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The interplay between thyroid hormone action and the immune system has been

established in physiological and pathological settings. However, their connection is

complex and still not completely understood. The thyroid hormones (THs), 3,3′,5,5′

tetraiodo-L-thyroxine (T4) and 3,3′,5-triiodo-L-thyronine (T3) play essential roles in both

the innate and adaptive immune responses. Despite much research having been

carried out on this topic, the available data are sometimes difficult to interpret or even

contradictory. Innate immune cells act as the first line of defense, mainly involving

granulocytes and natural killer cells. In turn, antigen presenting cells, macrophages

and dendritic cells capture, process and present antigens (self and foreign) to naïve T

lymphocytes in secondary lymphoid tissues for the development of adaptive immunity.

Here, we review the cellular and molecular mechanisms involved in T4 and T3 effects on

innate immune cells. An overview of the state-of-the-art of TH transport across the target

cell membrane, TH metabolism inside these cells, and the genomic and non-genomic

mechanisms involved in the action of THs in the different innate immune cell subsets is

included. The present knowledge of TH effects as well as the thyroid status on innate

immunity helps to understand the complex adaptive responses achieved with profound

implications in immunopathology, which include inflammation, cancer and autoimmunity,

at the crossroads of the immune and endocrine systems.
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INTRODUCTION

Growing evidence compiled over recent decades has revealed a bidirectional crosstalk between
thyroid hormones (THs) and the immune system. This interplay has been demonstrated for several
pathophysiological conditions of the thyroid functioning and the innate and adaptive immunity.
Many situations primarily affecting the action of THs have an impact on the characteristics and/or
functions of immune cells, and are translated to host defense status and related disorders. In
turn, immune-related disorders conduct to the most frequent thyroid dysfunctions, which have an
autoimmune origin. The connection between these systems is complex and not well-understood.
This article reviews the current evidence supporting the contribution of THs to the modulation of
innate immunity at the cellular level.
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Thyroid Hormone Action
THs exert a pivotal role for normal development and function.
The thyroid produces 3,3′,5,5′ tetraiodo-L-thyroxine (T4) and
3,3′,5-triiodo-L-thyronine (T3), mainly under thyrotropin (TSH)
regulation. While this gland secretes 100% of circulating T4,
it provides only a low percentage of serum levels of the most
physiologically active TH: T3, which for the major part derives

from peripheral 5
′

deiodination of T4 (1). At the target cell
level, the action of THs is genomic (nuclear) and non-genomic.
The former requires T3 and the specific nuclear receptors
(TRs): TRα1, TRβ1, TRβ2, and TRβ3 (2) and is controlled
by a multiprotein complex comprising both corepressors and
coactivators (3).

Translocation of TRs from their synthesis in the cytosol to
the nucleus is a functionally active process (4). In this regard,
non-genomic effects exerted intracellularly by TRs and truncated
variants occur rapidly, can be observed in the cytoplasm,
mitochondria and other organelles, and are independent of
nuclear receptor activity and protein synthesis. Many effects
conducted by cytoplasmic TRs involve PI3K-dependent Akt
activation (5). Furthermore, non-genomic actions of THs are also
initiated at the plasmamembrane through different proteins. The
best studied is the integrin ανβ3, which binds mainly T4 and
tetraiodothyroacetic acid (tetrac), a derivative of T4, inducing
activation of AMPK, PI3K/Akt, and MAPK (6, 7). Overall, THs
interact with a wide variety of signaling pathways that are not yet
fully deciphered.

Circulating levels of THs are not representative of what
each cell type detects. Instead, the action of THs requires an
appropriate interplay among membrane TH transporters, TH
deiodinases and TR expression, and thus there is a fine-tuned
cellular TH responsiveness. The main TH transporters include
monocarboxylate transporters (MCT) 8 and 10, organic anion
transporter polypeptides (OATPs) and large neutral amino acid
transporters (LATs), with MCT8, MCT10, and LATs having a
higher affinity for T3 than T4 uptake. Additionally, the cellular
concentrations of THs are regulated by the activity of the 1, 2, and
3 iodothyronine deiodinases: D1, 2, and 3. D2 is an “activating”
enzyme, responsible for the peripheral production of 50–80% of
the body pool of T3 from T4. In contrast, D3 restrains T3 action,
converting T4 and T3 into inactive metabolites. TH transporters
and deiodinases exhibit a particular expression profile that is
cellular and metabolic state specific (8, 9). Newly discovered
actions of T4 and T3 metabolites, such as 3,5-diiodothyronine
(3,5-T2), and 3-iodothyronamine (T1AM) are emerging (10).

