluted 

parasites were centrifuged and resuspended in cold DMEM medium, and counted in a 

Neubauer chamber. For the infection challenge, tachyzoites were prepared following 

standard procedures (Collantes-Fernández et al., 2004) and resuspended in 200 l of 

PBS (2 x 106 Nc-1 tachyzoites per mouse) to use immediately (Collantes-Fernández et 

al., 2004; Jiménez-Ruiz et al., 2012). 
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2.2. Cloning, expression and purification of recombinant proteins 

 Extraction of genomic DNA (gDNA) from N. caninum tachyzoites was carried out 

using Qiagen DNA extraction kit under the manufacturer’s conditions (Qiagen, Hilden, 

Germany). The gDNA obtained was used as a template for PCR reactions for gene 

cloning and expression analysis. NcSAG1 sequence was obtained from the Genbank 

database (accession number: AF132217.1) and used to design primers to amplify the 

encoding region of the mature NcSAG161-298 protein. The peptide signal (aa1 to aa60) 

and the hydrophobic C terminal region (aa298 to aa319) were removed in order to improve 

protein stability in bacteria heterologous system. The forward primer used was 5´-C 

ACC ATG AAC CAC ATC ACG CTC AAG -3’, and the reverse primer was 5'-AAG CTT 

TCA ACC AAC ATT TTC AGC CGA CGA C -3'. In addition, 4 bases were added in the 

N-terminus for directional cloning in the pET200/D-TOPO® vector (Invitrogen, CA, 

USA) as well as a HindIII restriction site in the C-terminus (underlined). The amplified 

product was sequenced to confirm the presence of the insert containing the nucleotide 

fragment corresponding to NcSAG1.   

 The pET200/D-TOPO®-NcSAG1 plasmid was used to transform Escherichia coli 

BL21 Star™ (DE3) competent cells. Bacteria were grown in Luria–Bertani (LB) 

medium supplemented with 100 g/ml Kanamycin at 37°C up to a cell density of 0.5 

(O.D. =600 nm). Protein expression was induced by isopropyl-b-D-thiogalactoside 

(IPTG) to a final concentration of 1 mM for 4h. Cells were harvested by centrifugation 

and stored at -20°C until use.  

 All purification procedures were carried out as previously described (Corigliano et 

al., 2011). The soluble recombinant NcSAG1 and Arabidopsis thaliana Hsp81.2 

(Corigliano et al., 2011) proteins (rNcSAG1 and rAtHsp81.2, respectively) were 
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purified under non-denaturing conditions using a nitrilotracetic acid-Ni2+ column 

(Qiagen, Hilden, Germany) as previously described by Corigliano et al., (2011). The 

recombinant proteins were separated by SDS-PAGE (15%) using the Mini-Protean 

system III (Bio-Rad, CA, USA). After electrophoresis, proteins were stained with 

Coomassie Brilliant Blue. PageRulerTM Prestained Protein Ladder (Fermentas, MA, 

USA) was used as molecular marker. Stained bands were excised and subjected to 

sequencing by MALDI-TOF-TOF spectrometer, Ultraflex II (Bruker), in the mass 

spectrometry facility CEQUIBIEM, Argentina. To eliminate endotoxins, rNcSAG1 and 

rAtHsp81.2 were passed through a polymyxin B-agarose column following the 

manufacturer's instructions (SIGMA, MO, USA). The concentration of 

lipopolysaccharide (LPS) in free-LPS recombinant proteins was measured using the 

HEK-Blue™ LPS Detection Kit (InvivoGen, CA, USA) as described previously 

(Corigliano et al., 2016). LPS contamination in either protein was lower than 1 ng/ml. 

 

2.3. Production of polyclonal antisera 

 Antisera against rNcSAG1 and rAtHsp81.2 were produced in mice, by the 

administration of one intraperitoneal (i.p.) dose of 60 g of the purified recombinant 

proteins emulsified in Freund's Complete Adjuvant (FCA) (1:1 v/v, SIGMA, MO, USA) 

followed by the i.p. administration of a booster dose of 30 g of the recombinant 

proteins emulsified in Incomplete Freund's Adjuvant (IFA) 2 weeks apart. The kinetics 

of development of specific antibody responses upon immunization of mice with 

rNcSAG1 and rAtHsp81.2 were studied by indirect ELISA tests (Cooper and Paterson, 

2009). 

 

2.4. Western blotting  
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 Western blotting was performed as previously described (Corigliano et al., 2013). 

Briefly, recombinant proteins previously separated by SDS-PAGE 15%, were 

transferred onto PVDF membranes (GE Healthcare, Buckinghamshire, UK) using an 

Electro transfer Unit (Bio-Rad). Firstly, the membranes were incubated with mouse 

anti-6XHIS monoclonal antibody (1:1,000, Cell Signaling Technology Inc., MA, USA), 

sera from mice experimentally infected with N. caninum 2 x 106 tachyzoites from Nc-1 

strain (dilution, 1:500), mouse anti-rNcSAG1 polyclonal antibody (1:500) or mouse 

anti-rAtHsp81.2 polyclonal antibody (1:500) (Corigliano et al., 2011), as primary 

antibodies. Later, the membranes were incubated with alkaline phosphatase conjugated-

goat polyclonal anti-mouse IgG (complete molecule) secondary antibody (1:5,000, 

SIGMA, MO, USA). After washing, the reaction was developed by the addition of 

nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate (NBT/BCIP, Promega, WI, 

USA) substrate. PageRulerTM Prestained Protein Ladder (Fermentas, MA, USA) was 

used as molecular marker. 

 

2.5. Immunization protocol, mice mating and parameters analyzed 

 All procedures requiring animals were performed in agreement with institutional 

guidelines and were approved by the Independent Ethics Committee for the Care and 

Use of Experimental Animals of National University of General San Martin 

(C.I.C.U.A.E., IIB-UNSAM), and approved and conducted in accordance with the 

guidelines established by the National University of General San Martin (SC055) and 

the National Research Agency (PICT 2012). 

