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Abstract

The protozoan Trypanosoma cruzi is the causative agent of Chagas disease, endemic in Latin 

America but present worldwide. Research efforts have focused on the examination of immune 

mechanisms that mediate host-protection as well as immunopathology during this parasitic 

infection. The study of CD8+ T cell immunity emerges as a key aspect given the critical 

importance of parasite-specific CD8+ T cells for host resistance throughout the infection. In the 

last years, new research has shed light about novel pathways that modulate the induction, 

maintenance and regulation of CD8+ T cell responses to T. cruzi. This new knowledge is setting 

the ground for future vaccines and/or immunotherapies. Herein, we critically review and analyze 

the latest results published in the field.
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CD8+ T cell immunity against Chagas disease

Infection with the protozoan T. cruzi causes Chagas disease whose progression, from 

symptomless to severe, is linked to parasite heterogeneity and a variable host immune 

response (Box 1). In particular, pathogen-specific effector CD8+ T cells are critical for 

resistance to protozoa as well as to infections with most intracellular microbes [1]. 

Accordingly, initial studies about the immune response triggered by T. cruzi demonstrated 

that depletion of CD8+ T cells [2] or deficiency in the β2-microglobulin [3] favors parasite 

replication and increases host susceptibility during the acute phase of the experimental 

infection. Also, early evidences indicated that expansion and effector function of CD8+ T 

cells are required along the entire infection to control parasite load and prevent excessive 

inflammation in hearts of chronically infected mice [4]. These grounding reports established 

the concept that CD8+ T cell immunity is critical for survival during acute T. cruzi infection 
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and kicked-off several research lines aimed to understand the dynamics of that response. In 

the following sections, we review the latest results about CD8+ T cell immunity to T. cruzi 
together with fundamental knowledge in the field to integrate the available information into 

a comprehensive picture.

General features of CD8+ T cell responses during experimental T. cruzi 

infection

As described for model CD8+ T cell responses (Box 2), a robust parasite-specific CD8+ T 

cell immunity emerges upon natural T. cruzi infection but it shows a delayed kinetics when 

compared to other microbial infections [5, 6]. Of note, this response is extremely focused on 

a few immunodominant peptides derived from surface parasite proteins such as trans-

sialidase (TS) and amastigote surface protein 2 (ASP2) that exhibit considerable intra and 

inter-strain variability in sequence and expression pattern. Indeed, the immunodominance 

(see Glossary) pattern is particular to each parasite strain [7, 8]. Immunodominance has been 

suggested as detrimental to the host by restricting the breadth, and therefore the 

effectiveness, of the anti-parasitic CD8+ T cell response. However, experimental 

manipulations to eliminate CD8+ T cells specific for immunodominant epitopes highlighted 

the plasticity of the T. cruzi-specific CD8+ T cell repertoire and demonstrated that 

immunodominance neither contribute to, nor detract from, the ability to control T. cruzi 
infection [9, 10].

Once effector immunity clears the circulating parasites and reduces parasite loads in tissues, 

T. cruzi specific CD8+ T cells acquire memory traits, exhibiting proliferative responses after 

stimulation with both parasite antigens and homeostatic cytokines [11, 12]. Remarkably, 

specific CD8+ T cells isolated during the chronic phase of experimental T. cruzi infection 

exhibit effector competence and critically contribute to the persistent control of parasite 

outgrowth [13]. Altogether, the data obtained using experimental infection models in 

immunocompetent hosts (summarized in Supplementary Table S1) demonstrated that CD8+ 

T cell immunity against T. cruzi is robust and critical for parasite control during the acute 

phase. Furthermore, it generates immunological memory and remains functional to restrain 

parasite replication even in the context of chronic T. cruzi persistence.

The efficiency of the natural CD8+ T cell response may be interpreted as discouraging for 

strategies aimed to enhance or manipulate CD8+ T cell immunity as a rational approach to 

further improve resistance to T. cruzi. However, global analysis of results obtained using 

mice that bear defects in immune pathways that results in altered CD8+ T cell immunity, 

together with data obtained with samples of Chagas disease patients, support alternative 

interpretations discussed along this review.

