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2

18 Abstract

19 Barite growth kinetics was investigated as a function of crystallographic orientation for temperatures 

20 between 10 and 70 °C, and initial saturation indices (SI) of 1.1 and 2.1. The growth rates were estimated 

21 for (001), (210), and (101) faces using vertical scanning interferometry. Overall, face-specific barite 

22 growth rates ( ) can be successfully described by the following rate law:𝑟(ℎ𝑘𝑙)

23 𝑟(ℎ𝑘𝑙) = 𝐴(ℎ𝑘𝑙).exp ( ―𝐸(ℎ𝑘𝑙)
𝑎 𝑅𝑇).(10𝑆𝐼 ― 1)

24 where and represent the face-specific Arrhenius pre-exponential factor and activation  𝐴(ℎ𝑘𝑙)  𝐸(ℎ𝑘𝑙)
𝑎  

25 energy, respectively, R is the gas constant, and T refers to the absolute temperature. In addition, 

26 because of the modest growth anisotropy of the various investigated faces, the following isotropic rate 

27 law can be used to satisfactorily account for the measured rate data:

28 𝑟(ℎ𝑘𝑙) = 𝐴.exp ( ― 𝐸𝑎 𝑅𝑇).(10𝑆𝐼 ― 1)

29 with average values of A = exp(13.59) nm.h-1 and Ea = 35.0 ± 2.5 kJ.mol-1. Over the range of conditions 

30 investigated in the present study, our results suggest that barite growth kinetics is surface-controlled, 

31 while possibly verifying the principle of detailed balancing and micro-reversibility. These results 

32 imply that previous modeling exercises of steady-state barite growth based on isotropic rate laws may 

33 remain valid, at least over the range of conditions investigated in the present study.

34

35 Keywords: barite; anisotropic growth; geothermal reservoir; scaling; growth rate law
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3

37 1. Introduction

38 Several industrial, environmental, and geological concerns require a detailed understanding of 

39 barite (BaSO4) growth kinetics. From an industrial standpoint, barite scale formation spontaneously 

40 occurs within geothermal wells1 and inside fractures within geothermal reservoirs2 (Fig. 1), which 

41 disturb both the continuous running of geothermal power plants and the efficiency of fluid circulation 

42 due to the reduction in reservoir permeability2. The development of new reagents that could efficiently 

43 prevent or delay the barite scale formation crucially relies on our understanding of the mechanisms of 

44 barite precipitation3, 4.

45

46

47 Figure 1. Photograph of a section of 78 mm-diameter, cylindrical sandstone core (from the Buntsandstein unit) taken 

48 from the Soultz-sous-Forêts (France) EPS-1 exploration borehole, a borehole fully cored from a depth of 930 m to a 

49 depth of 2227 m in 1990-1991 (see 5-7 for information on the Soultz-sous-Forêts drilling project). The sandstone core, 

50 red/green in color, was taken from a depth of 1374 m and contains a 1-2 cm-wide fracture (in the center of the core). The 

51 fracture is partially filled with barite crystals (white in color) that have precipitated from the circulating geothermal 

52 fluids.
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4

53 From an environmental standpoint, the formation of barite is known to be frequently associated 

54 with the accumulation of elevated concentrations of radionuclides such as 226Ra, which has stimulated 

55 several studies dedicated to quantify the uptake of radionuclides during barite precipitation (e.g., 8-11). 

56 Finally, from a geological standpoint, barite formation provides insight into past seawater chemistry 

57 (e.g. 12, 13), indirectly raising the question of the mechanisms of barite precipitation from environments 

58 that contained only trace amounts of sulfate. This issue has puzzled the geochemical community for 

59 decades14, and further emphasizes the need for a more accurate picture of the mechanisms of barite 

60 nucleation and growth4.

61 In spite of the indisputable interest associated with barite formation, our knowledge regarding 

62 barite growth kinetics remains incomplete. With the noticeable exception of a few recent studies 

63 focused on barite growth on the specific (001) face over a wide range of temperatures (from 30 °C to 

64 108 °C)15-17, most existing studies were limited to the low temperature domain12, 18 and were derived 

65 from experiments conducted on powders. While the resulting isotropic growth rate laws derived from 

66 powder experiments have proved useful for modeling exercises (e.g., 2), it is noteworthy that they 

67 remain essentially empirical, which may cast doubt on their predictive ability. In particular, a recent 

68 study by Godinho and Stack19 has shown that barite growth is an anisotropic process. Importantly, 

69 isotropic kinetic rate laws were demonstrated to be unreliable and of low relevance to model 

70 anisotropic processes such as mineral dissolution/precipitation (e.g., 19-22), unless the same rate-

71 limiting step controls the dissolution/growth kinetics of all faces. Among the main consequences of 

72 this anisotropic reactivity are (i) the non-uniqueness of the relation between dissolution/growth rate 

73 and the saturation state of the solution22, (ii) the existence of a transient regime where the crystal habit 

74 continuously evolves, resulting in an equal gradual evolution of the apparent dissolution/growth rate 

75 “constant”19, 21-24, and (iii) the existence of distinct equilibrium morphologies for a given crystal, which 

76 depend on the face-specific dissolution/growth rates of the considered crystal and therefore on reaction 

77 conditions such as temperature, fluid saturation state, and the potential catalytic / poisoning effects of 
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5

78 specific (bio)molecules25-27. Therefore, in addition to the expected improvement of reactive transport 

79 simulations, knowledge of the variables that influence the face-specific growth rates of minerals can 

80 also help decipher the factors that shape crystals, which might be useful to provide insights into the 

81 putative biological origin of minerals recovered from environments on Earth and on other planets (26 

82 and references therein).