 Eight-week-old female BALB/c mice were purchased from the Bioterium of the 

Faculty of Exact and Natural Sciences of the University of Buenos Aires (FCEyN-UBA, 

Argentina), housed under controlled temperature (22ºC) and illumination (14:10h L:D 
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cycle; lights on at 05:00 hours) and allowed free access to rat chow (Purina, Buenos 

Aires, Argentina) and water. Mice were randomly allocated into 4 groups and were 

vaccinated two times by i.p. injection at 2 week intervals (0 and 15 days post first 

immunization, -d.p.i.-, respectively) (Debache el al., 2009, Monney et al., 2012) with 

approximately equimolar doses of each recombinant protein as follows (per mouse and 

injection, Table 1); Group 1 (G1, non-vaccinated negative control): 200 l of sterile 

PBS, Group 2 (G2, adjuvant control): 30 g of rAtHsp81.2 in 200 l of sterile PBS; 

Group 3 (G3): 10 g of rNcSAG1 in 200 l of sterile PBS, Group 4 (G4): 10 g of 

rNcSAG1+30 g of rAtHsp81.2 in 200 l of sterile PBS 

 . Sixty d.p.i., vaccinated and non-vaccinated virgin female mice were paired with 8–

12-week-old BALB/c males for 96 hours. The day of appearance of a vaginal plug was 

considered as day 0.5 of pregnancy. Pregnant and non-pregnant mice were challenged 

on day 7.5 of pregnancy or 71 d.p.i., respectively (0 days post challenge -d.p.c.-), with 2 

x 106 freshly purified N. caninum Nc-1 tachyzoites in 200 l of sterile PBS by 

subcutaneous (s.c.) injection, (Debache et al., 2009; López-Pérez et al., 2006). A 

subgroup of non-vaccinated dams and a subgroup non-vaccinated non-pregnant female 

mice remained unchallenged (G1 dams/ G1 non-pregnant female mice, non-vaccinated 

negative controls), whereas another subgroup of non-vaccinated dams and a subgroup of 

non-vaccinated non-pregnant mice were challenged (G5 dams/ G5 non-pregnant female 

mice, non-vaccinated positive controls). Dams delivered on day 21.5+1 of pregnancy 

(p.d.) and were allowed to nurture their offspring normally.  

 All female mice were bled at 0, 15, 30 and 60 d.p.i (pre-challenge humoral 

determinations). After mating and challenge, pregnant and non-pregnant mice from each 

experimental group were bled at 7 d.p.c. (acute phase of infection). Dams and non-

pregnant mice were euthanized at 35 d.p.c (chronic phase of infection) by the use of a 
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CO2 chamber. Blood was collected from each animal when euthanized by cardiac 

puncture and serum separated and frozen at -80◦C until used. Brains from dams were 

collected and immediately frozen in liquid nitrogen and stored at -80◦C. Pups were 

evaluated from birth to 30 days post-partum (d.p.p.). Data on fertility rate, litter size, 

hebdomadal mortality, neonatal and prepuberal mortality and morbidity signs were 

collected during this time. Congenital neosporosis mouse model was repeated three 

times. For one experiment, all surviving pups were euthanized on 18 d.p.p. and tissue 

collected to evaluate parasitaemia by qPCR. Experimental protocols and data sampling 

are summarized in Figure 1. 

 

2.6. Analysis of humoral immune response 

 Humoral immune response was analyzed in pregnant and non-pregnant female mice. 

Antibody titers and isotype profile anti-rNcSAG1 were determined in unchallenged 

virgin female mice on 0, 15, 30 and 60 d.p.i. In order to attain a comparative analysis of 

IgG profiles, serum samples from virgin female mice were used at 1:1,000 dilution and 

were evaluated at 60 d.p.i (pre-challenge determinations). IgGs levels anti-rNcSAG1 

were also evaluated in dams and non-pregnant mice at the acute phase of infection (7 

d.p.c.) and at the chronic phase of infection (35 d.p.c.) after experimental challenge. In 

this sense, serum levels of tIgG, IgG1 and IgG2a anti-rNcSAG1 were measured by 

ELISA as previously described (Del L Yácono et al., 2012). In addition, tIgG titers 

against rAtHsp81.2 were determined in unchallenged virgin female mice on 0, 15, 30 

and 60 d.p.i. and tIgG antibody levels were also evaluated and compared in sera from 

unchallenged non-vaccinated virgin female mice (G1) (60 d.p.i.), challenged non-

vaccinated dams (G5, 35 d.p.c), challenged vaccinated dams (G4, 35 d.p.c.) and their 

offspring (G5 and G4, 30 d.p.p. pups, respectively). Briefly, 96-well microtiter plates 
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(Immuno Plate Maxisorp; Nunc, Rochester, NY, USA) were coated overnight at 4 °C 

with 5 μg/ml of rNcSAG1 or rAtHsp81.2. Goat anti-mouse IgG-horseradish peroxidase 

conjugate (1:10,000; SIGMA, MO, USA) was used as secondary antibody, and rat anti-

mouse IgG1 or IgG2a-horseradish peroxidase conjugates (1:3,000; BD Biosciences, 

CA, USA) were used for isotype analysis. Immune complexes were revealed with 

tetramethylbenzidine chromogen (TMB, One-Step; Invitrogen, Carlsbad, CA, USA), 

and optical density was read at 630 nm with an automatic ELISA reader (Synergy H1, 

Bio-Tek, VT, USA). Serial dilutions of sera were carried out to determine the titer, 

which was defined as the highest serum dilution that gave a value above the absorbance 

value for pre-immune sera plus two standard deviations (cut off). Pre-immune sera 

included in the different assays displayed values lower than the cut-off. 

 

2.7. Analysis of cellular immune response 

 Splenocytes from the spleens of mice sacrificed 60 d.p.i. (5 mice/group) were 

aseptically removed. The preparation of splenocyte suspensions was carried out as 

previously described (Del L. Yácono et al., 2012). Splenocytes cultures (1.25 × 106 

cells/well) in RPMI medium (SIGMA) were stimulated with rNcSAG1 (20 g/mL). 

Supernatants were harvested at 48 hs (IFN-) or 72 h (IL-4, IL-5 and IL-10) and 

cytokine levels were determined by capture ELISA commercial kits (Pharmingen; BD 

Biosciences, Sandiego, CA). At least two independent ELISAs were performed for each 

sample. 

