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Role of indistinguishability in interferometric phase estimation
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We report a theoretical and experimental study on the role of indistinguishability in the estimation of
an interferometric phase. In particular, we show that the quantum Fisher information, which limits the
maximum precision achievable in the parameter estimation, increases linearly with respect to the degree of
indistinguishability between the input photons in a two-port interferometer, in the ideal case of a pure probe
state. We experimentally address the role played by the indistinguishability for the case of two photons entering
a polarization-based interferometer, where the degree of indistinguishability is characterized by the overlap
between two spatial modes. The experimental results support the fact that, even in the presence of white noise,
a quantum enhancement in the interferometric phase estimation can be obtained from a minimum degree of
indistinguishability.
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I. INTRODUCTION

Quantum metrology allows us to obtain an increase in pre-
cision with respect to the classical framework in the problem
of parameter estimation by exploiting quantum phenomena
such as entanglement or squeezing. Beyond its fundamental
role, it has been applied to many and diverse problems such
as in gravitational-wave detection [1], quantum imaging [2,3],
atom clocks [4,5], among others (see, e.g., the reviews [6–12]
and references therein for a general introduction and some
of its applications). One can resume the general procedure
of quantum parameter estimation following the three basics
steps: (i) preparation of an initial quantum state, the so-
called probe state, ρ in; (ii) encoding the parameter φ to be
estimated into a quantum state ρout (φ) = Eφ (ρ in ) by means
of a quantum operation Eφ applied to the initial state; and
(iii) performing a measurement on the final state ρout (φ) that
is, in general, given by a positive-operator valued measure
(POVM) M = {Mm} with possible outcomes m. Then, an
estimator φ̂ can be obtained from the probabilities of the
outcomes that are, according to the Born rule, p(m|φ) =
tr[Mmρout (φ)]. Clearly, the variance of the estimator �2(φ̂)
depends on the chosen probe state, the quantum operation
that encodes the parameter, and the performed measurement.
Although exploiting quantum phenomena can enhance the
parameter estimation, there is an ultimate limit in the precision
given by the so-called quantum Cramér-Rao bound [13,14]
(QCRB)

�2(φ̂) � 1

FQ(φ)
, (1)

where FQ(φ) = max{M} F (φ) is the quantum Fisher informa-
tion (QFI), with

F (φ) =
∑

m

1

p(m|φ)

∣∣∣∣d p(m|φ)

dφ

∣∣∣∣
2

, (2)

the Fisher information (FI) of the corresponding probabili-
ties p(m|φ) = tr[Mmρout (φ)] associated to a POVM M for
the given state ρout (φ), and the maximum is taken over all
possible POVMs {M}. In this sense, QFI gives the maximal
information on the parameter encoded in the state ρout (φ).
Conditions for the saturation of the QCRB (1) were studied
in the seminal works [13–15], but these conditions depend, in
general, on a measurement scheme that requires knowledge
about the value of the parameter to be estimated.

For the task of estimating a phase φ from the unitary map
Uφ = exp(−iφH ), where H is the corresponding generating
Hermitian operator (the “Hamiltonian”), the QFI does not de-
pend on φ. Moreover, for initial pure states ρ in = |ψ in〉 〈ψ in|,
the QFI is proportional to the variance of the Hamilto-
nian in the initial state, that is, FQ(φ) ≡ FQ(|� in〉 , H ) =
4�2(H ) with �2(H ) = 〈� in|H2|� in〉 − (〈� in|H |� in〉)2 (see,
e.g., [8,16]). For this configuration, it has recently been shown
that it is possible to saturate the QCRB with a projective
measurement that does not require any previous information
about the value of the parameter to be estimated [17]. In
this regard, QFI plays a fundamental role as a witness of the
maximum precision achievable.