83 To sum up, the study by Godinho and Stack19 paved the way for a radically new description of 

84 barite growth kinetics, and provided the very first data in that respect. However, their study was limited 

85 to ambient temperature, whereas barite formation may occur over a wide range of environmental 

86 conditions, ranging from slightly above the freezing point in oceans to several tens to hundreds of 

87 degrees in geothermal reservoirs. To this end, the present study was principally aimed at extending 

88 this dataset to a wider range of temperatures and to eventually derive an activation energy for face-

89 specific barite growth rate. We also provide rate data for an additional face that was not investigated 

90 in the study by Godinho and Stack19, at two different fluid saturation states. Taken together, we show 

91 that the activation energy is the same for all faces (within uncertainties), which is compatible with the 

92 assumption that all faces may have the same unique rate-limiting step. In addition, this activation 

93 energy is close to that determined by Zhen-Wu et al.12 for barite dissolution, which is compatible with 

94 their hypothesis of micro-reversibility of barite dissolution/precipitation process.
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6

95 2. Materials and methods

96 2.1 Starting materials and preparation

97 Single crystals of barite (~50-100 mm in length / diameter) were collected in Puy de Chateix 

98 (France). The chemical composition of the crystals was analyzed following the protocol described by 

99 Bracco et al.16, revealing K, Sr and Al as the main impurities (0.14%, 0.10%, and 0.05% mol/mol Ba, 

100 respectively). The crystals were cleaved along (210) and (001) and cut along the (101) plane. The 

101 crystallographic orientations were first verified using Electron Backscatter Diffraction (EBSD) on a 

102 Tescan Vega 2 scanning electron microscope (SEM) and polished through a multi-step abrasive 

103 sequence with a final polishing step in a colloidal silica suspension. The oriented samples were divided 

104 into small pieces with a surface area (SA) between ~ 0.25 cm2 and 0.50 cm². The faces not under study 

105 were protected with room-temperature vulcanizing (RTV) glue. For the faces under investigation, only 

106 a portion of their surface was protected with ~1 mm-diameter RTV glue spots to provide a reference 

107 surface (see similar protocol in 19, 28). The initial roughness of each surface was measured at different 

108 scales with a ZYGO® NewView 7300 vertical scanning interferometer (VSI). For each sample, the 

109 initial average arithmetic roughness (Ra), defined as the arithmetic average of the absolute values of 

110 the roughness measured by the VSI, ranged between 10 and 20 nm. These initial roughness parameters 

111 were measured on 270 × 360 µm2 VSI images.

112 2.2 Growth experiments and analytical procedures

113 Barite samples were placed over polytetrafluoroethylene (PTFE) tripods and introduced into 120 

114 mL perfluoroalkoxy alkanes (PFA) Savillex® reactors. The reactors were filled with a volume (V) of 

115 100 mL of solution and continuously stirred with magnetic bars throughout the experiments, incubated 

116 at 10, 25, 40, and 70 °C for durations ranging from 10 minutes to 15 hours. Three selected 

117 crystallographic planes were studied: (210), (001), and (101).
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7

118 All solutions were prepared immediately prior to each experiment by diluting 0.01 M BaCl2 and 

119 Na2SO4 stock solutions prepared from sodium sulfate and barium chloride powders (Acros Brand, 

120 purity ≥ 99%) to the desired concentrations. The in situ pH and ion speciation and activity were 

121 calculated using the CHESS software29 implemented with the Debye–Hückel equation and Chess.tdb 

122 database (Lawrence Livermore National Laboratories EQ3/6 database, 8th version), and the saturation 

123 index (SI) with respect to barite was calculated from Eq. (1):

𝑆𝐼 = log
𝑎𝐵𝑎𝑎𝑆𝑂4

𝐾𝑠𝑝
(1)

124 where aBa and aSO4 refer to the activities of barium and sulfate ions in solution, respectively, and Ksp 

125 refers to the solubility product of barite. The CHESS software calculates the solubility product at the 

126 run temperature based on the interpolation between the Ksp values listed in Chess.tdb database, i.e., 10-

127 10.49, 10-9.97, 10-9.61 and 10-9.51 at 0 °C, 25 °C, 60 °C and 100 °C, respectively.

128 The following input solutions containing 1:1 ratio of SO4
2− and Ba2+ activities were studied: (1) 

129 SI = 1.1 and (2) SI = 2.1. Those saturation indices were chosen in order to compare the results of this 

130 study with the growth rates obtained by Godinho and Stack19 at room temperature.

131 Experiment durations ranged between 10 minutes and 15 hours, depending on the experimental 

132 conditions (SI and temperature). In order to calculate the evolution of the saturation index, solution 

133 sampling was carried out two to four times in each experiment. The aqueous samples were diluted 10 

134 times and filtered using a 0.45-µm filter before analysis. Inductively coupled plasma atomic emission 

135 spectroscopy (ICP-AES - Thermo ICAP 6000) was used for the analyses of Ba2+ and Na+, and ion 

136 chromatography (ICS-5000 Thermofisher Dionex) was used for the analyses of SO4
2- and Cl-. Because 

137 foreign cations such as Sr can impact barite growth rates17, all input solutions were analyzed for major 

138 (Na, K, Ca, Mg, Fe, Si, Al) and minor (Sr, Ni, Mn, Ti, Co, Cr, Zn, Cu) cations prior to the immersion 

139 of the barite samples. The concentration of all of these elements was systematically below the detection 

140 limit (≤ 5 ppb), except for Cu, for which concentrations up to 20 ppb (8×10-8 M) were occasionally 
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8

141 detected. The pH was also checked at the beginning and at the end of each experiment. The pH of all 

142 solutions was 5.3 ± 0.1 and remained constant throughout the experiments. 

