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1. INTRODUCTION

Di!erential equations and boundary conditions for physical phenomena are often obtained
from physical principles by means of variational techniques. The necessary conditions for
the existence of extrema of a functional lead to the natural boundary conditions and to the
Euler di!erential equation, which involve derivatives of an order higher than the order of
the derivatives appearing in the functional. Substantial literature has been devoted to the
formulation, by means of variational techniques, of boundary value and eigenvalue
problems in the statics and dynamics of isotropic plates [1}6]. The natural boundary
conditions of certain structural systems are not easily formulated without the use of the
calculus of variations. The equations of an isotropic plate with given shear forces and
bending moments along the boundary can be found in any textbook on the theory of plates
and shells [7, 8]. Commonly, the formulation employs local co-ordinates related to the
boundary curve. One of the axes of the frame is the vector nN , corresponding to the unit
exterior normal. If the boundary has an angle a, the vector nN rotates through this angle and
so is not continuous. It seems that no published paper or book considers this special case for
anisotropic plates, giving the general impression that it is unimportant how we choose to
appoint conditions at a corner point of the boundary. In this paper we shall obtain the
natural conditions which correspond to an anisotropic plate with a corner point under
various boundary conditions.

On the other hand, Hamilton's principle is used to derive the equation of motion and the
corresponding boundary conditions for the dynamic case. A particularly important plate
problem involves a rectangular plate with a free corner formed by the intersection of two
free or simply supported edges. The determination of natural frequencies in the transverse
vibration of an isotropic rectangular plate is a problem that has been extensively studied by
several researchers. Leissa's works [9, 10] constitute excellent compilations of the pertinent
literature. There is comparatively limited information on the vibration of anisotropic plates.
The present paper also deals with the application of the Ritz method to the determination of
the natural frequencies of a rectangular anisotropic plate with a free corner formed by the
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intersection of two free edges. The resulting algorithm permits the analysis of anisotropic,
orthotropic and isotropic materials. Accurate values can be obtained by incrementing the
number of orthogonal polynomials, and the entire algorithm can be implemented on
a personal computer. The software constitutes a useful tool in design work because of the
great number of vibrating anisotropic plate problems that can be solved.

2. STATEMENT OF THE PROBLEM

In the theory of the bending of thin plates considered by Lekhnitskii in his excellent book
[11], the bending moments M

1
, M

2
, the twisting moment H

12
and the transverse shear
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, N
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are given, respectively, by
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where w"w (x
1
, x

2
) denotes the de#ection of the mid-surface of the plate and D

kl
the

rigidities of the anisotropic plate. The energy functional for the plate deformed by a load of
density q"q (x

1
, x

2
) acting on R, an external force of density p"p (s) and a bending

moment with density m"m(s) acting on the boundary C, is given by
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Let the boundary C be composed of two parts, C"C
1
XC

2
, where C

1
is rigidly clamped, while

C
2
is simply supported or free, and contains a corner point P

3
as shown in Figure 1(a) and 1(b).

It is well known that the minimum of the functional (6) on the smooth functions that
satisfy the clamping conditions is attained when the de#ection w is a solution of the problem



Figure 1. Anisotropic plate with a corner point in C
2

which is (a) free and (b) simply supported.
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of equilibrium of the plate. The equation for this problem is known [11]:
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It is the purpose of this paper to use the calculus of variations to obtain the equation of
motion and the natural boundary conditions in C, and particularly those at the corner point
P
3

of C
2

and at the bordering points of C
1

and C
2
.
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The di!erential equation (7) and the corresponding boundary conditions are derived by
setting the "rst variation dE(w) of functional (6) equal to zero. Since C

1
is rigidly clamped the

geometric boundary conditions are given by
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In consequence, the virtual displacement v must satisfy
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Let w3C4 (R) be a minimizer of the functional (6) and consider E(w#tv) at a "xed virtual
displacement v3C2(R) as a function of the real parameter t. Since it takes a minimum at
t"0 we have
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Now we invoke Green's formula,
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denotes the components of the normal exterior to the boundary of R; two
applications of this to equation (10) give
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2.1. CASE OF SMOOTH BOUNDARY

First, we consider the case when the plate has no corner points, so we suppose that the
boundary C is smooth and that C

2
is free. In order for the functional (6) to have a minimum,

we must require that dE(w)"0 for all admissible virtual displacements v, and in particular
for all admissible v satisfying on the whole contour C the conditions
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For such functions equation (11) reduces to

dE(w)"PP
R
GD11

L2

Lx2
1
A
L2w

Lx2
1
B#D

22

L2

Lx2
2
A
L2w

Lx2
2
B#2D

12

L2

Lx2
1
A
L2w

Lx2
2
B#4D

66

L2

Lx2
1
A
L2w

Lx2
2
B

#4D
16

L2

Lx2
1
A

L2w

Lx
1
Lx

2
B#4D

26

L2

Lx2
2
A

L2w

Lx
1
Lx

2
B!qH vdx

1
dx

2
"0. (13)



952 LETTERS TO THE EDITOR
Since v is an arbitrary smooth function satisfying conditions (12), the Fundamental Lemma
of the Calculus of Variations can be applied and we obtain equation (7).