CD8+ T cell immunity in human Chagas Disease

Although restricted by the inherent limitations of studies in humans, the investigation of the 

CD8+ T cell immunity in patients with Chagas disease underscored some similarities with 

the response described in experimental infection settings (Table 1). In this regard, the 

relevance of CD8+ T cell immunity in human T. cruzi infection is well illustrated by a recent 
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transcriptomics study [14]. It describes that patients with whole blood transcriptional 

signatures enriched in genes related to NK/CD8+ T cell cytotoxicity exhibit reduced 

parasitism as well as less severe chagasic chronic cardiomyopathy. Furthermore, though 

immunodominance of particular epitopes was not as obvious as in mice, CD8+ T cells from 

T. cruzi infected individuals also recognize TS derived peptides [7, 15] and few other 

parasite epitopes [16-18]. On the other hand, different from responses in mice that remain 

functional in chronicity, CD8+ T cell responses in patients with chronic Chagas disease show 

several evidences of dysfunction that were associated with the clinical severity of the disease 

(Table 1). Early studies reported that an important proportion of memory CD8+ T cells from 

T. cruzi infected patients exhibit a phenotype of terminal differentiation, likely associated 

with chronic activation [19]. These cells are characterized by downregulation of CD28 and 

CD27, increased susceptibility to apoptosis and reduced effector function upon stimulation 

with parasite antigens. Furthermore, the proportion of this senescent effector CD8+ T cell 

subset is increased while CD8+ T cells with features of stem cell memory are diminished in 

patients with more severe chronic disease [20]. The differential distribution of “bulk” CD8+ 

T cell subsets in patients with different grades of cardiomyopathy was further confirmed at 

clonal level. Thus, CD8+ T cells able to recognize four parasite epitopes restricted to the 

HLA-A*02:01 molecule display naive traits in non-symptomatic patients but a terminal 

effector and senescent phenotype in patients with cardiac symptoms [21]. Concomitant with 

terminal differentiation, CD8+ T cells from patients with severe disease have a higher 

frequency of cells co-expressing inhibitory receptors such as PD-1, CTLA-4, 2B4, CD160, 

and TIM-3, and a lower frequency of polyfunctional parasite-specific CD8+ T cells 

compared with patients without symptoms or with mild disease [22]. These features 

resemble those of dysfunctional or exhausted T cells that arise in the context of chronic 

viral infections [23] (Box 2). Indeed, chronic parasite persistence arises as a possible cause 

of CD8+ T cell dysfunction given that antiparasitic treatment in asymptomatic patients 

improves the quality of antigen-specific CD8+ T cell responses associated with a decrease in 

inhibitory receptor co-expression [24]. In addition to sustained antigenic stimulation, 

chronic exposure to inflammatory mediators such as nitric oxide may also contribute to the 

dysfunctional state of CD8+ T cells from infected patients. The mechanism underlying this 

effect seems to be the nitration of surface T cell proteins that leads to T cell 

unresponsiveness and apoptosis [25]. In a similar direction, perturbed signaling downstream 

the IL-7 receptor, which is critical for T cell survival, has been suggested as one cell-

intrinsic mechanism of CD8+ (and CD4+) T cell exhaustion during chronic Chagas disease 

[26].

The reasons of the difference between experimental and human T. cruzi infection concerning 

the differentiation status and functionality of CD8+ T cells remain unclear. One possible 

explanation is that the longer life span of humans may allow longer chronic infectious 

processes, promoting cell exhaustion. Alternatively, given the heterogeneity of host 

responses in humans compared to laboratory animals, it is possible that particular immune 

effector pathways and/or different levels of parasite loads may promote CD8+ T cell 

dysfunction in certain patients but not others. In this regard, it is critical to continue our 

efforts to completely understand the cellular and molecular mechanisms underlying the 

induction and maintenance of protective CD8+ T cell immunity against T. cruzi. Taking 
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appropriate note of their inherent limitations, studies exploiting models of experimental 

infections in genetically modified mice could certainly be instrumental in this direction.