143 At the end of each experiment, the sample was removed from the solution, rinsed with ultrapure 

144 water and sonicated for 10 min in ethanol to remove any possible secondary barite crystals nucleated 

145 from the solution and deposited on the surface, as classically done in literature to remove fine particles 

146 adhering on the surface of minerals30. The RTV mask was then carefully removed and the sample 

147 topography was measured with VSI in stitching mode (magnification: ×5) to evaluate average changes 

148 in height between the unreacted reference surface and the reacted mineral surface. For each surface, 

149 10 profiles across the interface were used to calculate the average thickness of the grown layer, which 

150 was used to calculate the face-specific growth rate. The uncertainties associated with these average 

151 values were estimated from the standard deviations calculated from the various profiles. For each 

152 oriented sample, growth rates were calculated according to Eq. (2):

𝑟(ℎ𝑘𝑙) =  
∆ℎ
∆𝑡 (2)

153 where  (nm.h-1) is the growth rate of the (hkl) face, Δh is the average surface step resulting from  𝑟(ℎ𝑘𝑙)

154 barite growth (nm), and Δt is the duration of the experiment (s).

155
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9

156 3. Results and discussion

157 3.1 Face-specific growth patterns

158

159
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10

161 Figure 2. Barite growth features observed using scanning electron microscopy a) Face (001), SI = 2.1, T 

162 = 25 °C; b) Face (001), SI =  2.1, T = 70 °C; c) Face (210), SI = 2.1, T = 25 °C; d) Face (210), SI = 2.1, T = 70 

163 °C; e) Face (101), SI = 2.1, T = 25 °C; f) Face (101), SI = 2.1, T = 70 °C.

164

165 Both SEM and VSI investigations confirmed that, over the course of the experiments, barite 

166 growth did not result from homogeneous nucleation in the solution, as revealed by the absence 

167 of euhedral secondary barite crystals on the surface of each investigated face, or the subsistence 

168 of polishing scratches in the grown layer of barite. The results show that the temperature 

169 variation seems to have no effect on the growth features of the faces under study. Pina et al.31 

170 described growth patterns which exhibit features specific to each investigated face (001) and 

171 (210), consistent with the anisotropy of the barite structure and the Periodic Bond Chain (PBC) 

172 theory. In the present study, the (001) and the (101) faces exhibit a growth morphology that 

173 resembles the circular sector shape described during the early stage of barite growth monitored 

174 using atomic force microscopy (AFM) by Sanchez-Pastor et al.32. Conversely, the two-

175 dimensional islands formed in the experiments conducted at 25 and 70 ºC and a saturation index 

176 of 2.1 could not be easily related to the needle-shaped morphology described by Pina et al.31 

177 and Sanchez-Pastor et al.32 for the face (210). Possible explanations include the difference of 

178 resolution between AFM and SEM, as well as the difference in terms of reaction progress, since 

179 the study by Sanchez-Pastor et al.32 focused on the early stage of barite growth, whereas the 

180 present study reports on results obtained at a later stage of the reaction process. Therefore, part 

181 of the original islands documented in e.g. Sanchez-Pastor et al.32 might have been overgrown, 

182 and no longer identifiable by SEM at such late stages of observation. 

183 3.2 Face-specific growth rate of barite as a function of solution saturation state

184 3.2.1 Time-resolved fluid analyses 
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11

185 The evolution of the fluid composition during all experiments is provided in Table 1. 

186 The Ba2+ to SO4
2- mole ratios in the aqueous solutions are consistent with the stoichiometric 

187 precipitation of barite. From the Ba2+, Na+, SO4
2-, and Cl- concentrations, the saturation index 

188 with respect to barite was determined at up to four different time steps in each experiment using 

189 the CHESS code. 

190 The extent to which the evolution of the fluid composition resulted from barite growth 

191 of the oriented barite surface sample can be estimated based on the thickness of the grown layer 

192 measured by VSI following:

∆[𝑖] =  
∆ℎ.𝑆𝐴.𝜌𝐵𝑎𝑆𝑂4

𝑀𝐵𝑎𝑆𝑂4.𝑉 (3)

193 where ∆[i] is the variation of Ba2+ (or SO4
2-) concentration resulting from barite growth, ρBaSO4 

194 and MBaSO4 are respectively the density (4.48 g.cm-3) and molar mass (233 g.mol-1) of barite. 

195 Knowing that the surface area of each investigated sample never exceeded 0.5 cm², and using 

196 150 nm as an upper bound for the thickness of the grown layer (consistent with our VSI 

197 measurements), the decrease in sulfate or barite concentration should never exceed 1.5×10-6 M. 

198 This value is about two orders of magnitude greater than the actual decrease measured in some 

199 of our experiments (see Table 1), suggesting that in addition to barite growth, homogeneous 

200 barite nucleation in the solution or heterogeneous nucleation on the walls of the reactor should 

201 have occurred as well. This result is consistent with the observations reported by Jindra et al.33, 

202 who showed that solutions supersaturated in barite with SI ≥ 1 were unstable with respect to 

203 barite nucleation. This limitation illustrates that classical kinetics experiments based on the sole 

204 evolution of the fluid composition would be poorly informative to deconvolve the nucleation 

205 from the growth steps under such conditions, and further justifies the use of surface sensitive-

206 techniques to probe growth kinetics, such as AFM15-17, 33 or VSI19.

207 The rapid nucleation of barite complicated the conduction of experiments at a fixed 

208 value of SI, and the duration of the experiment had consequently to be adjusted to (i) yield an 
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12

209 appreciable thickness of the grown layer of barite while (ii) limiting the intrinsic evolution of 

210 the solution composition resulting from barite nucleation. Importantly, for the experiments 

211 conducted under the less reactive conditions (i.e., T = 10 °C, SI = 1.1), in spite of several 

212 attempts, it has not been possible to run experiments for which the evolution of SI was modest 

213 while measuring an appreciable thickness of the grown layer at the same time. In other words, 

214 for these experiments, essentially barite nucleation occurred over short durations (with no 

215 observable grown layer), while over long durations (up to 15 hours), barite growth was 

216 observed, but with large variation of the fluid saturation index (between ± 18% and ± 34%), 

217 complicating the definition of the SI at which growth actually occurred. Therefore, the results 

218 of experiments conducted at SI = 1.1 and T = 10 °C will have to be considered with caution (see 

219 Section 3.2.2 for a confirmation of this statement). In the end, the variation of SI was ± 6% for 

220 the 12 experiments run at an initial saturation index of 2.1, and ± 5% for the 9 experiments run 

221 at SI = 1.1 (excluding the 3 experiments run at 10 °C).