Next we remove restrictions (12), and since w must satisfy equation (7) equation (11)
reduce to

dE(w)"!PC
2
GD11

L3w

Lx3
1

#D
12

L3w

Lx
1
Lx2

2

#2D
16A

L
Lx

1
A

L2w

Lx
1
Lx

2
B#

1

2

L
Lx

2
A
L2w

Lx2
1
BB

#2D
26A

1

2

L3w

Lx3
2
B#4D

66A
1

2

L3w

Lx
1
Lx2

2
BH n

1
v ds!PC

2
GD12

L2w

Lx2
1
Lx

2

#D
22

L3w

Lx3
2

#2D
16A

1

2

L3w

Lx3
1
B#2D

26A
L

Lx
2
A

L2w

Lx
1
Lx

2
B#

1

2

L
Lx

1
A
L2w

Lx2
2
BB

#4D
66A

1

2

L3w

Lx2
1
Lx

2
BH n

2
vds#PC

2
GAD11

L2w

Lx2
1

#D
12

L2w

Lx2
2

#2D
16

L2w

Lx
1
Lx

2
B

Lv

Lx
1

n
1

#AD22

L2w

Lx2
2

#D
12

L2w

Lx2
1

#2D
26

L2w

Lx
1
Lx

2
B

Lv

Lx
2

n
2
#AD16

L2w

Lx2
1

#D
26

L2w

Lx2
2

#2D
66

L2w

Lx
1
Lx

2
B A

Lv

Lx
2
B n

1
#AD16

L2w

Lx2
1

#D
26

L2w

Lx2
2

#2D
66

L2w

Lx
1
Lx

2
B A

Lv

Lx
1
B n

2

!pv#m
Lv

LnHds"0. (14)

Now if in equation (14) we use the notations of equations (1)} (5) and introduce local
co-ordinates (s, n) by means of the equations
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Since C is smooth, integration by parts with respect to s in the last integral yields
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Substitution into equation (15) gives
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Since we can independently choose v and Lv/Ln, we get the following natural boundary
conditions which establish requirements on the bending moment and on the shear force
respectively:
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2.2. CASE OF PRESENCE OF A CORNER POINT
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Figure 2. Rectangular anisotropic plate with two free adjacent edges.
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Equation (22) is an additional condition at the corner point, which when p
0
"0

demonstrates that the twisting moment is continuous at P
3
. When p

0
O0 it means that the

twisting moment has a jump of value p
0
.

For an isotropic rectangular plate, as shown in Figure 2, we have
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Equation (23) is a condition at P
3

for the mixed second derivative of w when the force p
0

is
not equal to zero.

Now let us assume that C
2

is simply supported. In this case the functions v satisfy the
condition v (s) DC

2
"0; consequently, from equation (20) we again obtain the natural

boundary condition given by equation (17). To sum up, this condition appears to be
independent of the existence of the corner point.

3. THE EIGENVALUE PROBLEM

In this section we use Hamilton's principle to derive the equation of motion and the
corresponding boundary conditions for an anisotropic plate with a corner point and
subjected to an external variable force q"q (x
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, t). The kinetic energy of the anisotropic

plate at time t is given by
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where h is the plate thickness, o the plate density and w"w (x
1
, x

2
, t). Since the potential

energy of deformation of the plate is given by the "rst integral in equation (6), the
corresponding Lagrangian is given by
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The curvilinear integral in equation (26) is identical to those developed in the statical case
since the terms which correspond to the kinetic energy make no contribution to this
integral. In consequence, the expression of the function f can be obtained from equation
(11).
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2
, t

0
)"v(x

1
, x

2
, t

1
)"0 as required by Hamilton's principle the second

double integral in equation (26) is equal to zero. Now, if we assume

v (x
1
, x

2
, t) DC

2
"0,

Lv (x
1
, x

2
, t)

Ln KC
2

"0, (27)

where t is arbitrary, we obtain

dI"
1

2 P
t1

t0
PP

R
G!ohA

L2w

Lt2 B!CD11

L4w

Lx4
1

#D
22

L4w

Lx4
2

#2(D
12
#2D

66
)

L4w

Lx2
1
Lx2

2

#4D
16

L4w

Lx3
1
Lx

2

#4D
26

L4w

Lx
1
Lx3

2

!2qDH vdx
1
dx

2
dt. (28)
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Setting equation (28) to zero and using the arbitrariness of the interval [t
0
, t