 

2.8. Detection and quantification of parasite load by qPCR 

 Genomic DNA was extracted using Accuprep genomic DNA (gDNA) extraction kit 

(Bioneer, Korea) from 1 x 107 tachyzoites from N. caninum Nc-1 strain or 25 mg of 
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mice brain tissue following the manufacturer’s instructions. Serial dilutions of N. 

caninum gDNA were done in a background of 100 ng of gDNA from uninfected mouse 

brain tissue. The parasite load in mice brain tissue and host DNA were quantified by 

real-time PCR using the DNA-binding SYBR Green Master Mix (Invitrogen, CA, USA) 

as previously described by Pinitkiatisakul et al., (2007). Briefly, N. caninum gDNA was 

detected using primers designed to amplify a 328 bp fragment from the Nc5 sequence 

(GenBank accession no.X84238), Forward primer Np6: 5′-

CAGTCAACCTACGTCTTCT -3′ and reverse primer Np21: 5′-

GTGCGTCCAATCCTGTAAC -3’). For the quantification of host DNA and to correct 

the presence of potential PCR-inhibiting compounds in the DNA samples, a 71 bp 

fragment from the rRNA S28 from Mus musculus (GenBank accession no. X00525) 

was amplified by using the following primers: Forward 5′-

TGCCATGGTAATCCTGCTCA-3′, Reverse 5′CCTCAGCCAAGCACATACACC-3′. 

Amplification conditions were as previously described (Pinitkiatisakul et al., 2007).  

Amplification, data acquisition, and data analysis were carried out in an Mx3005P 

qPCR System using the MxPro qPCR Software 4.0 (Stratagene, CA, USA). Results 

were expressed as pg of parasite DNA/100 ng host DNA using absolute quantification 

based on standard curves of tachyzoite DNA and host tissue DNA.  

 

2.9. Statistical analysis 

 Data analysis was conducted following the recommendation given by Morrison 

(2002) and extensively used by other researchers on the field (Jiménez-Ruiz et al., 

2012). Optical density values obtained from ELISA analysis and parasite load in brain 

tissue from dams and pups were compared between groups by one-way or two-way 

ANOVA, followed by Tukey’s multiple comparison tests or by Dunnet’s multiple 
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comparison tests. Reproductive parameters, mortality and N. caninum infection/vertical 

transmission (fertility rates, proportion of dead pups and proportion of infected animals) 

were organized in contingency tables. The chi-squared test was performed when 

comparing three or more groups. P < 0.05 was considered as statistically significant. 

The portion of all surviving pups was estimated by The Kaplan–Meier survival method. 

The Gehan-Breslow-Wilcoxon statistical test was achieved to compare survival curves 

between the different groups. Statistical analyses were carried out using GraphPad 

Prism 7 Software (GraphPad, CA, USA) 

 

3. Results 

3.1. Recombinant protein expression 

 rNcSAG1 and rAtHsp81.2 were expressed and purified, yielding proteins with 

apparent molecular weights of approximately 34 and 90 kDa, respectively (Fig. 2). The 

identity of rNcSAG1 and rAtHsp81.2 were confirmed by mass spectrometry (data not 

shown). Some additional bands were also observed, and the mass spectrometry analysis 

confirmed that they were proteolytic products of their respective N-termini (Figs. 2A 

and 2C). In addition, rNcSAG1 was recognized by monoclonal anti-6XHIS and 

polyclonal anti-rNcSAG1 antibodies and by sera from mice experimentally infected 

with N. caninum (Fig. 2B) and rAtHsp81.2 was recognized by anti-rAtHsp81.2 

polyclonal antibody (Fig. 2D).  

 

3.2. Humoral immune responses against rNcSAG1 and rAtHsp81.2 prior to challenge 

 Figure 3A shows that  G3 and G4 mice depicted high serum levels of anti-

rNcSAG1 specific tIgG from 15 d.p.i. However, G4 mice showed the highest titers of 
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tIgG anti-rNcSAG1 from 30 d.p.i. (titer: 128,000) until the end of the evaluation period 

(titer: 4,000). In fact, anti-rNcSAG1 tIgG levels were significantly different between 

these two groups at 60 d.p.i. (Fig. 3C), confirming the immune modulator properties of 

rAtHsp81.2. Since the proposed adjuvant, rAtHsp81.2, is a recombinant protein, we 

decided to evaluate the production of anti-rAtHsp81.2 antibodies. Figure 3B shows 

specific anti-rAtHsp81.2 tIgG titers produced by mice from the different experimental 

groups.G4  and G2 mice produced high titers of anti-rAtHsp81.2 tIgG from 15 to 60 

d.p.i. (titers: 62,000; Fig. 3B). To discard that these specific anti-rAtHsp81.2 antibodies 

present in sera from immunized mice could cross-react with mouse Hsp90s, we 

evaluated whether anti-rAtHsp81.2 mouse antibodies recognize mouse Hsp90s by 

Western blot (Fig. 3D). Interestingly, no band was revealed when sera from mice 

immunized with rAtHsp81.2 was used as primary antibody against liver or spleen 

extracts (Fig. 3D), demonstrating that antibodies against rAtHsp81.2 did not cross-react 

with mouse Hsp90s. 

 The profile of humoral immune response was determined by the presence of 

IgG1 and IgG2a against rNcSAG1 in sera from immunized mice (Fig. 3A). Although 

both vaccine formulations containing rNcSAG1 (G3 and G4) elicited the production of 

IgG1 and IgG2a from 15 to 60 d.p.i., G4 mice showed higher titers of both isotypes 

(IgG1: 128,000 , IgG2a: 32,000) 60 d.p.i. than  G3 mice (IgG1: 32,000; IgG2a: 8,000). 

In addition, anti-rNcSAG1 IgG1 and IgG2a levels from G4 mice were significantly 

higher than those of G3 mice (P < 0.001 for each IgG comparison between G4 and G3 

group) (Fig. 3C).  