222

223 Table 1. Evolution of fluid composition (concentration of Ba2+, SO4
2-, Cl-, and Na+ in mol/L) measured 

224 by ICP-AES and ion chromatography for the growth experiments realized on the (001), (101), and (210) surfaces 

225 at 10, 25, 40, and 70 ºC. The fluid composition was measured at up to four time steps in each experiment. The 

226 saturation index of the experiments was determined from the fluid composition using the CHESS software.

227
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13

  SI=2.1 SI=1.1

face 001 210 101 001 210 101

t 0 60 120 180 0 40 80 120 0 40 80 120 0 900   0 900   0 900   

Ba2+
8.41 
*10-5

7.14 
*10-5

6.69 
*10-5

4.56 
*10-5

7.72 
*10-5

6.61 
*10-5

5.61 
*10-5

5.01 
*10-5

7.68 
*10-5

6.42 
*10-5

6.51 
*10-5

5.78 
*10-5

4.46 
*10-5

2.44 
*10-5   

3.51 
*10-5

2.31 
*10-5   

3.94 
*10-5

2.56 
*10-5   

SO4
2-

1.13 
*10-4

1.04 
*10-4

9.60 
*10-5

9.35 
*10-5

1.32 
*10-4

1.14 
*10-4

1.01 
*10-4

9.57 
*10-5

1.16 
*10-4

9.12 
*10-5

9.80 
*10-5

8.63 
*10-5

5.16 
*10-5

3.43 
*10-5   

4.66 
*10-5

3.20 
*10-5   

4.64 
*10-5

3.35 
*10-5   

Na+
1.69 
*10-4

1.49 
*10-4

1.56 
*10-4

1.53 
*10-4

1.71 
*10-4

1.73 
*10-4

1.72 
*10-4

1.72 
*10-4

1.54 
*10-4

1.63 
*10-4

1.49 
*10-4

1.54 
*10-4

6.95 
*10-5

6.95 
*10-5   

6.12 
*10-5

5.97 
*10-5   

6.60 
*10-5

6.68 
*10-5   

Cl-
1.99 
*10-4

1.98 
*10-4

2.00 
*10-4

2.02 
*10-4

2.17 
*10-4

2.17 
*10-4

2.12 
*10-4

2.23 
*10-4

1.97 
*10-4

2.03 
*10-4

1.95 
*10-4

2.03 
*10-4

1.14 
*10-4

1.12 
*10-4   

9.57 
*10-5

9.89 
*10-5   

1.08 
*10-4

1.06 
*10-4   

10
°C

SI 2.12 2.04 1.96 1.86 2.15 2.02 1.81 1.83 2.08 1.90 2.00 1.85 1.54 1.01   1.39 1.06   1.44 1.12   

t 0 40 80 120 0 20 40 60 0 30 60 90 0 140 280 420 0 60 180 300 0 140 280 420

Ba2+
8.74 
*10-5

9.45 
*10-5

9.21 
*10-5

9.35 
*10-5

1.16 
*10-4

1.17 
*10-4

1.08 
*10-4

1.06 
*10-4

9.50 
*10-5

1.01 
*10-4

7.62 
*10-5

7.31 
*10-5

3.42 
*10-5

3.41 
*10-5

3.19 
*10-5

3.20 
*10-5

3.28 
*10-5

3.37 
*10-5

3.30 
*10-5

3.27 
*10-5

4.53 
*10-5

3.56 
*10-5

4.32 
*10-5

4.15 
*10-5

SO4
2-

1.25 
*10-4

1.15 
*10-4

1.05 
*10-4

9.81 
*10-5

1.65 
*10-4

1.57 
*10-4

1.52 
*10-4

1.49 
*10-4

1.79 
*10-4

1.58 
*10-4

1.37 
*10-4

1.25 
*10-4

4.92 
*10-5

4.55 
*10-5

4.50 
*10-5

4.49 
*10-5

3.54 
*10-5

3.54 
*10-5

3.63 
*10-5

3.56 
*10-5

5.72 
*10-5

5.71 
*10-5

5.70 
*10-5

5.68 
*10-5

Na+
1.95 
*10-4

1.79 
*10-4

1.76 
*10-4

1.90 
*10-4

1.79 
*10-4

1.91 
*10-4

1.83 
*10-4

1.89 
*10-4

1.99 
*10-4

1.99 
*10-4

2.21 
*10-4

1.89 
*10-4

7.42 
*10-5

7.52 
*10-5

7.39 
*10-5

7.39 
*10-5

6.94 
*10-5

7.11 
*10-5

7.22 
*10-5

7.09 
*10-5

8.55 
*10-5

8.61 
*10-5

8.55 
*10-5

8.43 
*10-5

Cl-
2.50 
*10-4

2.52 
*10-4

2.54 
*10-4

2.54 
*10-4

3.12 
*10-4

2.94 
*10-4

2.95 
*10-4

3.01 
*10-4

3.29 
*10-4

3.09 
*10-4

3.03 
*10-4

3.01 
*10-4

9.18 
*10-5

9.22 
*10-5

9.01 
*10-5

8.95 
*10-5

5.55 
*10-5

5.86 
*10-5

5.36 
*10-5

5.33 
*10-5

1.04 
*10-4

1.03 
*10-4

1.04 
*10-4

1.04 
*10-4

25
°C

SI 1.90 1.9 1.88 1.83 2.13 2.11 2.06 2.05 2.07 2.05 1.89 1.82 1.13 1.1 1.06 1.06 0.98 0.99 0.99 0.98 1.32 1.22 1.3 1.22

t 0 30 60 90 0 20 40 60 0 15 30 60 0 130 260 500 0 80 160 200 0 80 160 200

