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Abstract

This paper deals with the applicability of the Rayleigh—Ritz method for the determination
of frequency coefficients of beams and plates with elastically restrained edges. Natural fre-
quencies of beams elastically restrained against rotation and translation at both ends and of
rectangular isotropic plates with elastic edge restraints are studied by using the Rayleigh—Ritz
method along with orthogonal polynomials as co-ordinate functions. It is shown that the
approximate satisfaction of boundary conditions introduces additional constraints into the
formulation that bring unexpected values in the results. On the other hand, it is shown that
there are defects in the approximations when the natural boundary conditions in beams are
taken into account. The adequate procedure for constructing the co-ordinate functions to
avoid numerical errors is presented. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The determination of natural frequencies in the transverse vibrations of rectan-
gular plates with edges elastically restrained has been treated by several researchers
[1-16]. In various of these works the Rayleigh—Ritz method has been applied.

When dealing with this method it is necessary to select a sequence of co-ordinate
functions. The fact that the natural boundary conditions of a system need not be
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satisfied by the chosen co-ordinate functions is a very important characteristic of the
method, specially when dealing with problems for which such satisfaction is very
difficult to achieve. For instance, this is the case of a rectangular isotropic plate with
generally restrained edges. Consequently, it is possible to replace the original natural
boundary conditions by more easily applied conditions or simply to ignore them.
Laura and Grossi [7] showed the existence of a curious anomaly in the approximate
analysis of a rectangular plate with edges elastically restrained against rotation and
translation. The natural boundary conditions were satisfied approximately and the
Rayleigh—Ritz method was used to derive and approximate the fundamental fre-
quency equation. The anomaly was shown to exist in the frequency values for a
certain range of the rotational and translational restraints parameters. In the present
paper the Rayleigh—Ritz method with orthogonal polynomials as shape functions
are used to explore this anomaly and to demonstrate that the origin of the problem
is caused by the use of approximate natural boundary conditions. The eigenvalues
have been calculated numerically and the effects of variation of rotational and
translational restraint parameters, have been clarified quantitatively. A great num-
ber of problems were solved. Since these number of cases is prohibitively large,
results are presented for only a few cases.

On the other hand, natural frequencies in the transverse vibration of beams with
elastically restrained ends have been studied. Exact solutions for uniform beams
with ends elastically restrained against rotation and translation have been obtained
by the method of separation of variables. The approximate solutions have been
obtained by using the Rayleigh—Ritz method. It is also the purpose of this paper to
demonstrate the existence of defects in the approximate numerical values when using
a set of orthogonal polynomials in the mentioned variational method, even when the
natural boundary conditions are identically satisfied. It is shown that in certain cases
choosing the co-ordinate functions which each satisfy identically the natural
boundary conditions can lead to results with lower precision than those achievable
by using co-ordinate functions which do not take into account these boundary
conditions.

2. Analysis of the plate problem

Let us consider the rectangular isotropic plate with edges elastically restrained
against rotation and translation shown in Fig. 1. Rayleigh—Ritz method requires the
minimization of the Rayleigh quotient which for the fundamental frequency is given

a)z _ ax (1)

where Umax = Up,max + Ur,max + Uf,max
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U, max 18 the maximum strain energy of the plate and is given by

1 b ra
Upnmas =3 | | D[ 07+ () 420,y 20 = (W sty @)

The subscripts denote differentiation of W with respect to the subscripted variable,
a and b are side lengths of the plate in the x and y directions, respectively.

The maximum strain energy associated to the rotational and traslational restraints
in the edges are given by:

1
Ur,max - E
b b a a
X |:r1J W2(0, y)dy + VQJ W2(a, y)dy + r3J Wf,(x, 0)dx + r4J Wi(x, b)dx:|
0 0 0 0
A3)
U 1
t,max — 5

b b a a
X [zlj W2(o,y)dy+rzj W(a, y)dy+t3j W(x, 0)dx+t4J W2(x, b)dx]
0 0 0 0

4)
where r; and ¢; (i=1,4) are, respectively, the rotational and translational spring

A
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Fig. 1. Rectangular plate under study (numbers at the edges used as subscripts in defining edge restraint
parameters).
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constants along the corresponding edges. Finally, the maximum kinetic energy of
the mechanical system is given by

pwz 2
Thax = T J J h(x, y)W=(x, J/)dXdy O]
R

In the Rayleigh—Ritz method, one seeks an approximate solution in the form of a
linear combinations of the so called co-ordinate functions ¢i(x)g;(y) and unde-
termined parameters c¢;. These parameters are determined such that the solution
W(x,y) = Zzozj]\ioc[,d)[(x)(p_/(y) gives a minimum to the Rayleigh quotient (1).