Innate Immunity
The immune system includes cells that protect the organism
from foreign antigens, such as microbes, cancer cells, toxins,
and damage signals. It is simplistically referred to as innate
and adaptive immunity. The former offers immediate protection
against intruders, with specific cells being able to fight a wide
range of pathogens, with the latter being specific and antigen-
dependent (11). Moreover, adaptive immunity is orchestrated
and directed by its innate counterpart.

The main innate cells are polymorphonuclear leukocytes
(PMNL, mainly neutrophils), innate lymphoid cells (ILCs)

including natural killer (NK) cells and cytokine-producing
helper-like ILCs, innate T-like cells comprising NKT and γδ T
cells, monocytes, macrophages and dendritic cells (DCs). Their
complete classification and plethora of functions have been
extensively reviewed (12–15).

The belief that innate immunity is non-specific was challenged
after the description of pattern-recognition receptors and
molecules that recognize pathogen and damage-associated
molecular patterns from intruders (16, 17). Furthermore, the
concept of exclusive memory for adaptive responses was
weakened after the description of “trained innate memory,”
involving a heightened response upon re-exposure to a certain
stimulus (16, 18) under the control of the cellular metabolism
(19). Moreover, innate immune tolerance has also been
demonstrated (20).

This review article focuses on the state-of-the-art of the TH
mechanism of action and its effects on innate immunity at
cellular level, with the pathophysiological role of the reported
findings also discussed. The main effects of T3 and/or T4 in
Neutrophils, NK cells, Macrophages and DCs are depicted in
Figure 1 and considered below.

Neutrophils
Neutrophils are the first line of defense against bacteria and
fungi, and also help to combat parasites and viruses (21). They
travel from the blood to the inflammatory site where they
engage and kill microorganisms and clear infections through
chemotaxis, phagocytosis, and cytokine synthesis, and the
release of reactive oxygen species (ROS) and granular proteins
such as myeloperoxidase (MPO) (22). Classical concepts of
neutrophil biology are being increasingly challenged by recent
findings (23, 24).

Administration of T3 to rats increased the respiratory burst
activity of isolated PMNLs with enhanced NADPH oxidase and
MPO activities (25, 26). Accordingly, increased mitochondrial
oxygen consumption and ROS production were reported in
PMNLs from both Graves’ disease and toxic adenoma patients
(27). Moreover, T3 administration to euthyroid subjects induced
ROS generation by PMNLs (28). However, a decrease in
oxidative metabolism was registered in human PMNLs during
hypothyroidism, which was reversed upon L-T4 substitution
therapy (29). The authors suggest that this effect was unlikely
to result from direct actions of THs on PMNLs, considering
that T3 showed no appreciable effect on superoxide anion (O−

2 )
generation in in vitro experiments with PMNLs from healthy
donors. In addition, hypothyroidism causes changes in the lipid
composition of PMNLs’ membranes that may be involved in
their impaired function (30). To note, human neutrophils express
TR (31).

T4 and the TH metabolite 3,5-T2 as well as T3 induced
respiratory-burst activity and stimulated MPO activity in
human PMNLs. These effects were mediated by a non-genomic
mechanism initiated at the plasma membrane, dependent on
PKC and Ca+ levels. Moreover, O−

2 production in resting PMNLs
of hyperthyroid patients was elevated compared with either
controls or hypothyroid subjects (32). Furthermore, PMNLs
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FIGURE 1 | Effects of thyroid hormones 3,3′,5,5′ tetraiodo-L-thyroxine (T4) and 3,3′,5-triiodo-L-thyronine (T3) on innate immune cell subsets. The main reported

effects of T3 and/or T4 in Neutrophils, Natural Killer (NK) cells, Macrophages and Dendritic Cells are depicted. Particular differences among the diverse origins of the

cells (human, mice, cell lines, and/or tissue source) are shown and discussed in the main text.

express receptors for T1AM, a T4 derivative, involved in the
chemosensory migration toward T1AM (33).