Ba2+
1.25 
*10-4

1.26 
*10-4

9.70 
*10-5

8.57 
*10-5

1.32 
*10-4

1.21 
*10-4

9.08 
*10-5

9.73 
*10-5

1.67 
*10-4

7.41 
*10-5

8.13 
*10-5  

4.27 
*10-5

4.24 
*10-5

4.38 
*10-5

4.35 
*10-5

4.50 
*10-5

4.48 
*10-5

3.88 
*10-5

4.44 
*10-5

4.22 
*10-5

3.93 
*10-5

4.05 
*10-5

4.12 
*10-5

SO4
2-

1.93 
*10-4

1.76 
*10-4

1.53 
*10-4

1.31 
*10-4

2.02 
*10-4

1.86 
*10-4

1.74 
*10-4

1.61 
*10-4

2.09 
*10-4

1.21 
*10-4

1.14 
*10-4  

5.63 
*10-5

5.44 
*10-5

5.33 
*10-5

5.36 
*10-5

4.74 
*10-5

4.28 
*10-5

4.40 
*10-5

4.31 
*10-5

4.58 
*10-5

4.99 
*10-5

4.89 
*10-5

5.07 
*10-5

Na+
2.17 
*10-4

2.14 
*10-4

2.17 
*10-4

2.07 
*10-4

2.34 
*10-4

2.11 
*10-4

2.36 
*10-4

2.23 
*10-4

2.78 
*10-4

2.76 
*10-4

2.72 
*10-4  

8.52 
*10-5

8.42 
*10-5

8.38 
*10-5

8.38 
*10-5

1.09 
*10-4

8.91 
*10-5

9.10 
*10-5

9.01 
*10-5

8.64 
*10-5

9.11 
*10-5

9.52 
*10-5

9.36 
*10-5

Cl-
3.61 
*10-4

3.60 
*10-4

3.63 
*10-4

3.92 
*10-4

3.55 
*10-4

3.47 
*10-4

3.56 
*10-4

3.55 
*10-4

4.37 
*10-4

4.35 
*10-4

4.34 
*10-4  

1.07 
*10-4

1.05 
*10-4

1.04 
*10-4

1.04 
*10-4

7.36 
*10-5

7.43 
*10-5

7.12 
*10-5

7.49 
*10-5

8.24 
*10-5

8.96 
*10-5

7.40 
*10-5

7.31 
*10-5

40
°C

SI 2.02 1.99 1.87 1.7 2.06 1.99 1.84 1.84 2.17 1.6 1.62  1.08 1.07 1.07  1.07  1.04 1.00 0.95 0.99 1.00 1.00 1.01 1.03

t 0 5 10  0 5 10  0 5 10  0 60 120  0 60 120 180 0 40 80 120

Ba2+
1.91 
*10-4

1.86 
*10-4

1.38 
*10-4  

1.86 
*10-4

1.63 
*10-4

1.37 
*10-4  

1.95 
*10-4

1.56 
*10-4

1.25 
*10-4  

6.32 
*10-5

4.88 
*10-5

3.71 
*10-5  

6.04 
*10-5

5.68 
*10-5

5.09 
*10-5

4.64 
*10-5

6.32 
*10-5

3.95 
*10-5

5.74 
*10-5

5.81 
*10-5

SO4
2-

2.00 
*10-4

1.88 
*10-4

1.47 
*10  

2.21 
*10-4

1.95 
*10-4

1.78 
*10-4  

2.73 
*10-4

2.08 
*10-4

1.64 
*10-4  

9.83 
*10-5

8.00 
*10-5

7.67 
*10-5  

9.26 
*10-5

8.65 
*10-5

8.24 
*10-5

7.39 
*10-5

6.74 
*10-5

6.78 
*10-5

6.74 
*10-5

6.53 
*10-5

Na+
3.97 
*10-4

4.00 
*10-4

4.02 
*10-4  

4.07 
*10-4

4.10 
*10-4

5.1 
*10-4  

4.07 
*10-4

3.73 
*10-4

3.73 
*10-4  

1.84 
*10-4

1.71 
*10-4

1.83 
*10-4  

9.84 
*10-5

1.07 
*10-4

1.09 
*10-4

9.90 
*10-5

1.33 
*10-4

1.38 
*10-4

1.34 
*10-4

1.34 
*10-4

Cl-
4.20 
*10-4

4.06 
*10-4

4.10 
*10-4  

3.96 
*10-4

3.95 
*10-4

4.95 
*10-4  

5.81 
*10-4

5.80 
*10-4

5.97 
*10-4  

1.88 
*10-4

1.95 
*10-4

1.98 
*10-4  

1.36 
*10-4

1.37 
*10-4

1.41 
*10-4

1.34 
*10-4

1.19 
*10-4

1.16 
*10-4

1.16 
*10-4

1.17 
*10-4

70
°C

SI 2.00 1.97 1.74  2.03 1.93 1.81  2.1  1.7  1.25 1.14 0.92   1.21 1.16  1.1  1.0   1.11 0.91 1.07 1.06
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229 3.2.2 Vertical Scanning Interferometry data:

230 Table 2. Face-specific growth rates (nm.h−1) calculated from the thickness of the grown layer measured by VSI on the 

231 (001), (101), and (210) surfaces of crystals grown in two different solutions: (1) SI = 1.1 and (2) SI = 2.1. Experiments 

232 were performed at 10, 25, 40, and 70 °C. The numbers between parentheses indicate the uncertainties of the growth rates, 

233 estimated from the variability of the thickness of the grown layer averaged on 10 measurements (see Section 2.2).