In the case of normal modes of vibration, the boundary conditions are as follows

W0, 7) = —D(W re-w %;;Z”) (62)
1 W(a, y) = D<% +C—p %) (6¢)
Lo —0(82 an 4 . Wa/if y)) (6d)
(W (x,0) = —D (@ @) %) (6¢)
0 D<82 o e %) (6f)
LWV, B) = D(% +e-w %) (60)
D _0(32 LCL GalE %) (6h)

It is difficult to construct co-ordinate functions, which satisfy the boundary con-
ditions (6). However, as it is not necessary to subject these functions to the natural
boundary conditions, it is possible to replace the natural boundary conditions by
more easily applied conditions. For instance, in this case it is possible to replace Egs.
(6) by the following approximate expressions

P (O, WO, PO,
p& WOy WO,y _ WO, )

aw, ) = - ax3 ax ax?2

(7a, b)
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This procedure has been successfully used in several previous works [8—16].

Nevertheless, the assumption that the deflection function is a series of co-ordinate
functions each of which satisfies conditions (7) represents an unnecessary restraint
on the system. This can lead to poorer results than those achievable by using similar
functions which are not constrained to satisfy these conditions. This topic is dis-
cussed by Bassily and Dickinson [17], where the use of beam vibration mode shapes
in the Rayleigh-Ritz method to obtain solutions for the study of plates involving
free edges is analysed.

In the present paper it is demonstrated that the use of approximate conditions (7)
can yield numerical results which are against the physical nature of the problem, and
it is shown how to remedy this situation.

3. Numerical results

The assumed shape function for using the Rayleigh—Ritz procedure is given by:

N M
W(x.p) =Y > cii(x) ¢i(») ®)

i=0 j=0

where ¢; are arbitrary coeflicients and {qb,(x), goi(y)} is the set of orthogonal poly-
nomials. The procedure for constructing the orthogonal polynomials is well known
and has been descripted in various articles included in the list of references [18-20].
The minimization of (1) leads to the following eigenvalue problem:

2 2 : 2 4
[Kmm'j -'M mnij] cj =0 where Q? = ph%a'
i

Table 1 depicts values of QOO:\/%ZwOOaZ for an isotropic rectangular plate with
edges 1, 3 and 4 rigidly clamped while edge 2 is elastically restrained against rotation
and translation. This values have been obtained with only one term in function (8)
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Table 1

Values of Q) = \/%wooa2 for an isotropic rectangular plate with edges 1, 3 and 4 rigidly clamped while
edge 2 is elastically restrained against rotation and translation. These values have been obtained with only
one term in Eq. (8). The corresponding polynomials were determined with the approximate natural
boundary conditions (7)

T, ="
I‘zb

Ry=— 20 30 40 50 80 130 140

0 25.44457 26.075093  26.633621  27.116369  28.193878  29.240413  29.384627
10 25.511582 25985269  26.430480  26.844956  27.908709  29.194148  29.395874
40 25.525741 25966520  26.387668  26.787038  27.850223  29.219787 = 29.443873
50 25.526901  25.964988  26.384174  26.782318  27.845618  29.223142  29.449385
100 25.529321 25961793  26.376885  26.772475  27.836121  29.230905  29.461849
500 25.531363  25.959100  26.370745  26.764192  27.828247  29.238307  29.473437
1000 25.531625 25958755  26.369957  26.763130  27.827246  29.239317  29.475000

where the polynomials ¢y(x) and ¢(y) have been constructed as the simplest poly-
nomials with enough number of terms to satisfy the approximate conditions (7).