Pathways that participate in the induction of parasite specific CD8+ T cells

Initial activation and priming are the less studied phases of the CD8+ T cell response to T. 
cruzi. Our current picture is based only on few studies that focus on particular aspects of 

priming and induction during experimental infections (Figure 1, Key Figure). Therefore, a 

systematic evaluation of these initial and critical steps is still missing.

T. cruzi recognition by the immune system relies on parasite molecules able to ligate 

receptors expressed by innate immune cells such as dendritic cells and macrophages, 

particularly toll-like receptors (TLR). Identified T. cruzi TLR ligads include mucin-like 

glycoproteins that bind TLR2 and 6, glycoinositolphospholipids that are recognized by 

TLR4, and parasite DNA (which contains abundant oligodeoxynucleotide unmethylated 

CpG motifs) and total RNA that potently activate TLR9 and 7, respectively [27]. 

Remarkably, the initial steps of T. cruzi infection seem to be relatively silent and therefore, 

the primary parasite inoculum does not promote the induction of parasite-specific CD8+ T 

cells [6, 28]. Rather, effector CD8+ T cells emerge with slow kinetics only after a round of 

parasite multiplication that likely results in the accumulation of T. cruzi antigens and ligands 

with adjuvant properties that, in turn, promote the maturation of antigen presenting cells. 

Accordingly, injection of irradiated (non-proliferating) parasites is not able to induce 

protective CD8+ T cell immunity while higher parasite inoculum or infection with a fast 

replicating parasite strain accelerate T. cruzi parasitemia and expansion of parasite-specific 

CD8+ T cells [6, 28]. In the same line, the kinetics of the CD8+ T cell response to a 

moderate initial T. cruzi infection dose can be speeded by the injection of different TLR 

ligands that would act as adjuvants [6]. Strikingly, however, specific CD8+ T cell immunity 

triggered by natural T. cruzi infection is preserved in mice deficient for TLR2, TLR4, TLR9 

or the TLR adaptor molecule MyD88 despite the increased susceptibility of these mouse 

strains [29]. Thus, it is likely that TLR-dependent pathways are dispensable for adaptive 

CD8+ T cell immunity to T. cruzi or their contribution can be compensated by other innate 

recognition systems such as Nod-like receptors [30] or bradykinin B2 receptors [31] able to 

drive innate immune cell activation.

Besides requiring the activation of antigen presenting cells, provision of MHC class I-

restricted epitopes for T cell priming critically depends on the cytosolic degradation of 

mature proteins by a specialized type of proteasome called immunoproteasome [32]. In fact, 

CD8+ T cell responses to many viral infections show diminished magnitude or quality 

(immunodominance pattern) in the absence of immunoproteasome expression [32]. 

Similarly, T. cruzi infected dendritic cells derived from bone marrow of mice lacking the 

expression of the three immunoproteasome subunits exhibit reduced antigen presentation of 

MHC class I-restricted parasite epitopes and are less efficient to activate IFN-γ production 

by CD8+ T cells purified from infected mice [33]. Furthermore, immunoproteasome 

deficient-mice present a drastically diminished response of CD8+ T cells specific for 

immunodominant and subdominant epitopes after T. cruzi infection together with a 
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conserved CD4+ T cell response. Accordingly, these infected mice showed higher tissue 

parasitism and increased susceptibility to this parasitic infection.

