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a  b  s  t  r  a  c  t

Adult-generated  neurons  in  the  dentate  gyrus  of  the  hippocampus  have  been  the  focus  of  many  studies
concerned  with  learning  and  memory  (L&M).  It  has  been  shown  that  procedures  like  environmental
enrichment  (EE)  or  voluntary  physical  exercise  (Vex)  can increase  neurogenesis  (NG)  and  also  enhance
L&M.  It  is  tempting  to  conclude  that  improvements  in  L&M  are  due  to  the  increased  NG;  that  is, a  causal
relationship  exists  between  enhancement  of  NG  and  enhancement  of  L&M.  However,  it remains  unclear
whether  the  L&M  enhancement  observed  after  these  treatments  is  causally  dependent  on the increase  in
newborn  neurons  in  the  dentate  gyrus.  It  remains  a  possibility  that  some  unspecified  change  –  a  “third
variable”  –  brought  about  by EE  and/or  Vex  could  be  a causal  determinant  of  both  NG  and  L&M.  We  suggest
that  this  third  variable  could  be  neurotrophic  and/or  plasticity-related  factors  such  as  BDNF.  Indeed,  both

EE and  Vex  can  induce  expression  of  such  proteins,  and  BDNF  in  particular  has  long  been  linked  with
L&M.  In  addition,  we  argue  that  a very  likely  source  of variation  in  previous  experiments  was  the  load  on
“pattern  separation”,  a process  that  keeps  similar  memories  distinct,  and  in  which  NG  has  been  shown
to  be  critically  involved.  To  attempt  to bring  these  ideas  together,  we  present  preliminary  evidence  that
BDNF  is  also  required  for pattern  separation,  which  strengthens  the  case  for BDNF  as  a candidate  third
variable.  Other  ways  in  which  BDNF  might  be  involved  are  also  discussed.
© 2011 Elsevier Ltd. All rights reserved.

ontents

1. Effects  of  environmental  enrichment  and  physical  exercise  on  neurogenesis  and  learning  and  memory  . . .  .  .  .  . . . . . .  .  .  .  .  . . . . . . .  .  . .  .  . .  .  .  .  . .  .  . .  .  .  .  . 536
2. Correlation,  causation,  and  the  problem  of  the  third  variable  .  .  .  .  . .  . . .  . .  .  .  .  .  . .  . . .  .  .  . . . . .  . .  . . .  . . . . . .  . .  .  .  . . . . . .  .  .  .  . . . . .  .  .  .  .  .  . . . .  .  . .  .  . .  . . . .  .  .  .  . . . . .  .  .  . 537
3.  Brain-derived  neurotrophic  factor  (BDNF)  as  a possible  third  variable  .  .  . .  .  . . . . . .  .  .  .  . . . .  .  . .  . . .  .  . . .  . . . .  . . . .  .  . . . .  .  . . .  .  . . . .  . . .  .  . . . .  .  . .  .  . .  . .  .  .  .  . .  .  .  .  . .  . 538

3.1.  Neurogenesis,  BDNF  and  pattern  separation.  .  .  .  .  .  . . . .  .  .  .  .  . . . .  .  .  .  .  .  . . . . . . .  .  .  . . .  .  .  . . .  .  .  . .  .  . . . .  .  .  . .  .  . . . .  .  .  . . . . . . .  .  .  . . . . . . .  . . .  .  .  . .  .  .  . .  .  .  . . . . .  .  .  . 539
4.  Concluding  remarks  .  . .  .  .  . .  . . .  .  .  .  . . . .  .  .  .  .  . . . .  .  .  .  .  .  . . .  .  .  .  . .  .  . . .  . . . . .  . . . .  .  . . .  . . . . .  .  .  . . . . .  .  .  .  . . . . . .  .  .  .  .  . . .  .  . .  .  .  . . . . . . .  .  .  . .  .  . . . .  .  .  .  .  .  . . . .  .  .  . . .  . .  .  .  .  .  . .  . . .  . 540