It is observed that the values of Qg9 do not increase when the values of R,
increase, for the following ranges of values: 30<7,= % < 130 and
0<R, = % < 1000. Table 2 shows the effect of use of an increasing number M =N
of polynomials in the assumed shape function. The values of Q¢ increase with the
values of R, when M = N>=6. On the other hand Table 3 depicts values of the
mentioned frequency coefficient obtained using function (8) with the first poly-
nomials ¢y(x) and ¢y(y) determined ignoring all natural boundary conditions and
particularly the approximate conditions (7). In this case the variation of the values
of Qg is correct and the convergence to the exact result is verified.

To sum up, the use of approximate conditions (7) with a small number of co-
ordinate functions leads to incorrect variation of frequency values. This deficiency

Table 2
ph

Values of Qg :\/;wooaz for an isotropic rectangular plate with edges 1, 3 and 4 rigidly clamped while
edge 2 restrained against rotation and translation. ( Ry = % =0 and 10; T, = ’3[1;' = 80). These values

have been obtained with different number of polynomials in Eq. (8). The first polynomials were deter-
mined with the approximate natural boundary conditions (7)

R, =0 R, =10 M =N (number of polynomials)
28.194 27.909 1
28.101 27.739 2
27.903 27.642 3
27.784 27.638 4
27.655 27.625 5
27.601 27.622 6
27.580 27.618 7
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Table 3

Values of Qoozgwooaz for an isotropic rectangular plate with edges 1, 3 and 4 rigidly clamped while
edge 2 restrained against rotation and translation. ( R, = % =0 and 10; T, = % =80). These values
have been obtained with different number of polynomials in Eq. (8). The first polynomials were con-
structed without considering the natural boundary conditions

R, =0 R, =10 M =N (number of polynomials)
31.812 34.814 1
28.582 28.720 2
27.600 27.636 3
27.598 27.635 4
27.578 27.621 5

disappears when the number of co-ordinate functions is increased. However, if the
natural boundary conditions are simply ignored, the convergence without defects to
the correct solution is assured.

4. Analysis of the beam problem

Let us consider a uniform beam of length L whose ends are elastically restrained
against rotation and translation as shown in Fig. 2. The differential equation for free
flexural vibrations is given by:

*ulx, t
Pux.n)

4 Fu(x, 1) B
ox4 B

EI
or?

0 0 )

where u is the lateral deflection, EI the flexural rigidity, p the mass density and A the
cross-sectional area of the beam. The boundary conditions are as follows

o b .

n :
L J

Fig. 2. Beams with elastically restrained ends under study.
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2
" ou(0, 1) _ Ela u(0, 1)

1 y

ox ox2 (10a)
3

fu(0, 1) = —gr 2100 (10b)
ax3

wu(L, 1) Fu(L, 1)

) Ix = —EI a2 (10C)
3

ty(L,O::EHﬁlgéig (10d)

Using the method of separation of variables one can assume as solution a series of
the functions

u,(x) = kysinh(Ax) + kycosh(Ax) + kssin(Ax) + kgcos(Ax) (1D

Substituting expression (11) in the boundary conditions (10) results in a homo-
geneous system of linear equations in the four constants ki, k», k3 and k4. For a non-
trivial solution the determinant of the matrix coefficient must be equal zero. This
procedure yields the following frequency equation

(Asinh(2) + Bcosh(4))sin(Z) 4+ (Ccosh(Z) + Dsinh(2))cos(1) + 28

+ 4R\ Ty + RyT2) + R\ R Ty T, = 0. (12)

where

A=2*(T\T> - 2*RiRy),

B=—0"(Ri + R)) — 2°(T1 + T2) + 2*(RiRyT> + Ry Ry T\) + AR\ T\ T> + Ry T\ T)
C=—-I4+ %R\ T) + RyT> + 2R, Ty + 2R, T») — R T\ Ry T,

D = —J"(Ry + Ry) + 2(Ty + T>) + 22 (Ri Ry Tr + RiRTy) — AR Ti s + Ry T T)

pA 2,4 }",'L t,'L3
pagsapney 5 R == .
el NTEr VTR

i=12.