CD4+ T cells are essential for the development of primary and, specially, memory CD8+ T 

cell responses in many settings including infection and cancer [34]. However, the role of 

CD4+ T cell help in the development of T. cruzi specific CD8+ T cell responses has been 

scarcely investigated. An initial report described that mice lacking CD4+ T cells due to 

MHC class II deficiency generate functional (IFN-γ producing and cytotoxic) parasite-

specific CD8+ T cells after T. cruzi infection [35]. However, these infected CD4+ T cell-

deficient mice exhibit a significant decrease in the frequency of CD8+ T cells recognizing 

dominant but not subdominant parasite epitopes [35]. In contrast, a second study reported 

that MHC clas II and CD4 deficient mice developed marginal levels of specific cytotoxic 

activity in vivo after infection with a high dose of a different T. cruzi strain [28]. Although 

apparently contradictory, these findings could be reconciled by the idea that CD4+ T cell 

helps to modulate strain-specific immunodominance patterns during primary CD8+ T cell 

response against T. cruzi, licensing dendritic cells to prime maximal response mainly to 

dominant epitopes, as previously reported for viral infections [36, 37].

Once primed, T. cruzi-specific CD8+ T cells will continue with the next steps of a 

conventional T cell response (Box 2), which includes expansion concomitantly with effector 

cell differentiation, followed by contraction and memory generation (Figure 1). Several 

signals provided by soluble mediators and cell surface molecules will influence the 

development of these steps in the CD8+ T cell fate, as discussed below.

Mediators that sustain the maintenance of CD8+ T cell immunity to T. cruzi

The signals that regulate the expansion and survival of effector CD8+ T cells and promote 

the generation of memory CD8+ T cells have not been completely elucidated. Nevertheless, 

some cytokines and immune cell populations have been identified as involved in the 

maintenance of sustained CD8+ T cell response during T. cruzi infection (Figure 1).

Cytokines: IL-10, IL-17, and others

Recently, we demonstrated that mice deficient in IL-17RA show an abortive CD8+ T cell 

response during T. cruzi infection [38]. This phenotype is not a consequence of a reduced 

induction or expansion of parasite-specific CD8+ T cells but rather evidenced a premature 

contraction. Remarkably, IL-17 signaling is required once the parasite-specific CD8+ T cell 

response is established to promote survival of effector cells. Accordingly, IL-17A, but not 

IL-17F, IL-17C or IL-17E, is able to stimulate in vitro activated CD8+ T in cells in a direct 

fashion, downregulating the pro-apoptotic protein BAD and promoting cell survival. 

Furthermore, effector CD8+ T cells elicited by T. cruzi infection in absence of IL-17RA 

exhibit a phenotypic, functional and transcriptomic profile compatible with cell exhaustion. 

In agreement with their deficient CD8+ T cell response, infected IL-17RA knockout mice 

show poor control of the parasite in target tissues such as spleen, liver and heart that can be 

partially reverted by inhibiting the PD-1/PD-L1 inhibitory pathway [38]. Altogether, our 

results underscore that during T. cruzi infection, cell populations that produce IL-17, which 
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include Th17, Tc17, NK cells and B cells [39, 40]. may sustain and potentiate parasite-

specific CD8+ T cell responses.

Additionally, IL-10 has been recently shown to modulate CD8+ T cell responses during T. 
cruzi infection [41]. Initial evidences in this regard came from the observation that infected 

C57BL/6J mice exhibit an exceptional high IL-10 expression that was associated with 

increased frequency of cytokine-producing CD8+ T cells in infected hearts [42]. Likewise, 

recent data show that IL-10 deficient mice exhibit an impaired expansion of CD8+ T cells 

following acute T. cruzi infection, confirming the participation of IL-10 in the sustenance of 

CD8+ T cell immunity in this inflammatory context [41]. CD8+ T cells from infected IL-10 

deficient mice show diminished proliferation, cytotoxic potential and IFN-γ production in 

comparison to their WT counterparts. Furthermore, IL-10 absence selectively affects 

survival and increases the expression of the inhibitory receptor PD-1 on CD8+ T cells 

without altering these parameters on CD4+ T cells. The effects of IL-10 on CD8+ T cells 

from T. cruzi infected mice are not achieved through direct signaling as recombinant IL-10 

failed to up-regulate CD8+ T cell function in vitro.