 

3.3. Humoral immune response against rNcSAG1 post-challenge 
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 We analyzed the immune response in pregnant and non-pregnant vaccinated female 

mice after the experimental infection with N. caninum both, at the acute phase of 

infection, 14.5 days of pregnancy and 78 d.p.i., respectively (Fig. 1) and at the chronic 

phase of infection, 22 d.p.p. and 106 d.p.i., respectively (Fig. 1). As expected, during the 

acute phase of infection the tIgG, IgG1 and IgG2a levels detected in sera from pregnant 

and non-pregnant immunized female mice showed that pregnancy influenced the 

immune response in all groups (tIgG: F(4, 25)= 28.11; P < 0.0001; IgG1: F(4, 16) = 5.988; P 

< 0.005; IgG2a: F(4, 23) = 4.602; P < 0.05) (Fig. 4A). In addition, tIgG levels of G3 and 

G4 showed significantly higher values than challenged mice from G2 and G5, both for 

pregnant and non-pregnant females (Fig. 4A). Similarly, at the acute phase of infection, 

pregnant and non-pregnant female mice from G3 and G4 showed significantly higher 

levels of IgG1 and IgG2a anti-rNcSAG1 than mice from challenged control groups (G2 

and G5) (Fig. 4A).  

 The “pregnant condition” showed no effect on tIgG, IgG1 and IgG2a levels detected 

in sera at chronic phase of infection (analyzed by two-way ANOVA; P>0.05 for each 

IgG analyzed). Mice from groups that were immunized with rNcSAG1 alone or in 

combination with rAtHsp81.2 (G3 and G4, respectively) elicited significantly higher 

levels of tIgG, IgG1 and IgG2a anti-rNcSAG1 than challenged controls (G2 and G5, 

respectively; Fig. 4B). In addition, data presented here indicate that after the infection 

with N. caninum, the immune profile of vaccinated and challenged mice is preferentially 

pro-inflammatory (Th1 profile) since higher levels of IgG2a than IgG1 were obtained 

both at the acute (Fig. 4A) and at the chronic phase of infection (Fig. 4B). These results 

were similar for dams and non-pregnant female mice. 
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3.4. The “DIVA-like” character of the vaccine formulation containing rNcSAG1 and 

rAtHsp81.2 

 The “DIVA” character of a vaccine formulation refers to its capability in 

differentiating vaccinated from infected animals (Uttenthal et al., 2010). Considering 

that the adjuvant rAtHsp82.1 is a recombinant protein, we could hypothesize that 

immunized animals can produce specific anti-rAtHsp81.2 antibodies, allowing us to 

differentiate immunized from infected animals. In fact, serum samples from vaccinated 

challenged G4 dams as well as their pups showed increased specific tIgG anti-

rAtHsp81.2 values compared to those from non-vaccinated unchallenged G1 virgin 

females (Fig. 5)(P < 0.0001, One-way ANOVA followed by Tukey’s multiple 

comparison’s post-test), also confirming maternal antibody transfer. Additionally, 

neither non-vaccinated challenged G5 dams nor their offspring (G5 pups) showed 

specific tIgG anti-rAtHsp81.2 over the cut off value (Fig 5). Interestingly, the inclusion 

of rAtHsp81.2 in the vaccine formulation allowed us to differentiate vaccinated from 

infected mice. 

 

3.5. Cellular-mediated immune response  

 Cytokine levels were assessed in culture supernatants after ex-vivo rNcSAG1 

stimulation of splenocytes from vaccinated mice. Although mice from all groups 

showed detectable levels of IFN-, no significant differences were found when 

compared to G1 (Fig. S.1A). Also, splenocytes from mice in all groups, including G1, 

produced similar levels of IL-4 (Fig. S.1B) and IL-5 (Fig. S.1C) after rNcSAG1 

stimulation. No detectable levels of IL-10 were found in any immunized group.  
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3.6. Efficacy of vaccine formulation: reproductive parameters and offspring survival 

rate 

 None of the infected non-pregnant female mice or the infected dams showed any 

clinical sign of neosporosis during the experiments. Table 2 shows the results of fertility 

rate, number of pups born, hebdomadal mortality (48 h p.p.), cumulated neonatal and 

prepuberal mortality (18 d.p.p. and 30 d.p.p., respectively). The fertility rate was not 

affected by any of the formulations administered in the immunization protocol, since no 

differences were found among groups (P > 0.05, X2 = 17.00). On the contrary, 

hebdomadal mortality, either analyzed by pups or litters, showed significant differences 

between groups (P < 0.0001, X2 = 32.52 and P < 0.0004, X2 = 20.32, respectively). 

Interestingly, G4 showed the lowest hebdomadal mortality among infected groups 

(10%), whereas G2, G3 and G5 showed hebdomadal mortalities between 35.9% and 

51.5%. Similar results were obtained when hebdomadal mortality was analyzed by litter 

(Table 2). Regarding cumulated neonatal mortality, either analyzed by pups or litters, it 

also varied significantly among groups (P < 0.0001, X2 = 45.15 and P< 0.0001, X2 = 

37.34, respectively). As determined for hebdomadal mortality, G4 showed also the 

lowest mortality rate among infected groups (31.2%) when analyzed by pups. 

Concerning cumulated prepuberal mortality, it was significantly different among groups 

when studied by pups (P < 0.0001, X2 =47.21) and again, G4 showed the lowest 

mortality rate among infected groups (59.1 % vs. 72.8% - 90%). However, no 

differences were found between infected groups when analyzed by litters (100% each 

group). The offspring of unchallenged non-vaccinated G1 mice did not show 

hebdomadal, neonatal or prepuberal mortality. 

 The Kaplan-Meier survival curves for the follow up period showed a clear decrease 

in the number of G4 dead pups compared to the other challenged groups (Fig. 6), which 
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was significantly different from the survival curve from challenged non-vaccinated G5 

mice  (P < 0.0037, Gehan-Breslow-Wilcoxon test).  