Acknowledgments  . . .  . . . .  .  .  .  .  . . .  .  .  .  .  . . . . .  .  .  .  .  . . .  . .  .  .  .  . . . . .  .  .  .  .  . . . . .  .  .  .  .  . . . . . . .  .  .  .  .  . . . .  .  .  . . .  .  . . . .  .  .  .  .  . . . . .  .  .  .  . . . . . . .  .  .  . . . . . . .  . .  .  .  .  .  .  . . . .  .  . .  . .  . .  . .  . . .  . . 540
References  .  .  .  .  . .  . .  .  .  .  .  . . .  .  .  .  .  .  . . . .  .  .  .  .  . . . .  .  .  .  . . .  . . .  .  .  .  . . .  .  .  .  .  .  . .  . . .  .  .  .  .  . .  .  . . . . . .  . .  .  . . .  .  .  . . . .  .  .  . . . .  .  . .  .  .  . . . .  .  . .  .  . . . .  .  .  . . . . . . .  .  .  . .  . . .  .  .  . . . . . .  .  .  .  . .  .  . . .  . 540

. Effects of environmental enrichment and physical
xercise on neurogenesis and learning and memory

The adult brain produces new neurons in substantial numbers,
 phenomenon that has been firmly established since its initial dis-
overy [1,2]. Of particular interest to researchers interested in the

the entorhinal cortex and form functional terminals onto CA3 cells
[4,5]. In addition, adult-born neurons have been found to be rel-
atively more excitable than mature granule cells [6,7], leading to
the suggestion that these neurons may  carry out a unique com-
putational function within the DG [8,9]. Recently, the idea that
adult-born neurons may  play a special role in L&M has attracted
eurobiology of L&M are the newborn granule neurons in the hip-
ocampus. These cells functionally integrate into the hippocampal
entate gyrus (DG) network [3],  and receive synaptic input from

∗ Corresponding author at: Department of Experimental Psychology, University
f  Cambridge, Cambridge, United Kingdom. Tel.: +44 01223 764193.

E-mail address: pab87@cam.ac.uk (P. Bekinschtein).

084-9521/$ – see front matter ©  2011 Elsevier Ltd. All rights reserved.
oi:10.1016/j.semcdb.2011.07.002
considerable attention [10–12].  The amount of adult NG can be
significantly altered by a number of factors in the external and
internal environment, including neuronal activity, ageing, expo-
sure to stress, epileptic insult and the focus of the current review,

environmental enrichment (EE) and voluntary exercise (Vex) (for
reviews see [13,14]).

Many studies have explored the relationship between EE, Vex,
NG and L&M. EE usually involves exposure of animals to complex

dx.doi.org/10.1016/j.semcdb.2011.07.002
http://www.sciencedirect.com/science/journal/10849521
http://www.elsevier.com/locate/semcdb
mailto:pab87@cam.ac.uk
dx.doi.org/10.1016/j.semcdb.2011.07.002
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Fig. 1. Possible relationships between EE/Vex, NG, and L&M and some possible roles for BDNF. The figure depicts possible causal relationships only, and is not intended to
represent the time-courses of action of BDNF, which can be either transient or long-lasting. (A) It is tempting to interpret experiments in which EE or Vex has been followed
by  an increase NG and also L&M as indicating a causal relationship between increased NG and enhanced L&M. However (B) it remains possible that some unspecified change
–  a “third variable” – brought about by EE and/or Vex could be a causal determinant of both NG and L&M. We suggest that such a third variable might be a neurotrophic and/or
plasticity-related factor such as BDNF. (C) A modification of (B) to reflect the hypothesis that the EE/Vex experiments that found clear correlations with L&M were those in
which the methods promoted a higher requirement for pattern separation. Thus insofar as this hypothesis is correct, in order to qualify as a candidate for a third variable,
BDNF  should be causally related to pattern separation. See text for discussion. (D) If the causal relationship shown in (A) turns out to be correct, one logical possibility is that
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mmature neurons may  secrete more BDNF than mature neurons, and it is this add
ittle  evidence for this hypothesis. (E) However there is evidence that BDNF may  be