Besides IL-17 and IL-10, few other cytokines have been investigated in their role to sustain 

CD8+ T cell responses in the context of T. cruzi infection. In this regard, human CD8+ T cell 

lines derived from inflammatory heart infiltrates show enhanced survival and expansion in 

the presence of IL-7 and IL-15 [43]. Indeed, increased local production of both cytokines is 

associated with the predominant presence of CD8+ T cells in heart biopsies of patients with 

Chagas disease. In addition, IL-6, which is induced during experimental [44] and human 

[45] T. cruzi infection, promote the survival of human CD8+ T cells from chagasic patients 

[25]. As discussed above, peripheral leukocytes from chagasic patients present increased 

tyrosine nitration of CD8+ T cells that leads to increased apoptotic rate, loss of the TCRζ-

chain, and reduced effector function. IL-6 stimulation of peripheral blood mononuclear cells 

obtained from healthy donors and infected in vitro with T. cruzi blunts parasite-induced 

nitration and increases survival of CD8+T cells. In contrast, and despite the fact that type I 

interferons are evident early after T. cruzi infection, infected mice lacking the receptor for 

type I interferon showed conserved frequencies of immunodominant TSKB20- and 

subdominant TSKB18-specific CD8+ T cells [46].

Cells: B lymphocytes and Th17 cells

There is scarce knowledge about the cells and signals able to sustain CD8+ T cell response 

in T. cruzi infection once established. However, B cells were one of the first cell populations 

reported to participate in the generation of effector/memory CD4+ and CD8+ T cells during 

T. cruzi infection [47]. Infected muMT mice, wich lack mature B cells due to absence of 

surface-IgM expression, exhibit low CD8+ T cell numbers. Unfortunately, the absence of a 

kinetics evaluation in this study does not allow to definitively conclude whether the reduced 

magnitude of the responses a consequence of deficient maintenance or induction of effector 

T cells. More recently, we and others described that B cells are dispensable for the priming 

but not for the maintenance of CD8+ T cell responses against T. cruzi [48, 49], although the 

underlying mechanisms were found to be different. In this way, JhD mice, which have a 

deletion in the immunoglobulin heavy chain locus that results in lack of functional B cells, 
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show a reduction in parasite-specific CD8+ T cell numbers and effector function after 

mucosal vaccination followed by challenge with a virulent T. cruzi strain. This phenotype 

can be reversed by injection with T. cruzi immune serum obtained from WT mice, 

underscoring a role for antibodies in the B cell mediated modulation of CD8+ T cell 

immunity [49]. In a different direction, we determined that B cell depletion by anti-CD20 

injection during T. cruzi infection affects the magnitude and quality of the specific CD8+ T 

cell response. This effect is associated with a reduction in the frequency of IL-17A 

producing B and non-B cell cell populations. Also, parasite-specific CD8+ T cells from B 

cell depleted infected mice exhibit increased apoptosis and poor effector function, a 

phenotype similar to that observed in infected IL-17RA deficient mice. Furthermore, B cell 

depletion partially arrested CD8+ T cell expansion, leading to a premature contraction of the 

response. Of note, treatment with rIL-17A partially restored CD8+ T cell immunity and 

parasite control in anti-CD20-treated T. cruzi infected mice [48]. Our results highlight 

important cytokine-dependent (possibly antibody-independent) mechanisms of 

immunomodulation exerted by B cells, reinforcing the notion that IL-17 is a key cytokine for 

the sustenance of CD8+ T cell immunity during T. cruzi infection.

Besides B cells, TCR-transgenic CD4+ T cells specific for an immunodominant peptide of T. 
cruzi and polarized in vitro into Th17 cells were shown to potentiate CD8+ T cell immunity 

when co-transferred with polyclonal CD8+ T cells into infected RAG KO mice. Indeed, 

these Th17 cells augment CD8+ T cell proliferation and cytokine production and confer a 

stronger protection against T. cruzi-related mortality compared to Th1 cells [50]. 