(1) SI = 1.1
Face (0 0 1)

T (°C) 10 25 40 70
r (nm/h) 0.60 (0.07) 5.1 (0.5) 19.9 (1.3) 38.7 (4.2)

Face (2 1 0)
T (°C) 10 25 40 70

r (nm/h) 1.4 (0.7) 4.4 (0.7) 10.7 (1.3) 46.9 (1.2)
Face (1 0 1)

T (°C) 10 25 40 70
r (nm/h) 2.3 (0.3) 6.8 (2.8) 8.9 (0.8) 37.6 (4.9)

(2) SI = 2.1
Face (0 0 1)

T (°C) 10 25 40 70
r (nm/h) 25.0 (6.3) 46.1 (14.9) 96.6 (8.9) 318 (38)

Face (2 1 0)
T (°C) 10 25 40 70

r (nm/h) 39.0 (4.4) 86.2 (4.7) 125 (18) 296 (27)
Face (1 0 1)

T (°C) 10 25 40 70
r (nm/h) 25.5 (4.2) 82.7 (9.1) 131 (15) 285 (71)

234

235 The growth rates perpendicular to the three studied surfaces were calculated from the measured 

236 thickness of the layer grown whilst in solution. The results highlight an effect of the saturation index 

237 on growth rate. For example, in the experiments with a starting saturation index of 2.1, the growth 

238 rates are about 5 to 40 times faster (depending on the face and temperature) than in the solution with 

239 SI = 1.1 (Table 1). 

240 Surface-controlled precipitation rates are commonly fitted to the following rate law (e.g. 34 and 

241 references therein):

𝑟 = 𝑘.(10𝑆𝐼 ― 1)𝑛 (4)

242 where k is the growth rate constant and n is a fitting coefficient generally referred to as the reaction 

243 order. Although Eq. (4) essentially remains empirical, the value of the reaction order is usually 

244 attributed to the rate-controlling reaction mechanism (a reaction order of 1 is typically attributed to a 
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245 simple surface adsorption mechanism and a reaction order of 2 to spiral growth; see 35). For each face, 

246 the value of the reaction order at each temperature (nT) can therefore be estimated following:

𝑛𝑇 =
log 𝑟𝑇

2 ― log 𝑟𝑇
1

log (10𝑆𝐼𝑇
2 ― 1) ― log (10𝑆𝐼𝑇

1 ― 1) (5)

247 where  refers to the growth rate measured at the corresponding saturation index   (i.e., ~2.1 or 𝑟𝑇
𝑖 𝑆𝐼𝑇

𝑖

248 ~1.1), for a given temperature T. Eq. (5) was used to estimate the value of n for each face and all 

249 investigated temperatures (Table 3), leading to average values of n = 1.39 ± 0.76, 1.26 ± 0.42, and 1.12 

250 ± 0.19 for the (001), (210), and (101) faces, respectively. Of note, the large standard deviations 

251 associated with the value of n for the (001) and (210) faces are essentially due to the value of n derived 

252 for these faces at 10 °C (n = 2.50 and 1.88, respectively). The large uncertainties associated with the 

253 estimation of slow growth rates at low temperature and saturation index may partially contribute to 

254 this observation, as emphasized above (Section 3.2.1). In particular, the large variation of SI over the 

255 duration of these experiments, which result from the fact that barite precipitation occurred almost 

256 exclusively through homogeneous nucleation, considerably complicated the definition of the value of 

257 SI at which barite growth occurred. Therefore, the uncertainties associated with these experiments and 

258 the switch in barite precipitation mechanism at low temperature justifies the need to remove the rate 

259 data collected at 10 °C and SI = 1.1 for further processing of the dataset . If these rates are discarded 

260 from the dataset, the average values then become n = 1.02 ± 0.19; 1.05 ± 0.07 and 1.11 ± 0.13 for the 

261 (001), (210) and (101) faces, respectively. Therefore, with the noticeable exception of rate data 

262 obtained at 10 °C, our results show that a simple linear relation between r and (10SI – 1) can account 

263 for our observations for all faces, irrespective of the temperature (see Supporting Information for a 

264 plot displaying the general agreement over the whole dataset). Therefore, this study extends the similar 

265 conclusion previously reached by Zhen-Wu et al. 12 from powder experiments to a broader range of 

266 temperatures and saturation indices, while suggesting that the reaction order (n) does not depend on 

267 the investigated face, at least for temperatures ranging from 25 °C to  70 °C. This result is also 
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268 consistent with the second order reaction with respect to Ba concentration reported by Christy and 

269 Putnis18, since a first order reaction with respect to barite saturation state is equivalent to a second 

270 order reaction with respect to either aqueous barium or aqueous sulfate concentration, as recalled by 

271 Zhen-Wu et al.12.

272

273 Table 3. Estimation of the reaction order (n) of barite growth kinetics for all investigated faces and temperatures 

274 following Eq. (5). Note that the values in italic were not considered for the calculation of the mean value of n for each 

275 face. See text for details.

 10 °C 25 °C 40 °C 70 °C
(0 0 1) 2.50 1.16 0.80 1.10
(2 1 0) 1.88 1.11 1.06 0.97
(1 0 1) 1.14 1.37 1.04 0.92

276

277 3.3 Face-specific growth rate of barite as a function of temperature

278 In experiments conducted with an input solution with SI = 1.1, growth rates range from 0.60 

279 nm.h-1 to approximately 47 nm.h-1, with the slowest rates at 10ºC and the fastest rates at 70 ºC (Table 

280 1). For each face, the growth rate increases with temperature but generally, the (001) and (101) faces 

281 are the slowest growing faces (Table 1), in accordance with the results obtained by Godinho and 

282 Stack19. For face (001) reacted in a solution with SI = 1.1, an increase in temperature by 60 ºC increases 

283 the rate by almost a factor of 60 (Table 1). At a starting saturation index of 2.1, the growth rates are 

284 about one order of magnitude greater at 70 °C than at 10 °C for all faces.