 

3.8. Infection and parasite load in dams and vertical transmission 

 In order to determine the immunoprotective efficacy of the vaccine formulation in 

dams, we analyzed the presence of Nc-1 gDNA in brain tissue at the chronic phase of 

infection. As shown in Table 3, N. caninum was detected in dams from all challenged 

groups, with frequencies varying from 40% to 100%. G3 and G4 dams showed lower 

percentages of infection (40% and 50%. respectively,Table 3), as well as significantly 

lower parasite loads in brain tissue compared with those of G5 dams  (Fig. 7A, P<0.005, 

one-way ANOVA followed by Dunnet’s multiple comparison tests). 

 Considering the Kaplan-Meier survival curves for pups from previous experiments, 

we decided to evaluate infection and parasite load in brains at 18 d.p.p. (Fig. 6 and Table 

2). The frequency of vertical transmission evaluated by detection of N. caninum gDNA 

in brain tissue from pups showed no significant differences between challenged groups 

(Table 3, P > 0.05, X2 = 3,992). However, it is noteworthy that offspring from G4 dams 

showed the lowest frequency of infection compared with the rest of challenged groups 

(50%, Table 3), in accordance with the lowest percentage of neonatal cumulative 

mortality previously shown (31.2 % at 18 d.p.p., Table 2). In those pups where N. 

caninum gDNA was detected, no statistical differences were found in parasite load 

between challenged groups (Fig.7B, P>0.05, one-way ANOVA). 

 

4. Discussion 

 Neosporosis occurs worldwide and is considered the major infective cause of 

reproductive failures in cattle (Dubey and Schares 2011; Dubey et al., 2007). However, 
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there is no available vaccine or treatment for this pathology. In the last few years, the 

application of innovative vaccine technologies against neosporosis including the 

development of efficient adjuvants and marker vaccines has been highly recommended 

(Horcajo et al., 2016; Marugán-Hernandez, 2017).  

 It has been previously proposed that a suitable antigen candidate for a recombinant 

vaccine against N. caninum should be exposed at the parasite or host cell surface, either 

constitutively or stage-specifically (Hemphill et al., 2013). These include mostly 

immune-dominant antigens functionally involved in tachyzoite-host cell interactions, 

such as the immune-dominant surface protein, NcSAG1 (Hemphill et al., 2006). Based 

on their promising characteristics, NcSAG1 has been expressed in different systems 

(Cannas et al., 2003; Yoshimoto et al., 2015) and has proven to be highly immunogenic 

both in the mouse model (Cannas et al., 2003; Nishikawa et al., 2001; Yoshimoto et al., 

2015) and in the target species, Bos taurus (Hecker et al., 2014). However, disparate 

results have been obtained related to immunoprotection, probably depending on the 

animal model, the infection protocol and the adjuvants included in vaccine formulations 

(Cannas et al., 2003; Hecker et al., 2014; Nishikawa et al., 2001; Yoshimoto et al., 

2015). In fact, it has been recently reported that vaccine formulations against N. 

caninum composed by the same antigen depicted clearly different immune profiles 

depending on the companion adjuvant (Pinheiro et al., 2018). 

 In this study, we evaluated the DIVA-like character of a recombinant vaccine which 

includes one of the best characterized antigens from N. caninum, rNcSAG1, and as 

potential adjuvant and marker protein, rAtHsp81.2, in a mouse model of congenital 

neosporosis. On the present study, rNcSAG1 was successfully expressed and purified as 

a (His)6-fusion protein in E. coli, and it was recognized by sera from N. caninum- 

infected mice, confirming its antigenicity, as it was expected based on previous reports 
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(Cannas et al., 2003; Hecker et al., 2014; Howe et al., 1998; Nishikawa et al., 2001). 

The immunization of mice with rNcSAG1 evoked the production of high titers of 

specific tIgG, IgG1 and IgG2a antibodies, which was enhanced when rNcSAG1 was 

administered in combination with rAtHsp81.2, demonstrating the adjuvant character of 

this protein. The immunization of mice with rNcSAG1 + rAtHsp81.2 not only elicited a 

strong and prolonged specific anti-rNcSAG1 antibody response, but also triggered the 

production of anti-rAtHsp81.2 specific antibodies, demonstrating the potential of this 

formulation as a DIVA-like vaccine. Although the vaccine only conferred partial 

protection against vertical transmission, it improved median survival time of offspring.  

 It is generally accepted that an appropriate immune response against N. caninum is 

primarily dependent on the cellular immunity mediated by both CD4+ and CD8+ T cells 

and their ability to secrete cytokines such as IFN-γ (Horcajo et al., 2016). In the present 

study, non significant differences were found among groups when stimulated with 

rNcSAG1 protein, neither in the IFN-  nor in the IL-4 levels. In agreement with these 

results, Marugán-Hernandez et al., (2011) have reported that a transgenic N. caninum 

strain constitutively expressing the bradyzoite NcSAG4 protein conferred significant 

levels of protection against vertical transmission when used as live vaccines in mice 

without enhancing the cellular immune response. Therefore, another parameter used to 

monitor the infection, which is generally associated with the Th1/Th2-type immune 

response modulation is the ratio of IgG1/IgG2a subclasses (Marugán-Hernandez et al., 

2011). Our results showed that both IgG1 and IgG2a specific antibodies were obtained. 

However, an increased IgG1/IgG2a ratio, generally associated with a Th2 immune 

response (Raghupathy 1997), was biased during the pre-challenged phase in G3 as well 

as in G4. Although a correlation between the Th2-immune profile depicted by G3 and 

G4 vaccinated mice and the BALB/c strain of mice used in the present study must not 
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be discarded (Charles et al., 1999), it was surely not the only factor that influenced the 

profile of this immunological response. In fact, we have previously reported that plant 

Hsp90 incorporated as adjuvant in a recombinant vaccine triggered the generation of a 

Th1 response in the same mice strain (Corigliano et al., 2013). This apparently 

controversial result could be explained by the fact that, in that report, pHsp90 was fused 

to the reporter-protein (Corigliano et al., 2013), whereas in the present study the vaccine 

formulation was a mixture of both proteins. In fact, despite several peptide-Hsp fusion 

proteins have demonstrated to elicit a strong Th1 immune response without further 

adjuvants (Chitradevi et al., 2016; Corigliano et al., 2013; Rico et al., 1999; Shokouhi et 

al., 2018, Sánchez-López et al., 2019), unrelated results have been obtained when 

mixtures of Hsp/antigen were administered (Blachere et al., 1997; Holakuyee et al., 

2012; Labrador-Garrido et al., 2014). In fact, Buriani et al., (2011), demonstrated that 

the immune response elicited by pHsp70 depended on the charged peptide. 