THmetabolism plays an important role in neutrophil function
during infection. It has been demonstrated that D3 is strongly
expressed in murine neutrophils during chronic chemical
inflammation and in acute bacterial infection. Accordingly,
human neutrophils express D3, D1, MCT10, and TRα1, which
could therefore be involved in TH action in this cell type.
Furthermore, evidence has supported the notion that D3 plays
a role in the bacterial killing capacity of neutrophils, either
through generation of iodide for the MPO system or through
modulation of intracellular TH bioavailability (34). Recent results
have demonstrated that intracellular TH levels are regulated by
D3, playing a key role in neutrophil function in zebrafish, mice
and humans (35).

Natural Killer Cells
NK cells mediate cytolytic activities against tumor and virus-
infected targets. Of note, NK cells also possess traits of adaptive
immunity and can acquire functional qualities associated with
immunological memory (36). The studies of the effects of THs
on these cells have produced conflicting results. A positive
correlation between serum T3 concentration and NK cell activity
in healthy elderly subjects was recorded but exogenous T3
administration increased NK cell activity only in old individuals
who had T3 concentrations at the lower end of the reference
range (37). Although NK cell functionality was impaired in

Graves’ patients and restored in the euthyroid state (38, 39),
in vitro treatment with T4 to peripheral blood lymphocytes from
these patients did not show any increase in NK cell activity (40).
In agreement, hyperthyroxinemia induced in mice reduced NK
cell capacity to lyse target cells (41) whereas exogenous T4 or T3
administered to mice increased NK cell lytic activity (42), as well
as during protein starvation (43), or aging (44).

Endogenous IFN-γ plays a relevant role in the host defense
against infectious and neoplastic diseases by mechanisms that
involve modulation of the NK cell function (45, 46). Both T3 and
T4 boosted IFNγ-response in murine NK cells (44, 47), while T4
amplified the effect induced by both IFN-γ and IL-2 (48). These
findings suggest a role for THs in the modulation of NK cell
sensitivity to IFN-γ.

A recent study linked uterine NK cells (the most prominent
leukocytes at the maternal-fetal interface) with THs. These cells
express MCT8 and MCT10, as well as TRα1 and β1 in the first
trimester of human pregnancy. An increase of IL-6 secretion after
T3 exposure in vitro was also reported (49).

Monocytes—Macrophages
Macrophages are strategically positioned in all tissues of the
body and can recognize and remove pathogens, toxins, cellular
debris, and apoptotic cells. Tissue-resident macrophages in
adulthood rely on replenishment by bone marrow (BM)-
derived blood monocytes, with circulating monocytes being
recruited to tissues by specific chemotactic factors. Among
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other names, tissue-resident macrophages are referred to as
“microglia” in the central nervous system and “Kupffer cells”
in the liver (50–52). Depending on the signal and the dose, a
second stimulation can result in tolerance or trained immunity
(53, 54). In response to stimuli, differentiated macrophages
polarize to classically activated M1 or alternatively activated M2
macrophages, although a spectrum of phenotypes across the
M1/M2 continuum is recognized. M1 macrophages phagocytize
and destroymicrobes, eliminate tumor cells, and present antigens
to T cells through ROS production, expression of inducible
nitric oxide synthase (iNOS) and release of proinflammatory
cytokines, thereby promoting T helper (Th) 1 responses (55).
In contrast, M2 macrophages show an immunosuppressive
phenotype characterized by a decreased antigen presentation to
T cells and production of cytokines that stimulate Th2 responses.
These regulatory cells are involved in tissue repair, promote
tumor growth and exert antiparasitic effects (56).

In spite of controversial results concerning the expression
of TR isoforms, macrophages express TRα and β (57–61). In
addition, murine and human macrophage cell lines express D2,
MCT10, and MCT8 (59). Over the past decade, it has become
clear that shifts in cellular metabolism are determinants of
macrophage function and phenotype (62). The activities of key
enzymes of glycolysis are regulated by THs in these cells, affecting
macrophage metabolism and function (63). Stimulation of the
immune system in hyperthyroid rats revealed that monocyte
migration and ROS production bymacrophages were suppressed.
In contrast, hypothyroidism enhanced ROS release, whereas
monocyte migration was not affected (64).

THs enhanced the phagocytic activity of intraperitoneal
macrophages from hypothyroid rats (64). Moreover, T4
administration to old mice also increased their phagocytic
capacity (65). In agreement, a stimulatory effect of T4 (but not
T3) on the phagocytosis process of cultured peritoneal mouse
macrophages was reported (66). However, both THs enhanced
bacteria-cell interaction and intracellular killing in mice RAW
264.7 and human THP-1 monocyte-derived macrophage cell
lines (67). This mechanism involved the integrin αvβ3, TH-
induced iNOS expression, generation of NO and triggering of
the PI3K and ERK1/2 signaling pathways.