285 The dependence of the mineral growth rate constant on temperature is usually described 

286 following the Arrhenius equation:

𝑘 = 𝐴.exp ( ―𝐸𝑎 𝑅𝑇) (6)

287 where A represents the Arrhenius pre-exponential factor, Ea denotes the activation energy, R is the gas 

288 constant, and T refers to the absolute temperature. By combining Eq. (6) with Eq. (4) and assuming 

289 that n = 1 (see above), we can determine the value of A and Ea experimentally following the relation:
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ln (𝑟 (10𝑆𝐼 ― 1)) = ln 𝐴 ―𝐸𝑎 𝑅𝑇 (7)

290  This equation was applied to the data generated in this study using the Arrhenius plots shown in Fig. 

291 3. The errors reported on the data points account both for the uncertainties on the growth rates 

292 (resulting from the variability of the thickness of the grown layer) and the variation of SI over the 

293 course of the experiment (resulting from the precipitation of barite). Excluding the rate data obtained 

294 at 10 °C and SI = 1.1 (see above), the activation energy was found to be virtually independent of the 

295 considered face, with values of 36.4 ± 4.0, 31.8 ± 3.3, and 35.8 ± 3.7 kJ.mol-1 for the growth on (001), 

296 (210), and (101) faces, respectively. The uncertainties on the activation energies were determined 

297 based on the errors associated with the data depicted in Fig. 3. 

298 The activation energy determined for the growth on the (001) face is in excellent agreement 

299 with that determined by Higgins et al.36 (37.3 ± 4.6 kJ.mol-1). More broadly, these values agree, within 

300 uncertainties, with those reported by Christy and Putnis18 (22.0 ± 14.3 kJ.mol-1) for the growth of barite 

301 monitored on powder experiments over the temperature range 44-85 °C. This result further indicates 

302 that if a barite crystal form is developed based on the three faces investigated in the present study, the 

303 morphology of barite crystals will be negligibly affected by temperature variations, such that the 

304 morphology of barite crystals cannot be used as a criterion to determine the temperature at which they 

305 crystallized.

306 Regarding the pre-exponential factor, Fig. 3 reveals that it only slightly varies with the 

307 considered orientation, from exp(12.4) nm.h-1 for the (210) face to exp(14.1) nm.h-1 for the (001) face. 

308 Following the reasonable assumption that the activation energy does not depend on the 

309 crystallographic orientation for the three investigated faces, this translates into a modest anisotropy of 

310 barite growth rate of a ~5-fold factor between the fastest and slowest growing faces, which is in 

311 reasonable agreement with our experimental data.
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312

313 Figure 3. Determination of the face-specific activation energy (Ea
(hkl)) and pre-exponential factor (A(hkl)) of barite growth 

314 rate over the temperature range 10-70 °C for the (a) (001), (b) (210), and (c) (101) faces. Of note, the rate data obtained 

315 at 10 °C and SI = 1.1 for the faces (001) and (210) were dismissed from the regressions (see section 3.3 for details). 

316

317 The agreement between the multiple regressions described above and the experimental data 

318 can be assessed in Fig. 4, for growth rates varying over about two orders of magnitude. In Fig. 4a, the 

319 measured rates were compared with the corresponding values calculated following the overall face-

320 specific growth rate law given by:

𝑟(ℎ𝑘𝑙) = 𝐴(ℎ𝑘𝑙).exp ( ―𝐸(ℎ𝑘𝑙)
𝑎 𝑅𝑇).(10𝑆𝐼 ― 1) (8a)

321 for which the values of A(hkl) and Ea
(hkl) were derived from the plots depicted in Fig. 3. Of note, the 

322 agreement between calculated rates and measured rate data is negligibly affected if one considers an 

323 overall isotropic growth rate law for all faces following:

𝑟(ℎ𝑘𝑙) = 𝐴.exp ( ― 𝐸𝑎 𝑅𝑇).(10𝑆𝐼 ― 1) (8b)

324 with average values of A = exp (13.59) nm.h-1 and Ea = 35.0 ± 2.5 kJ.mol-1 (Fig. 4b). In addition, both 

325 rate laws perfectly account for the rate data reported by Godinho and Stack19 at T = 22.2 °C and SI = 

326 2.1 for the faces (001) and (210), while overestimating the rate values obtained at SI = 1.1. Possible 

327 explanations might reside in the difference in chemical composition of the crystals used to conduct the 

328 studies, since impurities such as strontium are known to decrease barite growth rates at low 

329 concentrations17.
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330

331

332 Figure 4. Comparison of barite growth rates calculated using (a) Eq. (8a) or (b) Eq. (8b) with those measured in the 

333 present study or reported in Godinho and Stack19.

334

335 3.4 Comparison with previously published data and mechanistic insights

336 Overall, this study largely confirms both the measurements of face-specific barite growth rates 

337 and the reaction mechanisms reported in previous studies.

338 Regarding the anisotropy of barite growth, Godinho and Stack19 reported that the reactivity of 

339 the (210) face was about 1.5 times greater than that of the (001) face at ambient temperature and for 

340 SI conditions ranging from 1.1 to 2.1. These values are in excellent agreement with our measurements 

341 under the same conditions, which show that the reactivity of the (210) face is approximately between 

342 1.7 and 1.9 times greater than that of the (001) face. At SI = 2.1, the absolute values of the growth rates 

343 of the two studies overlap as well, within uncertainties.