In this paper, we focus on the problem of estimating an
unknown phase φ by analyzing a general scenario of encoding
it in a quantum system of a definite number of photons
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(2n) by means of a unitary map Uφ = exp(−iφJy), with Jy =
−i(α†β − αβ†)/2, where the annihilation and creation oper-
ators α, β, α†, and β† satisfy the usual bosonic commutation
relations [α, α†] = [β, β†] = 1. In general, this unitary map
describes any two-port interferometer with input modes α and
β, like the ubiquitous Mach-Zehnder interferometer (see, e.g.,
[18–21]). If the 2n photons enter the interferometer through
one of the ports, whereas the other one is fed by the vacuum
state, the probe state is given by |ψ in〉 = |2n, 0〉 and the QFI
is equal to FQ(|ψ in〉 , Jy) = 2n. This leads to the standard
quantum limit (SQL) scaling �2(φ̂) = 1/2n. It is well known
that a better choice of the probe state can surpass the SQL.
Indeed, it has been shown in [22] that the maximal QFI over
initial product states with definite total photon number (2n) is
given by FQ(|ψ in〉 , Jy ) = 2n(n + 1), and the probe state that
attains this maximal value is the so-called Holland-Burnett
state [23] (or twin-Fock state): |ψ in〉 = |n, n〉. In this situation,
one can obtain a phase error �2(φ̂) ∼ 1/2n2 that scales as
the Heisenberg-limit (HL) (see, e.g., [24,25]). We notice that
attaining this limit is possible due to the quantum interference
between 2n completely indistinguishable photons entering
into the interferometer. In a more realistic scenario, this preci-
sion might be limited by the presence of an extra unavoid-
able or uncontrollable degree of freedom that degrades the
indistinguishability of interfering photons. Since achieving
complete indistinguishability between interfering photons can
be a technological challenge, the characterization of such an
effect naturally arises. This point has been theoretically and
experimentally addressed in [26] for small changes of the
phase, where the precision of the estimation characterized by
FI is studied as a function of a degree of indistinguishability
due to a path delay mismatch between interfering photons.
Indeed, for local phase estimation, it has been shown that
this undesirable effect can be mitigated using two photons
with a carefully engineered accessible additional degree of
freedom [27]. Here, we do not restrict to small changes of
phase and we do not assume any previous knowledge about
the phase value. We are interested in characterizing how the
precision of the estimation, quantified by the QFI, is af-
fected by a degree of indistinguishability between interfering
photons in a general scenario. To measure this effect, we
designed an experimental setup for the case of two photons
entering a polarization-based interferometer, where the degree
of indistinguishability is characterized and controlled by the
overlap between two spatial modes. Our results support the
fact that indistinguishability is essential to obtain a quantum
enhancement in the interferometric phase estimation. Such
a description complements other studies, in addition to the
later ones [26,27], of nonideal scenarios, for example those
addressed in [28–32].

II. QUANTUM FISHER INFORMATION VERSUS
INDISTINGUISHABILITY

A. General scheme

Let us consider the general scheme of Fig. 1(a) to estimate
an unknown phase φ encoded in a state of 2n photons through
the action of a two-port interferometer. To take into account
a degree of indistinguishability between interfering photons

(a)

(b)

FIG. 1. (a) General scheme for studying the role of indistin-
guishability (I) of photons in a two-port interferometer to estimate
the phase (φ). (b) Experimental setup. Horizontally polarized photon
pairs are generated by SPDC into two path modes a′ and b′. State
preparation is perferomed by using half-wave plate (HWP) H1 in
path b′, the action of the polarizing beam splitter (PBS) and an
additional HWP at 45◦ at output path mode b. HWP H2 acts as a
polarization interferometer, adding a relative phase between polar-
ization modes. Measurements are performed in coincidence between
the four possible output modes ha, va, hb, vb. Each output mode is
coupled into a single mode fiber. Alternatively, fiber beam splitters
are added to measure double photon events (see text for details).

of different ports, we consider a four-mode representation
of individual photons. More precisely, let αμ, αν, βμ, and βν

be annihilation operators, where the labels α and β refer to
input ports of the interferometer, while μ and ν correspond
to an extra degree of freedom that allows photons to be
distinguished. The annihilation and creation operators satisfy
usual bosonic commutation relations [αμ, α†

ν ] = [βμ, β†
ν ] =

δμν . The degree of indistinguishability, 0 � I � 1, between
interfering photons of different ports is then modelled by
assuming that n photons occupy the mode αμ, whereas the
other n are in a superposition of orthogonal modes βμ and
βν , that is, βI = √

Iβμ + √
1 − Iβν (in a similar fashion to

[33,34] where μ and ν correspond to temporal modes). In this
way, the initial state can be written as

|� in〉 = (α†
μ)n

√
n!

(β†
I )n

√
n!

|0〉 = I n
2 |nαnβ00〉

+
n−1∑
k=1

√
n!

k!(n − k)!
I n−k

2 (1 − I )
k
2 |nα (n − k)β0kβ〉

+ (1 − I )
n
2 |nα00nβ〉 . (3)

We are using the notation |nαnβ00〉 ≡ |nαnβ〉
μ

⊗ |00〉ν ,
where the first ket refers to 2n photons in mode μ,
whereas the second one indicates zero photons in mode ν. No-
tice that the initial state is, in general, entangled with respect
to the mode bipartition (μ, ν) formed from the corresponding
subalgebras of the modes μ and ν, but not with respect to
the mode bipartition (α, β ) formed from the corresponding
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subalgebras of modes α and β (see, e.g., [35] for a discussion
about entanglement of identical particles). In particular, when
I = 1 the 2n input photons are completely indistinguishable
and the initial state takes the form |� ind〉 = |nαnβ00〉. Con-
versely, when I = 0, the input photons on different ports are
completely distinguishable and the initial state is given by
|�dis〉 = |nα00nβ〉 ≡ |nα0〉μ ⊗ |0nβ〉

ν
.