The inflammatory response exerted by macrophages was
stimulated during hypothyroid condition and inhibited in the
course of hyperthyroidism (68). T4 inhibited the migration
inhibitory factor (MIF) in macrophages (67, 69), and in
agreement, low plasma T4 concentrations augmented plasma
MIF levels in both patients and rats with severe sepsis (69).
Although T4 attenuated proinflammatory responses in vivo, no
significant changes in IL-6 and TNFα levels could be detected in
T4-treated peritoneal macrophages from mice, or in mouse and
human cell lines (67).

The “euthyroid sick syndrome” (or “nonthyroidal illness”)
is distinctive of critically ill patients with severe infections
or sepsis, being characterized by low serum T3 and in
serious cases by also low serum T4 without the expected
increase in TSH (70). Interestingly, supplementation of T4
to rats and mice in bacterial infectious models enhanced
animal survival and attenuated septicemia and inflammatory

responses (67, 71). In agreement, hypothyroid mice exhibited
increased mortality during inflammation induced by LPS,
whereas circulating T3, through TRβ1 signaling, protected
animals from endotoxemia (57). However, it was reported
that hyperthyroidism increased mice mortality in response
to LPS. Noteworthy, Signal Transducer and Activator of
Transcription 3 (STAT3) activation induced by LPS or IL-6
was inhibited by T3 through TR signaling in RAW 264.7 cells
and in primary cultures of BM-derived macrophages. These
authors suggested that inhibition of IL-6 signaling induced
by T3 has potent regulatory functions during infection and
inflammation (72).

Switching from M1 to the M2 phenotype protects
the organism from excessive inflammation, whereas
switching from M2 to M1 prevents allergic and asthmatic
Th2 reactions, decreases the bactericidal properties of
macrophages and favors the resolution of inflammation
(63). In this regard, T3 reduced monocyte differentiation into
macrophages and induced a M1 signature. In agreement, T3
decreased the expression of genes regulated by M2-activated
macrophages through a TRβ1-mediated mechanism (58).
Although comparable results were registered in RAW264.7
macrophages, a TRα-dependence was revealed (73). In
contrast, in a model of kidney obstruction, ligand-bound
TRα inhibited the NF-κB pathway and proinflammatory
cytokines in macrophages isolated at the inflammatory
site (61).

The role of intracellular TH metabolism in macrophages has
been extensively reported and reviewed by Boelen group (34),
and is therefore not covered in this review. More recently, a
reduction of intracellular T3 concentration due to a lack of D2
activity with impaired macrophage function was reported. Also,
primary BM-derived macrophages treated with LPS decreased
phagocytosis and proinflammatory cytokines in D2 KO mice
(73), consistent with earlier results in RAW264.7 cells (59).

Modifications in the homeostatic conditions of the nervous
tissue promote microglia activation, release of inflammatory
mediators and phagocytosis of degenerating cells (74). Lima et al.
(75) reported that rat microglial cells in culture express TRα

and TRβ, whereas other authors did not observe the latter (76).
αVβ3 integrin has also been described in these cells (77), and
in mice microglia, the TH transporters OATP4A1, LAT2, and
MCT10 were also found (78, 79). It is known that T3 modulates
microglial development (75) and functions such as migration and
phagocytosis by genomic and non-genomic pathways (80). The
molecular mechanism involves T3 uptake by TH transporters
and binding to TRs, thus triggering multiple signaling pathways
(80, 81). Moreover, T3 increased the release of soluble factors
by the microglia through STAT3 activation, promoting glioma
growth (82).

Liver is one of the most relevant TH target tissues. T3 induced
acceleration of cellular O−

2 consumption, resulting in elevated
ROS and NO (83). In agreement, T3-stimulated free radical
activity reduced the cellular antioxidant defenses leading to
oxidative stress in rats, a phenomenon also observed in human
hyperthyroidism (84, 85). Kupffer cells are main scavengers
constantly clearing gut-derived pathogens from the blood,

Frontiers in Endocrinology | www.frontiersin.org 4 June 2019 | Volume 10 | Article 350

https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org
https://www.frontiersin.org/journals/endocrinology#articles


Montesinos and Pellizas Thyroid Hormones on Innate Immunity

preventing liver diseases (86). T3 promoted hyperplasia and
hypertrophy of these cells, with a resulting enhancement in the
respiratory burst activity. Furthermore, T3-induced calorigenesis
resulted in transient elevations in serum TNF-α, determined
by actions exerted in Kupffer cells and involving activation
of NF-kB (87). The hepatic response induced by T3 involved
cell proliferation associated with TNF-α generation by Kupffer
cells (88).