 Conversely to that observed prior to challenge, in vaccinated G3 and G4 mice, the 

ratio IgG1/IgG2a anti-rNcSAG1 in pregnant as well as in non-pregnant mice decreased 

considerably after challenge, which indicates a shift from an IgG1-dominated to a mixed 

IgG2a/IgG1 profile, both during the acute and the chronic phase of infection. Our results 

are in agreement with those reported by Ellis et al., (2008), who found that N. caninum 

recombinant proteins induced a stronger IgG1 response before a challenge was given, 

which changed to a dominant IgG2a response after challenge. In fact, dams from G3 and 

G4 showed lower percentages of cerebral infection (40% and 50%. respectively), as well 

as lower values of parasite load in brain tissue. Since no significant differences were 

found in the cellular immune response of vaccinated mice compared to controls, we 

suggest that immune protection against N. caninum infection observed in dams from 

both G3 and G4 could be associated with the post-challenge shift from a Th2 to a mixed 
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Th1/Th2-type immune response, as previously seen by Monney et al., (2011), as well as, 

with the ability of anti-rNcSAG1 specific antibodies to inhibit the process of invasion of 

the parasite onto the host cell, at least partially, as it has also been previously 

demonstrated in vitro (Cannas et al., 2003; Howe et al., 1998; Nishikawa et al., 2001). 

 Regarding vertical transmission, data presented here show that administration of the 

subunit vaccine formulation containing rNcSAG1 + rAtHsp81.2 conferred partial 

protection against congenital neosporosis. In fact, pups born from G4 dams showed the 

lowest hebdomadal, neonatal and prepuberal mortality rates between infected groups. 

This result was also reflected on the Kaplan-Meier analysis, since G4 survival curve was 

significantly different from the survival curve from non-vaccinated infected mice (G5). 

These results are in agreement with previous reports studying the protective efficacy of 

subunit vaccines in the pregnant mouse model, in which the best results showed only 

partial protection, either using only one recombinant antigen, e.g., NcSRS2 (Haldorson 

et al., 2005), recNcROP2 (Debache et al., 2009) or the combination of various 

recombinant antigens, e.g. NcROP40 + rNcROP2, rNcROP40, rNcROP2, rNcGRA7 

and rNcNTPase (Pastor-Fernández et al., 2015) and recNcROP2/NcMIC1/NcMIC3 

(Debache et al., 2009). Moreover, among the large number of experimental vaccines 

developed and evaluated in animal models [for details see the reviews (Hemphill et al., 

2013; Horcajo et al., 2016; Reichel and Ellis 2009)], only few formulations, mostly 

based on live vaccines (Ellis et al., 2008; Marugán-Hernández et al., 2011; Miller et al., 

2005) or killed parasite lysates (Liddell et al., 1999) conferred considerably high levels 

of protection against vertical transmission. In the present study, we were not able to 

elucidate the mechanisms by which the vaccine formulation containing rNcSAG1 and 

rAtHsp81.2 elicited protection against vertical transmission, since a similar immune 

profile was obtained in dams from the group vaccinated only with rNcSAG1 (increased 
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IgG2a specific antibodies). However, it is feasible that maternal antibody transfer 

(through the placentae and/ or maternal milk), evidenced in our study by the presence of 

anti-rAtHsp81.2 tIgG in offspring from G4 vaccinated dams, could have had some 

beneficial effect in pup survival, since higher titers of rNcSAG1 antibodies in dams 

from this experimental group are concurrent with increased survival rate, particularly 

during lactation period (0-18 d.p.p).  

 Whether a pro-inflamatory Th1/IgG2- or a Th2/IgG1-biased immune response by 

immunization protects against vertical transmission is not clear (Aguado-Martínez et al., 

2017). It is noteworthy that differences found in protection against vertical transmission 

in the pregnant mouse model between live and subunit vaccines would not depend on 

the immune profile elicited, since highly protective live formulations such as Nc-Nowra 

tachyzoites and live transgenic Nc-1 SAG4c1.1-parasites evoked IgG2a increased levels 

compared to the amount of IgG1 and IgG1 antibody levels consistently higher than 

IgG2a levels, respectively (Marugán-Hernández et al., 2011; Miller et al., 2005). A 

similar picture is observed when the immune profile was determined in subunit vaccines 

immunized pregnant mice after challenge (Debache et al., 2009; Haldorson et al., 2005; 

Monney et al., 2013). 

 In the last few years, several researchers have stated that marker vaccines and DIVA-

complaint test (differentiate infected from vaccinated animals) are particularly 

advantageous in cases where the infection and illness of animals could not be 

completely avoided by vaccination and control and eradication programs must combine 

both, vaccination and management of affected cattle (Henderson 2005). Our results 

showed that, concomitantly with the ability of rAtHsp81.2 to boost the production of 

anti-rNcSAG1 IgGs, mice vaccinated with rNcSAG1 and rAtHsp81.2 or only with 

rAtHsp81.2 produced high titers of tIgG anti-AtHsp81.2. Moreover, mice from G4, 
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evaluated both pre- and post-challenge elicited high specific tIgG anti- rAtHsp81.2 

levels (expressed as O.D. values), whereas sera from non-vaccinated challenged mice 

(G5) depicted similar O.D. values than sera from non-vaccinated unchallenged mice 

(G1). Although further experiments have to be made in cattle in order to evaluate the 

capability of rAtHsp81.2 to differentiate infected from vaccinated animals in the field, 

data obtained in mice are promising.  

 In this scenario, where only live vaccines have proven to confer high levels of 

protection against vertical transmission of neosporosis, but without exclusion of the 

associated risk of reversion to virulence, we propose that the search for potential 

antigens must continue and new formulations should integrate the “DIVA-vaccine 

approach”, containing not only the combination of different antigens and improved 

adjuvants, but also enhancers of the immune response (e.g. fusion to Toll like receptor 

ligands and other “danger signals”).  