The Hamiltonian responsible for encoding the phase φ

into the initial state is given by H = Jμ ⊗ I + I ⊗ Jν , where
Jχ = −i(α†

χβχ − αχβ†
χ )/2 with χ = μ, ν. Accordingly, the

quantum Fisher information for this scheme is given by

FQ(|� in〉 , H ) = 2n2I + 2n. (4)

The proof of this result is given in Appendix A. There-
fore, we find that the QFI increases linearly with the de-
gree of indistinguishability. Moreover, the QFI (4) can be
written as a convex combination of two extreme cases, that
is, FQ(|� in〉 , H ) = IFQ(|� ind〉 , H ) + (1 − I )FQ(|�dis〉 , H )
where FQ(|� ind〉 , H ) = 2n(n + 1) and FQ(|�dis〉 , H ) = 2n.
We also notice that FQ(|� ind〉 , H ) = 2n(n + 1) is equal to the
QFI of the Hollan-Burnett states that scales as the HL. On
the other hand, FQ(|�dis〉 , H ) = 2n is equal to the QFI of the
2n photons entering the interferometer on one of the ports
(while the other port is fed by the vacuum state) and leads
to the SQL scaling. Interestingly, these results imply that, in
the ideal case, one can beat the SQL with any no-null degree
of indistinguishability between the 2n interfering photons. In
other words, indistinguishability is a necessary and sufficient
condition to obtain a quantum advantage in the estimation of
an interferometric phase in this scheme.

Additionally, in a more realistic scenario, the quantum state
is not generally a perfect and pure state. It is reasonable to as-
sume a model where the state preparation is affected by white
noise, independently of the degree of indistinguishability I.
In this situation, the initial state can be modeled as a mixture
between |� in〉 given by (3) and the maximally mixed state
I/d; that is,

ρ in = (1 − ε) |� in〉 〈� in| + ε
I

d
, (5)

where ε is the degree of white noise and d = (2n + 3)(2n +
2)(2n + 1)/3! is the dimension of the Hilbert space of a four-
mode system of 2n identical photons. In this way, the QFI
given in (4) is reduced by a factor that depends on the degree
of noise as follows:

FQ(ρ in, H ) = (1 − ε)2

1 − (
1 − 2

d

)
ε

FQ(|� in〉 , H )

= (1 − ε)2

1 − (
1 − 2

d

)
ε

(2n2I + 2n). (6)

Unlike the pure state case, a minimum degree of indistin-
guishability given by Imin = [2+d (1−ε)]ε

nd (1−ε)2 is now required to
surpass the SQL, as long as the degree of noise remains below

εmax = 2+(2n+1)d−√
4+4d+d2+8nd

2(n+1)d . Therefore, indistinguishabil-
ity is still a necessary condition but not sufficient in order to
surpass de SQL.

B. Two-photon state in a two-port interferometer

To experimentally study the role of indistinguishability, let
us consider the setup of Fig. 1(b), consisting of a two-photon
state (2n = 2) entering a two-port polarization-based interfer-
ometer. In this setup, the polarization modes h (horizontal)
and v (vertical) play the role of modes α and β of the general
scheme discussed above, whereas the spatial modes a (lower
output port) and b (upper output port) play the role of μ

and ν.
The initial two-photon state is prepared as follows. A

vertically polarized 405-nm CW laser diode is used to pump
a BBO nonlinear two-crystal arrangement (type I). Pairs of
horizontally polarized photons at 810 nm are generated by
spontaneous parametric down-conversion (SPDC) in only one
of the crystals from the arrangement. These photons are
directed into two path modes which we call a′ and b′. Photons
in path b′ pass through a controlled half-wave plate (HWP)
that rotates their polarization into a superposition of horizonal
and vertical modes, that is, h 
→ cos(2ϕ)h + sin(2ϕ)v [H1
in Fig. 1(b)], where ϕ is the physical angle of the HWP.
Subsequently, both photons enter a polarizing beam splitter
(PBS). The optical path a′ is adjusted by using a translation
stage so that both photons arrive at the PBS at the same time.
The action of the polarizing beam splitter is such that hori-
zontally polarized input photons from path a′ are transmitted
unchanged into path mode a. On the other hand, input photons
from path b′ with horizontal polarization are transmitted into
path mode b, whereas photons with vertical polarization are
reflected into path mode a. Placing a half-wave plate at 45◦
[H45◦ in Fig. 1(b)] in the output path mode b changes the
horizontally polarized photons into vertical ones. Therefore,
the initial horizontally polarized photons in path b′ are pre-
pared in a superposition of spatial modes a and b with vertical
polarization, that is, hb′ 
→ vb′ = sin(2ϕ)va + cos(2ϕ)vb. This
allows us to prepare the following initial two-photon state:

|� in〉 = (ha′ )†(v†
b′ ) |0〉

=
√
I (ϕ) |1h1v00〉 +

√
1 − I (ϕ) |1h001v〉 , (7)

where the degree of indistinguishability of interfering photons
is controlled by the angle ϕ of half-wave plate H1 and it is
given by I (ϕ) = sin2(2ϕ).

A phase φ is encoded into the initial state by the action
of another controlled half-wave plate [H2 in Fig. 1(b)], which
acts as a polarization interferometer. This HWP performs the
transformation of the polarization modes ha 
→ cos(2θ )ha +
sin(2θ )va and vi 
→ sin(2θ )hi − cos(2θ )vi with i = a, b and
where θ = φ/4 is the physical angle of the HWP. Therefore,
the state at the output of the interferometer takes the form

|�out〉 =
√
I (ϕ)

[√
2 sin(φ)

2
(|2h000〉 − |02v00〉)

− cos(φ) |1h1v00〉
]

+
√

1 − I (ϕ)

[
sin(φ)

2
(|1h01h0〉 − |01v01v〉)

− cos2(φ/2) |1h001v〉 + sin2(φ/2) |01v1h0〉
]
. (8)

062125-3



L. T. KNOLL et al. PHYSICAL REVIEW A 100, 062125 (2019)

The QFI is obtained by measuring the optimal probab-
ilities {p(m|φ) = |〈m|�out〉|2}m∈M through the projective
measurement M = {|m〉 〈m|}, where M = {2h000, 02v00,

1h1v00, 1h01h0, 01v01v, 1h001v, 01v01v, 001h1v, 002h0,

0002v} (although projections onto the last three elements do
not contribute to the FI, see Appendix B), which gives

FQ(|� in〉 , H ) =
∑

m∈M

∣∣ d p(m|φ)
dφ

∣∣2

p(m|φ)
= 2I (α) + 2. (9)

Projections onto polarization modes h, v are implemented
with a PBS at each output path a, b and single-photon count-
ing modules are placed at each output mode corresponding
to ha, va, hb, vb. Coincidence measurements are performed
between the corresponding detectors according to each proba-
bility measurement. Each output mode is coupled into a single
mode fiber and 10-nm interference filters are placed before
the optics corresponding to exit modes ha, va while band-pass
filters are used for outputs hb, vb. Projective measurements
onto {2h000, 02v00} are obtained including fiber beam split-
ters (BS) at the output modes ha and va as shown Fig. 1(b) and
measuring coincidences between the outputs of each BS.

Let us consider the case where the state preparation is
affected by white noise. Accordingly, the initial state is of the
form (5), that is, ρ in = (1 − ε) |� in〉 〈� in| + ε I

10 with |� in〉
given by (7). For the same projective measurement M, the
probabilities change as p′(m|φ) = (1 − ε)p(m|φ) + ε 1

10 . It
can be shown that the Fisher information from these noisy
probabilities gives

F ′(φ) = 4(1 − I )2(1 − ε)2 cos6(φ/2) sin2(φ/2)

ε/10 + (1 − I )(1 − ε) cos4(φ/2)

+ 4(1 − I )2(1 − ε)2 cos2(φ/2) sin6(φ/2)

ε/10 + (1 − I )(1 − ε) sin4(φ/2)

+ 4I2(1 − ε)2 cos2(φ) sin2(φ)

ε/10 + I (1 − ε) cos2(φ)

+ (1 − I )2(1 − ε)2 cos2(φ) sin2(φ)

ε/5 + (1 − I )(1 − ε) sin2(φ)/2

+ 2I2(1 − ε)2 cos2(φ) sin2(φ)

ε/10 + I (1 − ε) sin2(φ)/2
, (10)

and it is strictly lower than the corresponding QFI,
FQ(ρ in, H ) = (1−ε)2

1− 4
5 ε

(2I + 2), [c.f. (6) with n = 1 and d =
10] for any amount of noise. This means that considering an
initial mixed state, the measurement M is not the optimal
one for any value of I and φ. However, we will see that for
a reasonably small amount of noise given by ε = 0.06, the
difference between maxφ F ′(φ) and FQ(ρ in, H ) is of the order
of 7% in the worst case. Therefore, maxφ F ′(φ) is a good
approximation of the QFI for this case.