nvironments that may  include tunnels, nesting material and com-
lex objects or toys and running wheels, and animals are often
oused in larger groups to allow increased social interaction. Vex in
ost cases involves voluntary wheel running. It has been reported

hat both EE [15] and Vex [16] can increase adult NG, and that this
ncrease is often paralleled by an improvement in performance
n tests of L&M [17–21].  It should be noted, however, that new

vidence is emerging suggesting that it may  be the exercise com-
onent of EE which may  be the critical factor in enhancement of
G (Henriette van Praag, personal communication). There have
een numerous accounts of the positive effects of EE and Vex on
l BDNF that would facilitate L&M directly. However, to our knowledge there exists
o induce NG.

L&M [15,22–26].  It is tempting to conclude that improvements in
L&M are due to the increased NG; that is, a causal relationship is
assumed between increased NG and the enhanced L&M (as depicted
in Fig. 1A).

2. Correlation, causation, and the problem of the third
variable
As discussed previously, there is much evidence to demonstrate
that both EE and Vex can increase NG in the adult hippocampus.
However, whether the beneficial effects of EE and Vex on L&M are
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aused directly by NG, remains unclear. One obvious problem is that
orrelation does not imply causation. One alternative interpreta-
ion of the finding that NG correlates with EE or Vex is that, rather
han increases in NG being causally related to improvements in
&M, there may  be a “third variable” caused by EE or Vex that medi-
tes both NG and L&M (see Fig. 1B). For example, EE and Vex can
e accompanied by physiological and structural changes in brain
egions including the hippocampus. EE, for example, was shown to
ncrease total granule cell number [15], alter dendritic complexity
nd spine density and increase vascularization in the hippocampus
27,28]. Any of these changes could potentially contribute to the
bserved changes in cognition.

Ideally, experiments designed to explore a causal link between
ncreased NG and better L&M would combine EE and Vex with
elective blockade of potential increases in NG. If NG and L&M
re causally linked, then although EE or Vex will lead to improve-
ents in L&M under normal circumstances, they will not do so in

onditions under which NG is prevented. Such experiments have
ndeed been carried out – to our knowledge there are at least five
uch studies – but unfortunately, taken together the results are
nconsistent. In one such study, Meshi and collaborators combined
-ray focal irradiation with EE in mice and, although irradiation
uccessfully blocked the EE-dependent increase in NG, it did not
revent the enhancement in learning or memory retention in the
orris water maze [29]. In another study, Bruel-Jungerman and

ollaborators found that EE improved long-term object recogni-
ion memory and increased NG, and that methylazoxymethanol
cetate (MAM)  treatment applied during the EE period completely
revented both the increased NG and the L&M enhancement [30].
AM administration has widespread effects, however, and object

ecognition can be impaired by dysfunction in structures other than
he hippocampus – indeed even more so (e.g. [31,32]). Wojtow-
cz and collaborators found a significant increase in the number
f new neurons in the DG in runners compared to sitters; how-
ver, running did not enhance learning in the Morris water maze
nd only marginally improved contextual fear conditioning. In the
ame study, focal irradiation after Vex impaired contextual fear
onditioning in both sitters and runners, but did not affect learn-
ng or performance in the Morris water maze, although a small
mpairment on reversal learning was found [33]. Using mice, Clark
t al. found that running increased NG fourfold and in this case
nhanced performance in both the Morris water maze and con-
extual fear conditioning tasks. Irradiation decreased NG by 50%
n both runners and sitters and eliminated the gain in perfor-

ance in the water maze, but did not prevent the enhancement
f contextual fear conditioning [34]. Kitamura et al. [35] combined
unning and irradiation and examined contextual fear retention.
he authors conclude that the running-induced enhancement in NG
peeds up the decay rate of hippocampus dependency of memory;
owever this study was not designed to assess memory enhance-
ent per se (indeed, neither running nor irradiation altered levels

f freezing in control animals). The discrepancies between these
tudies could have been due to differences in the experimental
ethods, as will be discussed later. For now, the lack of a clear

nswer to the causality question leaves open the possibility that
 third variable could exist in a causal relationship with both NG
nd the enhancement in L&M, leading to the correlations often

een between enhancements of NG and L&M seen following EE or
ex.1

1 Indeed, adult neurogenesis can be significantly altered by a number of fac-
ors in the external and internal environment other than EE or Vex (as described
bove; for reviews, see [13,14]). The third variable problem also may  apply to these
henomena, but for the purposes of this review, we  focus on EE and Vex.
lopmental Biology 22 (2011) 536– 542