 

CONCLUDING REMARKS 

 To our knowledge, this is the first study that evaluates a potential DIVA-like vaccine 

formulation against N. caninum in a well-established pregnant mouse model. The 

proposed adjuvant and marker protein, rAtHsp81.2 enhanced the production of anti-

rNcSAG1 antibodies and allowed us to differentiate vaccinated from infected mice, 

suggesting a promising role for this protein in future DIVA-like vaccine designs. In 

addition, the vaccine formulation consisting of rNcSAG1 and rAtHsp81.2 conferred 

partial protection against vertical transmission and increased pup median survival time.  
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Figure legends 

 

Figure 1. Schematic representation of the experimental design over time. 

Exceptions on the day of euthanasia from virgin female mice to evaluate cellular 

immune response and on the day of euthanasia of pups to determine parasite burden 

(Experiment 3 of the congenital neosporosis mouse model) are marked and clearly 

defined. Abbreviations; d.p.i.: days post-first immunization; p.d.: pregnancy date; d.p.p.: 

days post-partum; I.P.; intraperitoneal; S.C.; subcutaneous; CEL.; cellular; EXP.; 

experiment. 
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Figure 2. Analysis of the expression of recombinant proteins included in the 

vaccine formulations. The expression and purification of recombinant proteins were 

checked by Coomassie Brilliant Blue stained polyacrylamide gel and immunoblotting. 

(A) Expression and purification of Neospora caninum SAG1 protein (rNcSAG1). MW: 

molecular weight marker; Line NI: lysate of E. coli BL21 StarTM (DE3) without 

induction; Line I: lysate of E. coli BL21 StarTM (DE3) after IPTG induction; Line E: 

elute after Ni2+ affinity purification; (B) Western blot from rNcSAG1 elute after Ni+ 

affinity purification using as primary antibody : Line 1) anti 6XHIS monoclonal 

antibody (1:1,000); Line 2) sera from mice experimentally infected with N. caninum 

(1:500) or Line 3) mouse polyclonal anti-rNcSAG1 antibody (1:500). Arrow indicates 

the band corresponding to the whole protein identified by MALDI-TOF-TOF, whereas 

asterisks indicate the bands corresponding to proteolytic products (C) Expression and 

purification of recombinant Arabidopsis thaliana Hsp81.2 (rAtHsp81.2). MW: 

molecular weight marker; Line NI: lysate of E. coli Rosetta (DE3) without induction; 

Line I: lysate of E. coli Rosetta (DE3) after IPTG induction; Line E: elute after Ni+ 

affinity purification; (D): western blot from rAtHsp81.2 elute after Ni+ affinity 

purification using a mouse polyclonal anti-rAtHsp81.2 antibody (1:500). Arrow 

indicates the band corresponding to the whole protein identified by MALDI-TOF-TOF, 

whereas asterisks indicate the bands corresponding to proteolytic products 
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Figure 3. Humoral immune response against rNcSAG1 and rAtHsp81.2 prior to 

challenge: (A) Titers of total Immunoglobulin G (tIgG), IgG1 and IgG2a anti-

rNcSAG1. (B) Titers of tIgG anti-rAtHsp81.2. Serum samples were obtained from 8 

weeks-old BALB/c female mice (n=10/group) which were intraperitoneally immunized 

as described in the experimental protocol for the following groups: G1, G2, G3 and G4. 

Sera from mice from each group were pooled for each time point (0, 15, 30 and 60 

d.p.i.) and serial dilutions were analyzed by ELISA. Results are expressed as endpoint 

titers, and the cut-off value was defined as the highest serum dilution that gave a value 

above the absorbance value for pre-immune sera plus two standard deviations. Two 

independent ELISA were assayed for each pooled serum samples and the analyses were 

performed over three independent experiments. (C) ELISA detection of rNcSAG1-

specific tIgG, IgG1 and IgG2a antibodies. Sera were collected from immunized mice 

(n=10/group) from the experimental groups G1, G2, G3 and G4, 60 d.p.i., diluted 
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1:1,000 and assayed for the presence of specific antibodies. Results are shown as the 

mean O.D +S.E.M (Abs 630nm).Statistical analyses were performed by one-way 

ANOVA test using Tukey’s Multiple Comparison post-test: a vs. b=P>0.05; a vs. c, d= 

P<0.001; b vs. c, d= P<0.001; and c vs. d= P<0.001. Two independent ELISA were 

assayed for each serum sample over three independent experiments. (D) Reactivity of 

naïve mouse tissue samples against anti-rAtHsp81.2 antibodies. Liver and spleen total 

protein extracts (100 g) were separated on SDS-12% PAGE gel, transfer to PVDF 

membranes and incubated with mouse monoclonal anti-human Hsp90 (1:500) or sera 

from G4 mice (1:500). Phosphatase alkaline conjugated goat anti-mouse tIgG (1:5,000) 

was used as secondary antibody. The reaction was developed by the addition of 

NBT/BCIP substrate. Pre-stained proteins were included in Western blots as protein 

weight marker (WM). rAtHSP81.2 protein was used as positive control (+).  
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Figure 4. Humoral immune response against rNcSAG1 post-challenge: ELISA 

detection of rNcSAG1-specific tIgG, IgG1 IgG2a antibodies (A) at the acute phase of 

infection (7 d.p.c.) and (B) at the chronic phase of infection (35 d.p.c) in diluted sera 

(1:300) from G1, G2, G3, G4 and G5 non-pregnant female mice and pregnant female 

mice. Results are shown as the mean O.D +S.E.M (Abs 630nm). Statistical analyses 

were performed by two-way ANOVA test and differences within rows in non-pregnant 

(lowercase letters) and pregnant (capital letters) female mice (experimental groups) were 

analyzed by Tukey’s Multiple Comparison post-test, P<0.05 was considered statistically 

significant. Different letters indicate significant differences between groups. Two 

independent ELISA were assayed, and the analyses were performed over three 

independent experiments. 