C. Experimental results

As mentioned in the previous section, the optical path
length of mode a′ is adjusted so that both photons overlap
at the PBS. Coincidence counts are measured at the output
with the setting ϕ = π

4 and φ = π
2 (θ = π

8 ), so as to observe
the interference effect. This is essentially equivalent to the
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FIG. 2. Normalized coincidence counts as a function of the path
length difference between interfering photons. The solid line corre-
sponds to the Fourier transform of the 10-nm interference filters.

traditional Hong-Ou-Mandel interferometer [36], but using
polarization instead of spatial modes [26,37,38]. Therefore,
by measuring the coincidences between detectors ha and va

as a function of the path length difference we observe the
two-photon interference effect and identify the path length
which guarantees maximum indistinguishability. We achieved
an interference visibility of V = (87 ± 1)%. Figure 2 shows
the normalized coincidence counts as a function of the path
length difference. The solid line corresponds to the Fourier
transform of the 10-nm interference filters, whose bandwidth
matches the coherence length measured from the two-photon
interference pattern.

The degree of indistinguishability is set by the angle ϕ of
H1 and then corrected by the maximum indistinguishability
obtained in the two-photon HOM interferometer, defined from
the minimum of the normalized HOM-dip as Imax = 1 −
min(HOM) = 0.93. Therefore, I (ϕ) = Imax sin2(2ϕ).

The different projections onto M were measured as a
function of the phase φ for five different values of I (ϕ) =
{0, 0.23, 0.47, 0.70, 0.93}. Figure 3 shows normalized coin-
cidence rates for I = {0, 0.47, 0.93}. We obtain probabil-
ity distributions by fitting each measurement with a model
Ap(m|φ) + B, where p(m|φ) are the theoretical probabilities
that correspond to each projection (see Appendix B). Mea-
surements onto {001h1v, 002h0, 0002v} take constant values
(background photons) for all I and φ and are not shown as
they do not contribute to the Fisher information. The FI is then
calculated from the fitted probabilities using (2) [Fig. 4(a)].
Given that these experimentally obtained probabilities are not
ideal (in particular, there is a nonzero background leading to
visibilities smaller than unity), we observe a dependence of
the Fisher information on the phase φ as shown in Fig. 4(a).
This dependence on the phase has already been reported
elsewhere (see, e.g., [38]). It is worth noting that the angular
dependence should disappear when the probe state is given
by the pure state (7), in the ideal noiseless case. There are
several factors contributing to this behavior, given that the
state preparation, phase encoding, and measurement are all
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FIG. 3. Experimental data: Normalized coincidence count rates for different projections. The probabilities needed to calculate the FI are
obtained fitting these measurements with each theoretical probability p(m|φ) (Appendix B) and obtaining a proportional parameter and a
constant parameter from the fit.

susceptible to experimental imperfections. We will restrict
our analysis only to the error introduced due to imperfect
preparation of the initial two-photon state generated by SPDC.
We estimate the value of ε (degree of impurity) as follows:
We assume that for I = 0, which is the experimental state
that can be more accurately obtained, the maximum value of
the experimentally obtained FI is equal to the value given by
the expression (10) for the equivalent conditions. From this
condition we obtain ε = 0.06. Figure 4(b) shows the theoret-
ical prediction (solid line) calculated from the maximum of
(10) as a function of the indistinguishability, together with the
experimentally obtained FI as the maximum values of each
curve in Fig. 4(a). Error bars were calculated by Monte Carlo
simulation of experimental runs with the same Poissonian
statistics. The dashed line corresponds to the QFI of the
initial pure state case (9) while the dash-dot line corresponds
to the QFI of a mixed input state for n = 1 and ε = 0.06
(6). As mentioned before, the largest value for the Fisher
information computed from the probabilities p′(m|φ) does not
agree with the QFI in (6) for the same value of ε, as can
be observed by the difference between the QFI curve for an
initially mixed state and the predicted maximum FI curve.
Interestingly, for both extreme cases I = 0 and I = 1 both
values approach each other with a difference smaller than 1%,
whereas for I = 0.1 the largest difference of 7% is attained.
We attribute the difference between the calculated and mea-
sured data for large values of the indistinguishability to the
fact that our model only considers the error introduced by an
imperfect input state, while other experimental imperfections
become more relevant with increasing indistinguishability.
The background noise introduced by the action of optical
elements involved in the phase and path encoding degrades
the maximum achievable indistinguishability, thus reducing
the measured visibilities. Such noise can be attributed to the
nonideal extinction ratios of PBSs, imperfect retarder plates,
and residual spatial mode mismatch, combined with a mixed
polarization input state due to residual emission from the
second (orthogonal) BBO crystal that leaks into the selected
beam path.