Dendritic Cells
DCs are the main antigen presenting cells in the interface
between innate and adaptive immunity. They integrate signals
derived from infection or damage, and present processed antigen
to naive T cells to tailor the appropriate T cell program.
Recent advances in DC immunobiology have led to a clearer
understanding of how T cell responses are shaped (89). The main
DCs include conventional (classical or myeloid) DCs (cDCs,
referred as DCs from now on) and plasmacytoid DCs (pDCs).
The genetic signature of DCs from different tissues is similar, but
differs from that of pDCs, monocytes and macrophages. To note,
DCs are functionally different tomacrophages (89, 90). Immature
DCs (iDCs) have substantial endocytic activity but lower surface
expression of major histocompatibility complex (MHC) class I
and II proteins. After encountering any stimulus, DCs mature to
undergo considerable cytoplasmic reorganization, transporting
peptide-MHC complexes to the cell surface and upregulating
costimulatory molecules (90). Recent studies highlighted the
relevance of DC migration in the maintenance of immune
surveillance. Immature DCs are rather immotile, and after
processing foreign and self-antigens or damage signals undergo
an activation process, leading to an increase in motility
corresponding to upregulation of CC-chemokine receptor 7
(CCR7). The interaction of CCR7 with its ligand guides DCs
toward secondary lymphoid organs (91).

The role of THs in the initiation of adaptive immunity
remained uncertain for many years, with Mooij et al. providing
the earliest clues that THs and other iodinated derivatives,
mainly T3, favored the maturation of human peripheral blood
monocytes into functional DCs (92). Many years later, our
laboratory initiated a study on the effects of THs at the
DC level (Figure 2). We observed the expression of TRs in
BM-derived mouse DCs, principally the TRβ1 isoform, and
mainly in the cytoplasm of both iDCs and LPS-matured DCs.
The ability of physiological concentrations of T3 to induce
phenotypic and functional activation of DCs and to drive a Th1
profile was also demonstrated (93). Mechanistically, this effect
involved activation of the Akt and NF-kB pathways (94) and
was counteracted by glucocorticoids (95). The requirement for
an intact TRβ-T3 signaling in T3-induced DC activation was
confirmed by in vitro and in vivo studies (94, 96).

Interestingly, we showed that T4, the main circulating TH, did
not reproduce T3-dependent effects in DCs. The characterization
of the mechanisms of TH transport and metabolism in DCs
supports the notion of a homeostatic balance to prevent
unspecific systemic activation of DCs. In this regard, DCs express
MCT10 and LAT2 TH transporters, and mainly transport T3
with a favored involvement of MCT10, as its inhibition almost

prevented T3 saturable uptake mechanism and reduced T3-
induced IL-12 production. In addition, DCs express D2 and D3,
and exhibit both enzymatic activities with a prevalence toward
TH inactivation (97).

Immunotherapy has become the fourth pillar of cancer care,
complementing surgery, cytotoxic therapy, and radiotherapy
(98). In this context, DCs have been the subject of numerous
studies seeking new immunotherapeutic strategies against
cancer. However, despite initial enthusiasm, disappointing
results including a short half-life of DCs in circulation
and induction of tolerogenic responses by death cells, have
raised doubts regarding these approaches. Nevertheless, the
increased understanding of DC immunobiology and the search
for optimization strategies are allowing a more rational
development of DC-based immunotherapies (99, 100). A new
role for THs in this field has arisen, with T3 binding to
TRβ increasing mice DC viability and augmenting CCR7
expression, thereby driving migration of DCs to lymph nodes.
Moreover, T3 stimulated the antigen cross-presentation ability
of DCs, boosting antigen-specific cytotoxic T-cell responses.
Also, vaccination with T3-stimulated DCs in mice bearing B16
melanoma inhibited tumor growth and prolonged host survival
(96, 101). Overall, these results established the adjuvant effect of
T3-TRβ signaling in DCs, identifying a DC vaccination approach
in cancer immunotherapy.