Because a third variable may  exist, we  can speculate what that
third variable might be. Although there are a number of possibili-
ties, some of which have already been mentioned above, we  would
like also to suggest the induction of neurotrophic and/or plasticity-
related factors such as brain-derived neurotrophic factor (BDNF).
The case is presented below, followed by some suggestions for
experiments that could test this possibility.

3. Brain-derived neurotrophic factor (BDNF) as a possible
third variable

Several lines of evidence provide a link between BDNF and L&M.
First, BDNF has been found to play an important role in the late
phase of long-term potentiation (LTP), the best known cellular plas-
ticity phenomenon in the brain [36–38],  which is thought to be one
of the plastic phenomena that underlie L&M [39,40].  For example,
Pang and others have shown that BDNF is necessary for the late
phase of LTP (L-LTP) in the CA1 region of the hippocampus [41].
Second, BDNF mRNA and protein expression have been shown to
be induced following learning [42–45].  Third, the effects of BDNF on
structural plasticity are similar to those associated with learning.
Hippocampus-dependent learning in particular has been associ-
ated with increases in the density of dendritic spines, synapse shape
and receptor availability [46–48],  and overexpression of BDNF in
hippocampal slices can increase the number of dendritic spines in
CA1 [49,50]. Similarly, BDNF overexpressing mice have increased
dendritic complexity in the dentate gyrus (DG) [51].

Finally, and most convincingly, manipulations leading to BDNF
or BDNF TrkB receptor dysfunction by global mutations or region-
restricted manipulations have led to deficits in acquisition and
consolidation of spatial information [52–56],  avoidance learning
[48,57–59],  contextual fear conditioning [44] and object recogni-
tion memory [56,60]. In addition, exogenous application of human
recombinant BDNF into the hippocampus enhances retention of
inhibitory avoidance learning [58], memory persistence [61] and
object recognition memory [62].

Indeed, it could be said that the causal evidence for a role for
BDNF in L&M has been more consistent than that for NG and L&M.
Although a large number of studies have been designed to inves-
tigate a causal relationship between NG and L&M, the results have
not been unequivocal. In the review of Deng et al. [11], for example,
fourteen studies are mentioned in which NG was ablated by agents
such as MAM,  irradiation or genetic tools and subsequent cognitive
performance (on either the Morris Water maze or Barnes maze)
was  examined [63,64]. Of these fourteen studies, eight did not find
a deficit in the acquisition of a spatial learning task after ablation of
NG [29,65–71],  whereas five studies did find a deficit [72–76] and
one study found no effect in the water maze, but a deficit in the
Barnes maze [77]. Some of these studies also report memory perfor-
mance, and three found no deficit on either short term and/or long
term retention [29,67,71],  whereas eight did [65,68–70,72,74–76].
Possible reasons for these inconsistencies are offered later in this
review.

The foregoing discussion indicates that BDNF satisfies at least
one criterion for a possible third variable: it is strongly – and
causally – linked to L&M. Is there reason to think that BDNF could be
a third variable in EE/Vex, NG and L&M experiments specifically?
Both EE and Vex have been shown to increase the expression of
BDNF in the hippocampus (left-most arrow in Fig. 1B) [26,78–82].
For example, Falkenberg and collaborators found increased BDNF
mRNA in the rat hippocampus after EE that correlated with

improved spatial memory [26] and Ickes and collaborators found
increases in BDNF protein after EE in the hippocampus and cortex
[80]. Rossi and collaborators found that environmentally enriched
mice had 80% more BDNF protein in the hippocampus than mice