III. CONCLUDING REMARKS

In this work, we develop a theoretical and experimen-
tal study to characterize how the precision of a parameter

estimation, quantified by the QFI, is affected by the degree
of indistinguishability I between interfering photons. The
cases of a pure state and a mixed probe state are considered.
We obtain a linear increase of the QFI with the degree of
indistinguishability and also we find the optimal measurement
required to achieve the QFI for the pure state case. This linear
dependence is also obtained for the mixed probe case, where
the QFI is reduced by a factor that depends on the amount of
noise. A discussion on the optimal measurement for the mixed
probe state case can be found in Appendix B.

In our experiment, the degree of indistinguishability be-
tween two photons entering a polarization interferometer is
characterized by the overlap between spatial modes. Projec-
tive measurements are performed onto the optimal measure-
ment base for pure input states, obtaining the probability
distributions as a function of the encoded phase. The Fisher
information is then calculated from these probability distri-
butions and the experimental data are modeled taking into
account a non ideal (mixed) probe state, obtaining a good
agreement for I < 0.7. Our results support the fact that indis-
tinguishability is essential to obtain a quantum enhancement
in the interferometric phase estimation.
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APPENDIX A: QUANTUM FISHER INFORMATION

For unitary maps Uφ = exp(−iφH ), where H is the cor-
responding generating Hermitian operator, the QFI does not
depend on φ and it can be written as (see, e.g., [8,16])
FQ(ρ in, H ) = 2

∑
i, j

λi−λ j

λi+λ j
〈ei|H |e j〉, where {|ek〉} and {λk}

are the eigenstates and eigenvalues, respectively, of ρ. In
particular, when the initial state is pure ρ in = |� in〉 〈� in|, the
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FIG. 4. (a) Fisher information from the fitted probabilities as a
function of the phase φ for five different values of indistinguishabil-
ity, in increasing order. The shaded area corresponds to the error es-
timated by Monte Carlo simulations. The symbols correspond to the
largest FI value for each degree of indistinguishability. (b) Symbols:
Largest FI values as shown in (a). Solid line: Theoretical prediction
assuming nonideal probability distributions p′(m|φ) with a degree of
noise ε = 0.06. Dash-dot line: Theoretical prediction of the QFI for
a mixed initial state with the same ε = 0.06. Dashed line: QFI for an
initial pure state.

QFI is proportional to the variance of the Hamiltonian in
the initial state, that is, FQ(|� in〉 , H ) = 4�2(H ). In our case
H = Jμ ⊗ I + I ⊗ Jν , so that

FQ(|� in〉 , H ) = 4�2(Jμ ⊗ I ) + 4�2(I ⊗ Jν )

+ 8(〈� in|Jμ ⊗ Jν |� in〉
− 〈� in|Jμ ⊗ I|� in〉 〈� in|I ⊗ Jν |� in〉).

(A1)

For the initial state given in (3), it can be shown that the last
term, which are the covariance between Jμ ⊗ I and I ⊗ Jν in
the initial state, are zero. On the other hand, the first two terms

reduce to

4�2(Jμ ⊗ I ) = 4 〈� in|J2
μ ⊗ I|� in〉 = 2n(n + 1)In

+
n−1∑
k=1

n!

k!(n − k)
2n(n − k + 1)In−k (1 − I )k

+ n(1 − I )n,

4�2(I ⊗ Jν ) = 4 〈� in|I ⊗ J2
ν |� in〉

=
n−1∑
k=1

n!

k!(n − k)
kIn−k (1 − I )k + n(1 − I )n.

(A2)

After some algebra and using that
∑n−1

k=1
n!

k!(n−k)In−kIk =
1 − In − (1 − I )n and

∑n−1
k=1

n!
k!(n−k) kIn−k (1 − I )k = n(1 −

I )(1 − (1 − I )n−1) Eq. (4) is obtained.
Equation (6) can be obtained in a straightforward way by

using the fact that the QFI of a mixed state of the form ρ in =
(1 − ε) |� in〉 〈� in| + ε I

d can be written as [39,40]

FQ(ρ in, H ) = (1 − ε)2

1 − ε + ε/d
FQ(|� in〉 , H ). (A3)