Further recent in vitro and in vivo evidence has shed
light on the molecular and cellular mechanisms driven
by T3-conditioned murine DCs (102). Findings revealed
an induction of a proinflammatory cytokine profile and a
down-modulation of PDL expression in DCs. In co-cultures,
these cells increased the frequency of IL-17-producing
splenocytes, mainly by the γδ-T population. Thus, down-
regulation of tolerogenic T regulatory (Treg) cells and PD1
expression were induced, limiting the inhibitory signals
and emphasizing the relevance of T3 as an additional
immune-endocrine checkpoint.

The understanding of the effect of THs in human DCs is still
limited. Dedecjus et al. (103) reported that the thyrometabolic
state influenced the major human peripheral blood DCs, pDCs,
and cDCs, with T4 substitution to thyroid cancer patients after
surgery increasing the frequency of these cells and the expression
of CD86 and HLA-DR (activation markers). In hypothyroid
patients with Hashimoto’s Thyroiditis, T4 supplementation
exerted changes of peripheral blood DC subpopulations, with
increased expression of costimulatory molecules (104). Although
TRs in human DC populations have not yet been found,
increased expression of CD86 by T3 addition to cell cultures
of human peripheral blood pDCs was reported (103). Also, T3
increased the ability of humanDCs to upregulate the proliferative
response and secretion of IL-12 by peripheral bloodmononuclear
cells, similar to our findings in mice splenocytes co-cultured with
T3-stimulated DCs (93).

The proinflammatory role of IL-12 and its involvement in
Th1-mediated organ-specific autoimmune diseases (105) confer
potential clinical relevance of the aforementioned studies. An
increased synthesis of IL-12 by DCs obtained from hyperthyroid
mice has been reported (106). Furthermore, patients with
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FIGURE 2 | 3,3′,5-triiodo-L-thyronine (T3) promotes Dendritic Cell (DC) maturation and function, driving proinflammatory and cytotoxic adaptive responses. (Top) T3

promotes DC phenotypic maturation upregulating MHCII and costimulatory molecules. The functional DC activation promotes a proinflammatory cytokine phenotype

(increased production of IL-12, IL-6, IL-23, IL-1β, and TGFβ1) that drives adaptive responses favoring the development of Th1 and Th17 T cells, IL-17-producing γδ T

cells, and cytotoxic T cells. In contrast, the Treg population is restrained. T3-conditioned DCs also augment CCR7 expression, which favors their migration to lymph

nodes, where they present processed antigens in the context of MHCII to specific T cell receptors (TCR) from naïve T cells. T3 also modulates the immune checkpoint,

reducing PDL expression on DCs and triggering the down-regulation of PD-1-expressing T cells (not shown). (Bottom) DCs take up T3 more effectively than T4

through MCT10 and LAT2. Inside DCs, D2 catalyzes the conversion of T4 to T3, whereas D3 inactivates T3 resulting in T2. These cells mainly express TRβ1 with a

preferred cytoplasmic localization, where it co-localizes with Akt. Upon T3 binding to TRβ1, Akt is activated and translocated to the nucleus. This mechanism includes

IκB degradation and thus NF-κB cytoplasmic-nuclear shuttling that acts as a transcription factor upregulating TRβ1 expression. An intact T3-TRβ1 signaling is

essential for T3-dependent DC induced effects.

Graves’ disease exhibited elevated IL-12 circulating levels (107).
Considering that DCs are involved in the pathogenesis of
autoimmune thyroid diseases (108) and also their potential
application for the treatment of these pathologies (109), further
research should shed light in this field.

CONCLUDING REMARKS

The relationship between THs and innate immune cells
is complex, with an improved knowledge still necessary.

Cellular and molecular signaling pathways involved in
the crosstalk between THs and innate immune functions,
and their role directing adaptive immunity have profound
implications in immunopathology, including cancer and
autoimmune manifestations of the thyroid gland, at the
crossroads of the immune and endocrine systems. The
etiopathogenic mechanism involved in both immune-related
thyroid pathologies and immune disorders due to thyroid
dysfunctions are now better understood. With a focus on
particular cell subsets, further research will provide valuable
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tools for manipulating the immunogenic potential of innate
immune cells to positively regulate the development of protective
immunity, or negatively control the generation of autoimmune
thyroid inflammation.
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