 

 

Figure 5. Differentiation between vaccinated and infected animals: DIVA 

character of rNcSAG1 + rAtHsp81.2 vaccine formulation. ELISA detection of 
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rAtHsp81.2-specific tIgG in diluted sera (1:1,000) from: unchallenged non-vaccinated 

female mice, 60 d.p.i. (G1 virgin female mice, n=10), challenged non-vaccinated dams, 

35 d.p.c. (G5 dams, n=10) and their offspring (G5 pups, n=8), challenged vaccinated 

dams, 35 d.p.c (G4 dams, n=10) and their offspring (G4 pups, n=8). Results are shown 

as the mean O.D +S.E.M (Abs 630nm). Statistical analyses were performed by one-way 

ANOVA test and differences between groups were analyzed by Tukey’s Multiple 

Comparison post-test: P<0.05 was considered statistically significant. Different letters 

indicate significant differences between groups. Two independent ELISA were 

performed. 

 

 

Figure 6. Kaplan–Meier survival curves for pups born from dams from the congenital 

neosporosis mouse model, corresponding to the experimental groups G1, G2, G3, G4 

and G5. The curves represent percent survival as the proportion of all individuals 

surviving over a period of 30 d.p.p. Vertical steps downward correspond to d.p.p. when 
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at least one death was observed. Percent survival among mice from G4 was statistically 

greater than that among mice from G5 (P<0.0037, Gehan-Breslow-Wilcoxon test). 

Analyses were performed over three independent experiments. 

 

 

 

Figure 7. Cerebral parasite burden assessed by quantitative real-time PCR in A) 

dams from G1, G2, G3, G4 and G5 at 35 d.p.c. and B) their pups at 18 d.p.p.. 

Results are shown as pg of parasite genomic DNA detected in 100 ng of host genomic 

DNA extracted from brain tissue (mean per group) + S.E.M (Abs 630nm). Statistical 

analyses were performed by one-way ANOVA test and differences between groups 

were analyzed by Dunnet’s Multiple Comparison post-test. Only positive samples from 

challenged groups were considered for the analyses. **P<0.005 compared to G5. 

 

 

ACCEPTED M
ANUSCRIP

T



43 
 

 

  

ACCEPTED M
ANUSCRIP

T



44 
 

Table 1. Groups of mice employed in the experimental protocols. 

Group Immunization  Challenge 

G1 

(C-, non-vaccinated) 
200 l PBS - 

G2 

(Adjuvant control) 
30 g of rAtHsp81.2 in 200 l of sterile 

PBS 

2 x 106 Nc-1 tachyzoites 

G3 10 g of rNcSAG1 in 200 l of sterile 

PBS 

2 x 106 Nc-1 tachyzoites 

G4 10 g of rNcSAG1 + 30 g of 

rAtHsp81.2 in 200 l of sterile PBS 

2 x 106 Nc-1 tachyzoites 

G5 

(C+, non-vaccinated) 
200 l PBS 2 x 106 Nc-1 tachyzoites 
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Table 2. Fertility rates of dams and number of born pups, hebdomadal, neonatal and prepuberal mortality of 

pups. 

Group Fertility 

rate 

(a) 

Born 

pups 

(b) 

Hebdomadal 

mortality 

 

per pups 

(c) 

 

 

 

per litter 

(d) 

Neonatal 

mortality 

(18 

d.p.p.) 

per pups 

(e) 

 

 

 

per litter 

(f) 

Prepuberal 

mortality  

(30 d.p.p.) 

per pups 

(g) 

 

 

 

per litter 

(h) 

G1 10/22 

(45.5) 

25/10 0/25  

(0) 

0/10 

 (0) 

0/25  

(0) 

0/10 (0) 0/25  

(0) 

0/10  

(0) 

G2 6/15 

(40) 

25/6 12/25  

(48) 

5/6  

(83.3) 

18/25 

(72.2) 

6/6 

(100) 

20/25  

(80) 

6/6 

(100) 

G3 8/16 

(50) 

33/8 17/33  

(51.5) 

7/8  

(87.5) 

23/33  

(70) 

8/8 

(100) 

25/33 

(78.8) 

8/8 

(100) 

G4 8/16 

(50) 

44/8  4/44  

(10) 

4/8  

(50) 

13/44 

(31.2) 

8/8 

(100) 

26/44 

(59.1) 

8/8 

(100) 

G5 10/16 

(62.5) 

39/10 14/39  

(35.9) 

8/10  

(80) 

25/39 

(64.1) 

9/10 

(90) 

28/39 

(72.8) 

10/10 

(100) 

d.p.p: days post-partum. 

a. Number of pregnant female mice/ total number of female mice paired with males.  

b. Total number of pups born (alive or dead)/ total no. of dams from each experimental group. 

c. No. of pups that died during the first 48 hours post-partum / total no. of pups born in the group (percentage).  

d. No. of litters with at least one pup that died during the first 48 hours post-partum / total no. of litters in the 

group (percentage). 

e. No. of pups that died during the first 18 days post-partum /no. of pups born in the group (percentage).  

f. No. of litters with at least one pup that died during the first 18 days post-partum /no. of litters in the group 

(percentage). 

g. No. of pups that died during the first 30 days post-partum /no. of pups born in the group (percentage).  

h. No. of litters with at least one pup that died during the first 30 days post-partum /no. of litters in the group 

(percentage). 
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Table 3. Infection and vertical transmission.  

Group 

 

Nc1+ dams/ total dams 

(a) 

Nc1+ pups/total pups 

(b) 

G1 0/6 (0) 0/11 (0) 

G2 5/5 (100) 4/5 (80) 

G3 2/5 (40) 5/6 (83) 

G4 3/6 (50) 8/16 (50) 

G5 5/7 (71.4) 8/10 (80) 

 

Parasite detection in brain tissue from dams and pups correspond to samples from the same experiment in order to 

correlate results from infection in pregnant mice and their offspring. 

a. Number of dams tested positive for N. caninum gDNA in brain (35 d.p.c.) / total number of challenged 

dams (35 d.p.c.) (percentage) 

b. Number of pups (18 d.p.p.) tested positive for N. caninum gDNA in brain / total number of pups (18 d.p.p.) 

(percentage).  
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