APPENDIX B: NOISELESS AND NOISY THEORETICAL
PROBABILITIES

In the ideal case one has to be able to measure ten prob-
abilities from the output state (8) to obtain the QFI. The
theoretical values of these noiseless probabilities are given by

p(2h000|φ) = p(02v00|φ) = I (ϕ)
sin2(φ)

2
, (B1)

p(1h1v00|φ) = I (ϕ) cos2(φ), (B2)

p(1h01h0|φ) = p(01v01v|φ) = (1 − I (ϕ))
sin2(φ)

4
, (B3)

p(1h001v|φ) = [1 − I (ϕ)] cos4(φ/2), (B4)

p(01v1h0|φ) = [1 − I (ϕ)] sin4(φ/2), (B5)

p(002h0|φ) = p(0002v|φ) = p(001h1v|φ) = 0. (B6)

Therefore, only seven out of the ten probabilities are needed.
From these probabilities, the Fisher information is computed

as usual, F (φ) = ∑
m∈M

| d p(m|φ)
dφ

|2
p(m|φ) = 2I (ϕ) + 2 with M =

{2h000, 02v00, 1h1v00, 1h01h0, 01v01v, 1h001v, 01v01v, 001h

1v, 002h0, 0002v}. By simple inspection it becomes clear
that this is the quantum Fisher information, that is,
FQ(|� in〉 , H ) = F (φ).

Notice that if only double or coincident events are detected,
that is, modes a and b are not resolved (or μ and ν in the
general scheme) as in previous works [26,27], the theoretical
values of measurement probabilities are

p̃(2h0|φ) = p(02v|φ) = (1 + I (ϕ))
sin2(φ)

4
, (B7)

p̃(1h1v|φ) = 1
4 {3 − I (ϕ) + [1 + I (ϕ)] cos(2φ)}. (B8)
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This leads to a phase-dependent FI: F̃ (φ) =∑
m∈M̃

| d p̃(m|φ)
dφ

|2
p̃(m|φ) = 4[1+I(ϕ)][1+cos(2φ)]

3−I(ϕ)+[1+I(ϕ)] cos(2φ) , where M̃ = {2h0,

02v, 1h1v}. Notice that F̃ (φ) � FQ(|� in〉 , H ) with equality at
phases φ = 2kπ .

In a more realistic case where the state preparation
is affected by white noise, modeled by the initial state
ρ in = (1 − ε) |� in〉 〈� in| + ε I

10 with |� in〉 given by (7),
the probabilities change as p′(m|φ) = (1 − ε)p(m|φ) + ε 1

10
for the same projective measurement M as performed for
the initial pure state case. It can be shown that the Fisher
information from these noisy probabilities depends on the
phase as it is shown in (10). Moreover, the FI (10) is strictly
lower than the corresponding QFI [c.f. (6) with n = 1 and
d = 10] for any amount of noise. This means that in the
noisy case, the projective measurement M is no longer the

optimal one. If one considers only measurements of double
or coincident events, the FI is even lower. Therefore, it is
interesting to study which is the optimal measurement in the
noisy case, at least from the theoretical point of view. Since
this is a hard problem in general, we focus on the extreme
case of highest degree of indistinguishability I = 1. From
the projective measurement M′′ = {|m′′〉 〈m′′|} with |m′′〉 ∈
{ |2h000〉±|02v00〉√

2
,

|1h01h0〉±|01v01v〉√
2

,
|1h001v〉±|01v1h0〉√

2
, |1h1v00〉 ,

|001h1v〉, |002h0〉 , |0002v〉}, one obtains the FI F ′′(φ) =
20(1−ε)2(4ε−5) sin2(2φ)

25(1−ε)2 cos2(2φ)−(4−5ε)2 . Interestingly enough, F ′′(π/4 +
kπ ) = 4 (1−ε)2

1− 4
5 ε

. This means that M′′ is the optimal

measurement for phases π/4 + kπ for any amount of noise
when I = 1. For other values of I the largest difference is of
the order of 3%. Nevertheless, the practical implementation
of this measurement can be challenging.
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[28] R. Demkowicz-Dobrzański, U. Dorner, B. J. Smith, J. S.
Lundeen, W. Wasilewski, K. Banaszek, and I. A. Walmsley,
Quantum phase estimation with lossy interferometers, Phys.
Rev. A 80, 013825 (2009).