344 Regarding the reaction mechanisms, several lines of evidence suggest that barite growth may 

345 observe the principle of detailed balancing and micro-reversibility. First, our rate data are consistent 

346 with an isotropic activation energy with an average value of 35.0 ± 2.5 kJ.mol-1, suggesting that the 

347 reaction is surface-controlled. Moreover, if the rate-limiting step of barite growth were to change with 

348 surface orientation, then the activation energies of barite growth rate would be face-specific. Therefore, 
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349 and even though the activation energies estimated in the present study remain essentially apparent, the 

350 unicity of the activation energy is compatible with the suggestion that the same elementary step is rate-

351 limiting for all faces. In addition, this value is consistent with the isotropic value reported by Christy 

352 and Putnis18 (22.0 ± 14.3 kJ.mol-1), itself very similar to the activation energy of barite dissolution 

353 reported by Zhen-Wu et al.12 (25 ± 2 kJ.mol-1). Second, the growth rate was found to be a linear 

354 function of the saturation state of the solution (i.e., r ∝ 10SI) for all faces at temperatures ranging 

355 between 25 and 70 °C (this statement remains questionable at lower temperatures). This result is 

356 consistent with previously published studies12, 18 and is typical of adsorption-controlled growth 

357 processes35, for which the concept of micro-reversibility necessarily applies.

358

359 3.5 Implications for natural and anthropogenic systems

360 As highlighted above, a growing number of studies have emphasized the need to go beyond the 

361 classical development of isotropic rate laws to model the dissolution and/or the growth kinetics of 

362 minerals, partly because of their anisotropic reactivity. Notwithstanding, switching to more complex 

363 rate laws that are not implemented so far in classical reactive transport codes has to be justified through 

364 quantitative measurements of this anisotropy, as well as its dependence to fundamental rate-controlling 

365 parameters such as temperature or solution saturation state, in order to assess the extent to which 

366 isotropic models fail to reproduce quantitatively the actual mineral reactivity. In that respect, our 

367 results underline that (i) the anisotropic reactivity of barite growth remains modest, at least for the 

368 three studied faces and (ii) the growth activation energy is similar for all faces and possibly equivalent 

369 to the dissolution activation energy. These results have at least two practical implications for natural 

370 and anthropogenic systems:

371 (i) Regarding the reaction mechanisms, our study suggests that the principle of detailed 

372 balancing may be respected over the range of T and SI investigated in the present study (see section 

373 3.4). Because the dissolution and precipitation rates of barite are relatively rapid, this result implies 

Page 20 of 27

ACS Paragon Plus Environment

Crystal Growth & Design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



21

374 that at ambient temperature and close-to-equilibrium conditions, the isotope composition of barium 

375 may be quickly reset, consistent with the results of Curti et al.8. Because the isotopic and elemental 

376 compositions of barite are used as a proxy for past seawater chemistry (12 and references therein), our 

377 study contributes to the general warning regarding the preservation of isotopic signatures in minerals 

378 over geological timescales to trace paleoenvironmental conditions37-40. 

379 (ii) Regarding geothermal systems, a viable geothermal resource requires a reservoir with a 

380 high permeability, often provided by fractures (e.g., 41), to provide the flow rates required for efficient 

381 energy production. The hydrothermal brines circulating through these reservoirs typically contain a 

382 rich assortment of dissolved elements (e.g., 41-44) that can precipitate in surface installations and within 

383 permeability-enhancing fractures within the reservoir as a result of, for example, changes in 

384 temperature (e.g., 2). Barite scaling can play havoc at geothermal surface installations, requiring time-

385 consuming and expensive mechanical removal (e.g., 18), and can dramatically reduce the permeability 

386 of fractures within the reservoir. For example, Griffiths et al.2 highlighted that the Buntsandstein unit, 

387 a ~400 m-thick unit of sandstone that directly overlies the granitic reservoir at geothermal sites 

388 throughout the Upper Rhine Graben (e.g., 45-47), contains abundant barite-filled fractures (e.g., Fig. 1). 

389 Additionally, Griffiths et al.2 estimated the time needed to seal a 2 mm-wide fracture with barite to be 

390 on the order of about a month. These calculations, however, were performed using data collected on 

391 powdered barite samples18. Our new face-specific data show that the activation energy is, within 

392 uncertainty, the same for all of the studied crystal faces. These new data provide additional confidence 

393 in the barite growth timescales provided in Griffiths et al.2, which suggest that the permeability of the 

394 geothermal reservoir adjacent to the injection well could be, unless preventative measures are taken, 

395 greatly reduced over short timescales during production.

396

397
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398 4. Summary and conclusions

399 Barite growth experiments combined with vertical scanning interferometry measurements of 

400 the surface topography have been conducted to study the effect of the saturation index (SI) and the 

401 temperature on the growth rates and surface features of the (001), (210), and (101) faces of barite. The 

402 results confirmed that barite growth is anisotropic with a rate that is promoted by elevated saturation 

403 indices and temperatures, while the growth morphologies observed by scanning electron microscopy 

404 did not significantly vary with temperature or SI. It was determined that barite growth rate observes a 

405 first order reaction with respect to barite saturation state for all faces at all temperatures, with the 

406 exception of rate data obtained at 10 °C. Therefore, our results show that a simple linear relation 

407 between  and (10SI – 1) can account for barite growth. From the dependence of the rate of barite 𝑟

408 growth with temperature, the activation energy could be defined for each face using the Arrhenius 

409 equation, yielding an average value of 35.0 ± 2.5 kJ.mol-1, with no significant difference between the 

410 three faces. This result indicates that the morphology of barite crystals will be negligibly affected by 

411 temperature variations for a crystal composed of the faces under study. Therefore, the morphology of 

412 barite crystals cannot be used as a criterion to determine the temperature at which they crystallized. 

413 These data are also compatible with a reaction rate is surface-controlled, with the same rate-limiting 

414 step for all faces. The pre-exponential factor in the Arrhenius equation slightly varies with the 

415 considered orientation, from exp(12.4) nm.h-1 for the (210) face to exp(14.1) nm.h-1 for the (001) face, 

416 which represents a modest anisotropy of barite growth rate. Taken together, this study largely confirms 

417 both the measurements of face-specific barite growth rates and the reaction mechanisms reported in 

418 previous studies, and may contribute to improve modeling of barite growth rates in natural and 

419 anthropogenic systems.

420
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