 Deve

h
m
t
t
t
m
n
t
P
i
c
o
g
i
s
t
e

B
t
s
L
c
i
k
m
p
B
o
d
i
a
s
p
c
v
h
o
v

c
a
e
(
i
t
a
s
k
I
p
T
t
e
p
r
e
B

d
h
N
d
h
N
h

P. Bekinschtein et al. / Seminars in Cell &

oused under standard conditions. Also, in a recent study, Kuzu-
aki and collaborators suggested that EE increases BDNF mRNA in

he hippocampus of mice via sustained epigenetic modifications at
he DNA level [83]. Vex has also been shown to induce BDNF. In
heir original paper [84], Neeper and collaborators measured BDNF

RNA after 0, 2, 4 or 7 nights of voluntary exercise and found a sig-
ificant increase in the hippocampus that correlated positively with
he distance run per night by each rat. In more recent work, Gomez-
inilla and collaborators showed that blockade of BDNF activity
n the hippocampus by infusion of a scavenger TrkB/IgG receptor
ounteracted the Vex-enhanced ability of rats to find the location
f a hidden platform in a water maze probe trial [85]. They sug-
ested that the capacity of exercise to enhance cognitive function
s dependent on BDNF action in the hippocampus. In a correlational
tudy, Griffin and collaborators [62] showed that intracerebroven-
ricular administration of BDNF can mimic  the enhancing effects of
xercise on object recognition memory.

It is only possible to speculate about the mechanisms by which
DNF induced by Vex and/or EE might affect L&M. BDNF is thought
o mediate changes in hippocampal synaptic plasticity [79], and
o it seems plausible that Vex and/or EE-induced BDNF may  affect
&M by mediating changes in neuronal plasticity. Vaynman and
ollaborators have identified several signal transduction pathways
mplicated in BDNF-mediated enhancement in L&M, all of them
nown to be important for several L&M tasks [79,86].  In particular,
itogen-activated protein kinase (MAPK) and calcium/calmodulin

rotein kinase II (CamKII) were found to be downstream effectors of
DNF action on gene expression associated with Vex [79]. Blockade
f BDNF action during Vex was sufficient to abrogate the Vex-
ependent enhancement in L&M and prevent both the Vex-induced

ncrease in cAMP response element binding protein (CREB) mRNA
nd phosphorylation (activation) [79]. Importantly, CREB has been
hown to regulate BDNF expression [87], a mechanism that may
rovide a self-perpetuating loop for BDNF action related to exer-
ise. In addition, Vex has been found to regulate CREB expression
ia the MAPK and CamKII pathways [79]. Also, during Vex, CamKII
as been shown to contribute to the BDNF-dependent regulation
f synapsin I expression [79], a presynaptic protein that modulates
esicular release [88].

The foregoing discussion applies to Fig. 1B, which depicts a
ausal relationship between EE/Vex and BDNF (left-most arrow),
nd between BDNF and L&M (upper right arrow). There is also
vidence to support the idea that BDNF is causally related to NG
lower right arrow). For example, infusion of recombinant BDNF
nto the DG stimulates NG [89] and riluzole-induced prolifera-
ion of granule cells in the DG was blocked by injection of an
ntibody against BDNF [90]. Also, heterozygous BDNF KO mice
how decreased NG in the DG [91,92].  Nevertheless, very little is
nown regarding the mechanisms by which BDNF can alter NG.
t is not even clear if Vex and EE increase NG through similar
rocesses [93]. In one study, specific deletion of BDNF receptor
rkB in adult born neurons led to reduced long-term survival of
hese neurons and integration into hippocampal circuits [94]. How-
ver, in another study, ablation of TrkB in newborn cells impaired
roliferation in the DG. TrkB in these cells was  also shown to be
equired for the induction of proliferation by Vex [95]. Further
xperiments will be necessary to determine the mechanisms of
DNF-induced NG.