Numerical results have also been obtained using orthogonal polynomials in the
Rayleigh—Ritz method. In the case of normal modes the assumed shape function is
given by:



R.O. Grossi, C.M. Albarracin | Applied Acoustics 62 (2001) 1171-1182 1179
N
u(x) = 3 () (13)
i=0
Table 4 depicts values of the fundamental frequency coefficient 4;, with

[pA ril 6B
A= %mllz, Ty=00, Ry=0, R ZELIZ 0, T» Zﬁz 2000

The exact solution was obtained from Eq. (12). It can be observed that when the
natural boundary conditions (10) are identically satisfied the convergence is affected
numerically. On the other hand when these boundary conditions are not considered
the convergence is not affected but obviously when only a few terms are used in (13)
the results are not so accurate.

Table 5 shows values of the fundamental frequency coefficient 4;, with

| |p4 B B ol _1213_
)vl = Ewllz, T1 = 0Q, R2 = 0, R1 = EI_ 0, Tz = El = 500

The same situation described for Table 4 is observed when the natural boundary
conditions are ignored. Finally Fig. 3 shows the absolute error E= A} — 4, as a
function of the rotational restraint parameter R;. The values 4] have been obtained
using function (13) with N=8 and the first polynomial determined by satisfying
identically the corresponding natural boundary conditions (10) and the exact values
A1 where obtained from Eq. (12). One immediately observes that, for certain values
of the translational restraint parameter 75, say 200 < 7, < 750 the error is greater.

If the corresponding natural boundary conditions are ignored in the application of
Rayleigh—Ritz the method this error disappears.

Table 4 o
Values of /; with A} = AP, Ti=o00, Ry=0, Ry =%=0,T,=--=2000. The exact solution
A1 =3.1338386 was obtained from Eq. (12). (I) natural boundary conditions were identically satisfied; (II)

natural boundary conditions were not considered

Number of polynomials (I) (IT)

1 3.135304 8.801117
2 3.135304 3.299412
3 3.134464 3.299410
4 3.134463 3.134289
5 3.134170 3.134289
6 3.134170 3.133839
7 3.134168

8 3.134168

12 3.134168
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Table 5

Values of A; with /1‘1‘ = ‘;—”;wfl“, Ti=00, R, =0, R = %} =0, T, :% = 500. The exact solution
A1 = 3.1105681 was obtained from Eq. (12). (I) natural boundary conditions were identically satisfied; (II)
natural boundary conditions were not considered

Number of polynomials I) (IT)
1 3.112721 6.223330
2 3.112721 3.268483
3 3.111806 3.268457
4 3.111793 3.110982
5 3.111560 3.110976
6 3.111559 3.110568
7 3.111559
8 3.111558
15 3.111533
E
T, =400
0.0014+
T, =750
0.0012+
0.001+
0.0008+
T, =2000
0.0006+
T, =200
0.0004+
0.0002+ T, =150
04, . ) - - - T, =100
.1000e-1 .1000 1. 10. 100. 1000.
R,

Fig. 3. Fundamental frequency error E = A} — /; of beams with elastically restrained ends, where A7 is the
value obtained by the Rayleigh—Ritz method and /; is the exact value obtained by Eq. (12).

5. Conclusions

When applying the Rayleigh—Ritz method it is not necessary to subject the co-
ordinate functions to the natural boundary conditions, so it is possible to replace
them by more easily applied conditions or to ignore them. In the present paper it
was demonstrated:
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(a) that the procedure of replacement of the natural boundary conditions by
approximate expressions in the dynamical behaviour of rectangular plates with
edges elastically restrained against rotation and translation, is adequate when
only a small number of co-ordinate functions is used. In some cases, this pro-
cedure can lead to results counter to the physical nature of the problem under
study.

When the approximate boundary conditions (7) are satisfied, this applies an arti-
ficial constraint on the deflection shape, thus increasing the natural frequency results.
These artificial constraints do not vanish when the number of terms are increased.
When only the geometrical conditions are satisfied, there are no such artificial con-
straints, and hence the convergence is very good. Only the approximate satisfaction
of the boundary conditions, which introduces additional constraints into the for-
mulation, brings defects in the results.

(b) That satisfaction of the natural boundary conditions in the dynamical beha-
viour of beams with ends elastically restrained against rotation and translation
can lead to results affected by errors that disappear when those boundary
conditions are simply ignored.

The results presented show that although individually each of the orthogonal
polynomials used does not satisfy the natural boundary conditions, the series com-
posed of these polynomials converges rapidly towards such satisfaction and very
accurate numerical results are obtained.
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