062125-7

https://doi.org/10.1038/nphoton.2013.177
https://doi.org/10.1038/nphoton.2013.177
https://doi.org/10.1038/nphoton.2013.177
https://doi.org/10.1038/nphoton.2013.177
https://doi.org/10.1038/nature02493
https://doi.org/10.1038/nature02493
https://doi.org/10.1038/nature02493
https://doi.org/10.1038/nature02493
https://doi.org/10.1038/nphoton.2010.29
https://doi.org/10.1038/nphoton.2010.29
https://doi.org/10.1038/nphoton.2010.29
https://doi.org/10.1038/nphoton.2010.29
https://doi.org/10.1038/nature12941
https://doi.org/10.1038/nature12941
https://doi.org/10.1038/nature12941
https://doi.org/10.1038/nature12941
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1126/science.1104149
https://doi.org/10.1126/science.1104149
https://doi.org/10.1126/science.1104149
https://doi.org/10.1126/science.1104149
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1038/nphoton.2011.35
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1088/1751-8113/47/42/424006
https://doi.org/10.1016/bs.po.2015.02.003
https://doi.org/10.1016/bs.po.2015.02.003
https://doi.org/10.1016/bs.po.2015.02.003
https://doi.org/10.1016/bs.po.2015.02.003
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/RevModPhys.89.035002
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1103/RevModPhys.90.035005
https://doi.org/10.1088/1681-7575/aaf7b2
https://doi.org/10.1088/1681-7575/aaf7b2
https://doi.org/10.1088/1681-7575/aaf7b2
https://doi.org/10.1088/1681-7575/aaf7b2
https://doi.org/10.1016/0375-9601(67)90366-0
https://doi.org/10.1016/0375-9601(67)90366-0
https://doi.org/10.1016/0375-9601(67)90366-0
https://doi.org/10.1016/0375-9601(67)90366-0
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1103/PhysRevA.95.042125
https://doi.org/10.1103/PhysRevA.95.042125
https://doi.org/10.1103/PhysRevA.95.042125
https://doi.org/10.1103/PhysRevA.95.042125
https://doi.org/10.1103/PhysRevA.33.4033
https://doi.org/10.1103/PhysRevA.33.4033
https://doi.org/10.1103/PhysRevA.33.4033
https://doi.org/10.1103/PhysRevA.33.4033
https://doi.org/10.1103/PhysRevA.57.4004
https://doi.org/10.1103/PhysRevA.57.4004
https://doi.org/10.1103/PhysRevA.57.4004
https://doi.org/10.1103/PhysRevA.57.4004
https://doi.org/10.1103/PhysRevLett.75.2944
https://doi.org/10.1103/PhysRevLett.75.2944
https://doi.org/10.1103/PhysRevLett.75.2944
https://doi.org/10.1103/PhysRevLett.75.2944
https://doi.org/10.1103/PhysRevA.73.011801
https://doi.org/10.1103/PhysRevA.73.011801
https://doi.org/10.1103/PhysRevA.73.011801
https://doi.org/10.1103/PhysRevA.73.011801
https://doi.org/10.1103/PhysRevA.90.025802
https://doi.org/10.1103/PhysRevA.90.025802
https://doi.org/10.1103/PhysRevA.90.025802
https://doi.org/10.1103/PhysRevA.90.025802
https://doi.org/10.1103/PhysRevLett.71.1355
https://doi.org/10.1103/PhysRevLett.71.1355
https://doi.org/10.1103/PhysRevLett.71.1355
https://doi.org/10.1103/PhysRevLett.71.1355
https://doi.org/10.1103/PhysRevA.54.R4649
https://doi.org/10.1103/PhysRevA.54.R4649
https://doi.org/10.1103/PhysRevA.54.R4649
https://doi.org/10.1103/PhysRevA.54.R4649
https://doi.org/10.1080/0950034021000011536
https://doi.org/10.1080/0950034021000011536
https://doi.org/10.1080/0950034021000011536
https://doi.org/10.1080/0950034021000011536
http://arxiv.org/abs/arXiv:1603.00686v2
https://doi.org/10.1038/ncomms11411
https://doi.org/10.1038/ncomms11411
https://doi.org/10.1038/ncomms11411
https://doi.org/10.1038/ncomms11411
https://doi.org/10.1103/PhysRevA.80.013825
https://doi.org/10.1103/PhysRevA.80.013825
https://doi.org/10.1103/PhysRevA.80.013825
https://doi.org/10.1103/PhysRevA.80.013825


L. T. KNOLL et al. PHYSICAL REVIEW A 100, 062125 (2019)

[29] A. Datta, L. Zhang, N. Thomas-Peter, U. Dorner, B. J.
Smith, and I. A. Walmsley, Quantum metrology with im-
perfect states and detectors, Phys. Rev. A 83, 063836
(2011).

[30] B. M. Escher, R. L. de Matos Filho, and L. Davidovich,
General framework for estimating the ultimate precision limit
in noisy quantum-enhanced metrology, Nat. Phys. 7, 406
(2011).
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