So, could NG following EE or Vex be just an epiphenomenon,
ue to the action of neurotrophic factors in the hippocampus that
ave a more direct effect on L&M? If so, then where does that leave
G? Does it have a role in L&M? As described above, experiments

esigned to investigate a putative causal link between NG and L&M
ave been inconsistent. As we discuss next, the answer may  be that
G is required for a very specific cognitive function, which may
ave varied across those experiments.
lopmental Biology 22 (2011) 536– 542 539

3.1. Neurogenesis, BDNF and pattern separation

Although the search for a causal relationship between NG and
a general L&M function has not yielded a consistent answer, it has
recently been suggested that NG may  be particularly important for a
more specific process, that of pattern separation.  Pattern separation
refers to the computational process by which representations of
similar input patterns are decorrelated, or made more distinct from
each other. In this way, the brain might be able to keep distinct or
less confusable memory representations of similar events. The DG
specifically is thought to contribute to memory by functioning as a
pattern separator [96].

The idea that the DG functions as a pattern separator stems from
early computational modelling work, based on anatomy and physi-
ology, in which it was argued that the recurrent connectivity within
the CA3 subregion of the hippocampus is ideally suited to storage
of episodic memories [97]. Subsequent work in this area indi-
cated that such a recurrent network works perfectly for orthogonal,
or decorrelated, stored patterns, but breaks down with increas-
ing similarity between patterns (e.g. [98–101]). Thus, for good
performance, a recurrent memory network requires decorrelated
inputs. Subsequent models therefore suggested that the sparse
representations maintained in DG, combined with the anatomical
properties of the projection from DG to CA3 [102] – in particular,
the sparseness of the connectivity and the strength of the mossy
fibre synapses – might be ideally suited to providing such orthogo-
nal inputs to CA3 [99,103,104]. More recently, a number of models
have considered whether there is a specific role for neurogenesis
in pattern separation [8,105–108].

Recent behavioural experiments have provided evidence for a
specific role for neurogenesis in pattern separation. Clelland and
collaborators [109] used two ways to knock down NG in mice
and found impairments in two  very different behavioural tests of
pattern separation. Compared to control mice, focally-irradiated
mice or mice injected with a dominant negative Wnt-expressing
lentivirus were impaired in a delayed nonmatching-to-place task in
a radial maze, but only when they had to distinguish between arms
that were close to each other. Irradiated mice were also worse than
controls in a touchscreen location discrimination task, but again,
only when these locations were close to each other and more easily
confusable. Using the same touchscreen task, Creer and collabora-
tors [110] showed that Vex enhanced performance, but only for the
more difficult condition in which they had to rely more on pattern
separation (however like the studies reviewed above, this study did
not unequivocally demonstrate causality – although it was found
that aged mice had impaired pattern separation and low neuroge-
nesis that was refractory to running, showing that running alone
does not necessarily lead to improvements in pattern separation).
In a more recent study, Sahay and collaborators [111] found that
genetically increasing NG might be sufficient to improve discrimi-
nation of similar contexts in a contextual fear discrimination task.
In view of these new studies, perhaps the inconsistencies found
in the less specific L&M experiments in which NG was knocked
down could be explained in terms of variations in the requirement
for pattern separation across different tasks, methods and appara-
tus. For example, variation in the discriminability of spatial cues
used for the water and Barnes maze experiments, which can vary
greatly between laboratories, would be expected to cause variation
in the load on pattern separation processes. The same argument
could be made for the inconsistencies found in the studies in which
EE- or Vex-induced increases in NG were blocked, as different sets
of spatial cues were most likely used for the water maze exper-

iments and different training chambers were used for contextual
fear conditioning.