1
] and of

function v inside R][t
0
, t

1
], we obtain the equation of motion for forced vibrations of the

anisotropic plate:

D
11

L4w

Lx4
1

#4D
16

L4w

Lx3
1
Lx

2

#2(D
12
#2D

66
)

L4w

Lx2
1
Lx2

2

#4D
26

L4w

Lx
1
Lx3

2

#D
22

L4w

Lx4
2

#oh
L2w

Lt2
"q. (29)

Now removing conditions (27) and noting that w must satisfy equation (29), we obtain from
the general expression of dI the same boundary conditions as in the static case, when C

2
is

free and simply supported respectively.
Let us consider the case of a rectangular anisotropic plate with a free corner formed by

the intersection of two free edges and the other two edges clamped as shown in Figure 2.
From equation (22) it follows that when the plate executes free or forced vibrations, the
additional condition

H
12

D
s3`0

#H
12

D
s3~0

"0 (30)

must be satis"ed at the corner. Nevertheless, as is well known when dealing with the Ritz
method, it is not necessary to subject the co-ordinate functions to the natural boundary
conditions [3, 13]. Consequently, since equation (30) constitutes a natural boundary
condition, it can be ignored in the construction of the approximation function. The assumed
shape function for using the Ritz procedure is given by

= (x, y)"+
i

+
j

c
ij
p
i
(x)q

j
(y), (31)

where p
i
(x) and q

j
(y) are orthogonal polynomials, and c

ij
are arbitrary coe$cients to be

determined. The "rst member of the set, p
1
(x), is obtained as the simplest polynomial that

satis"es the geometrical boundary conditions. Assume that

p
1
(x)"

5
+
i/1

a
i
xi~1, (32)

where the arbitrary constants a
i

are determined by substituting equation (32) into the
mentioned boundary conditions. The higher members of the set are obtained by employing
the Gram}Schmidt orthogonalization procedure as

p
2
(x)"(x!B

2
)p

1
(x), p

k
(x)"(x!B

k
)p

k~1
(x)!C

k
p
k~2

(x),

where

B
k
"

P
a

0

x (p
k~1

(x))2dx

P
a

0

(p
k~1

(x))2dx

, C
k
"

P
a

0

xp
k~1

(x)p
k~2

(x) dx

P
a

0

(p
k~2

(x))2dx

.



TABLE 1

<alues of the frequency coe.cient X"ub2Joh/D
11

for rectangular anisotropic plate with
edges 1 and 3 rigidly clamped and edges 2 and 4 free (see Figure 2). ¹he anisotropy is
characterized by the following parameters: D

22
/D

11
"0)115202317, D

12
/D

11
"0)100812496,

D
66

/D
11
"0)0948810, D

16
/D

11
"!0)24333539, D

26
/D

11
"!0)0120837

a/b
Mode

sequence 0)5 1)0 1)5 2)0

1 1)629322221322 3)32815164901 6)95486205824 12)29819205377
2 5)024612579025 9)58943372984 12)59650202035 17)56989276651
3 7)967488728093 19)31923585959 25)19807857486 29)09230327539
4 11)014175047324 22)64339945018 43)42837457421 50)77655691680
5 14)981556360180 25)72370575573 47)43970343944 77)29483739719
6 18)939876323114 36)56770335802 52)17708494851 83)48107988609
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The polynomial set along the y direction is also generated using the same procedure. The
natural frequencies are obtained from the Rayleigh quotient as

u2"
;

max
¹
max

. (33)

Minimization of the Rayleigh quotient (33) with respect to each parameter c
ij
, leads to the

necessary conditions

L
Lc

ij

(u2)"0. (34)

Substituting the approximate function (31) into equation (34) we obtain

+
i

+
j

[K
ijkh

!X2M
ijkh

]c
ij
"0, (35)

where X"ub2Joh/D
11

is the non-dimensional frequency parameter.
Table 1 depicts values of the "rst six natural frequencies of a rectangular anisotropic

plate, for di!erent values of the ratio a/b.

4. CONCLUSIONS

The calculus of variations was used to derive the boundary value and eigenvalue
problems which describe the static and dynamic behaviours of an anisotropic plate with
a corner point in the boundary. Natural boundary conditions at the corner point P

3
and at

the bordering points P
1
, P

2
have been determined for the cases in which C

2
is free and simply

supported respectively. The formulation can easily be extended to the case of a plate with
various corner points.
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Hamilton's principle was used to derive the equation of motion and the corresponding
boundary conditions. It has also been determined that when a rectangular anisotropic plate
with a free corner formed by the intersection of two free edges executes vibrations, the
additional condition H

12
D
s3`0

#H
12

D
s3~0

"0 must be taken into account in the corner.
Finally, natural frequencies of a rectangular anisotropic plate have been studied by using

orthogonal polynomials in the Ritz method.
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