We  would like to return now to the issue of BDNF as a
third variable. If we  accept the story above regarding pattern
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eparation and NG, then it may  be that the EE/Vex experiments
hat found clear correlations with L&M were those in which the

ethods promoted a higher requirement for pattern separation.
n this case our diagram (Fig. 1B) needs to be modified to reflect
his hypothesis. Fig. 1C thus shows that insofar as this idea is cor-
ect, in order to qualify as a candidate for a third variable, BDNF
ould need to be causally related to pattern separation. In this
nal section, we review recent experiments that show just that.
lockade of BDNF function by injecting BDNF-blocking antibod-

es directly into the DG impaired performance in a spontaneous
ocation recognition task, but only when the animals had to disam-
iguate two similar locations within an open field, and not when
hese locations were made more dissimilar [112]. Moreover, pre-
enting BDNF action in the DG impaired pattern separation only
uring the encoding/consolidation phase of the task – when pat-
ern separation would be expected to take place – but not during
etrieval. In addition, infusion of recombinant BDNF into the DG
nhanced pattern separation when locations were made even more
imilar.

These findings raised the question of whether BDNF was  equally
eleased after exposure to similar or dissimilar stimuli, but was
nly necessary in the first case, or whether BDNF was  expressed and
eleased on an “as-needed” basis, that is, spontaneously in response
o encountering similar events – the representations of which need
o be separated before storage in memory. To test this, we exposed
ats to two objects delineating either similar or dissimilar spatial
ocations within the open field and found a 4-fold increase in BDNF
n the DG only after the rats explored two similar locations, but not
fter exploring dissimilar ones. These findings provide evidence
hat, perhaps surprisingly, BDNF appears to be expressed on an
s-needed basis, that is, it is increased spontaneously in order to
eparate the representations of similar events.

What is the relationship between the Bekinschtein et al. [112]
xperiment and other experiments such as that of Clelland et al.
109], which show that both BNDF and neurogenesis knock-down
an impair pattern separation? One possibility is that immature
eurons secrete more BDNF than mature neurons, and that the

mpairment in Clelland et al. [109] was due primarily to reduc-
ion in number of those neurons, and therefore the decrease in the
mount of available BDNF (this relationship is depicted in Fig. 1D).
owever there is not, to our knowledge, any strong evidence that

mmature neurons secrete more BDNF than mature neurons. This
oes not, however, exclude a role for immature neurons in BDNF-
ependent pattern separation. Immature adult-born neurons have
een shown to be more excitable than mature neurons and also
o have enhanced plasticity [6,7], so these young granule cells may
espond more rapidly to inputs of ambiguous spatial information in
he DG. This enhanced response may  be very sensitive to BDNF lev-
ls present in the hippocampus, which may  activate TrkB receptors
n young and/or adult neurons, thus strengthening the relevant
onnections. Indeed, it has been shown that ablation of TrkB in
rogenitor cells has a significant effect on behaviour [95], so acute
lockade of BDNF could be particularly detrimental for these cells.

. Concluding remarks

To summarise, we have suggested that in experiments investi-
ating the link between EE, Vex, NG and L&M, there could exist a
hird variable, brought about by EE and/or Vex, acting as a causal
eterminant of both NG and L&M, and that this third variable
ould be a neurotrophic and/or plasticity-related factor such as

DNF. Of course this suggestion could be wrong; further appro-
riate experiments testing EE/Vex with NG knock-down and L&M
ideally examining pattern separation) may  well generate unequiv-
cal evidence that the causal relationships depicted in Fig. 1A are
lopmental Biology 22 (2011) 536– 542

indeed correct. But where would it leave BDNF? Certainly it would
no longer be needed as a third variable. It has already been stated
that little evidence so far exists for the idea that immature neu-
rons secrete more BDNF than mature neurons, and so the scheme
in Fig. 1D is unlikely. BDNF would, however, likely still have other
causal roles to play. Two  ways BDNF might be involved is by act-
ing on new neurons at the time of L&M testing, or at an earlier
stage, by facilitating the NG that improves the L&M (see Fig. 1E; evi-
dence for both of these possibilities has been described above). Thus
we conclude by suggesting that whatever the outcome of inves-
tigations into EE, Vex, NG and L&M, BDNF is likely to have some
role at some stage. Therefore, if one is interested in the molecules
underlying NG and L&M, and pattern separation in particular,
there may  be no better place to start than with a molecule like
BDNF.
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