Remarkably, these parasite-specific Th17 cells acts through a mechanism that is independent 

of IL17 but IL-21-dependent [50]. The differences between these findings and our results 

with IL-17RA deficient mice [38] may arise from the notion that in vitro generated Th17 

cells evaluated by Cai et al. [50] may have different phenotype and functional capacity than 

those generated in vivo during the natural infection. Despite this, Th17 cells are a poorly 

represented T helper subset during T. cruzi infection and thus other IL-17 producing cell 

populations may play a more significant role to sustain CD8+ T cell immunity [39, 40]. In 

the end, it is likely that robust parasite-specific CD8+ T cell responses rely on a crosstalk 

among several cell subsets able to secrete different mediators including IL-17 and IL-21, as 

well as other cytokines.

Regulation of CD8+ T cell responses

Immunoregulatory pathways are fundamental for host resistance to T. cruzi as they 

orchestrate balanced effector immune responses able to achieve parasite control without 

extensive tissue damage [51]. The characteristics of different suppressor cell populations and 

anti-inflammatory cytokine responses during T. cruzi infection have been recently reviewed 

[52, 53]. In particular, the role of Foxp3+ regulatory T (Treg) cells have been extensively 

studied under different T. cruzi infection models, where contradictory results have been 

reported. These discrepancies were attributed to the variety of parasite and mouse strains 

used as well as the infection dose [53], but they also might be consequence of limitations in 

Treg cell approaching strategies, the diversity of parameters studied, the tissues analyzed and 

the focus on different stages of the infection. In this way, most studies targeted Treg cells by 

the use of anti-CD25 depleting antibodies and few of them investigated its impact on CD8+ 
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T cell immunity towards T. cruzi. Initial studies concluded a limited role for Treg cells 

during T. cruzi infection as a slight effect is observed in the frequency of antigen-specific 

CD8+ T cells in blood of Treg cell-depleted mice at the acute phase of infection, without 

affecting parasitemia levels and survival curves [54]. Additionally, the functionality of CD8+ 

T cells remains unaltered in the acute and/or chronic infection of Treg cell-depleted mice, 

and even after long periods of anti-CD25 treatment. Other groups reported no effects on 

CD8+ T cell responses following Treg cell depletion, however in these cases the analysis of 

the cytotoxic response was very limited [55-57].

The use of strategies that specifically target Foxp3+ Treg cells have recently shed light in 

understanding the impact of this population over CD8+ T cell immunity after T. cruzi 
infection. In this way, specific-Treg cell depletion immediately after T. cruzi infection of 

DEREG (DEpletion of REGulatory T cells) mice improves the numbers of splenic parasite-

specific CD8+ T cells, as well as their cytokine production capacity, suggesting that Treg 

cells are able to regulate the induction of CD8+ T cell responses [58]. In line with these 

observations, we demonstrated that Treg cells activated in the context of T. cruzi infection 

are able to suppress total and parasite-specific CD8+ T cell immunity [59]. Given that we 

determined a significant reduction in the frequencies of Treg cells during the acute phase of 

T. cruzi infection, we decided to use a strategy that opposed that of the previous work, 

potentiating the Treg cell response through the injection of in vitro differentiated Treg cells. 

This Treg cell adoptive transfer results in an impaired CD8+ T cell response accompanied by 

increased parasite levels in the spleen and liver of acutely infected animals. More 

importantly, our results indicate that the natural contraction of the activated Treg cell 

response observed during the acute phase of T. cruzi infection may be critical to allow the 

emergence of protective anti-parasite CD8+ T cell immunity. Indeed, we showed that Treg 

cells and parasite-specific CD8+ T cells inversely correlate in the spleen of mice during the 

acute infection, in concordance to what has been suggested in humans with chronic Chagas 

disease [60, 61].

The mechanisms used by Treg cells to achieve CD8+ T cell suppression during T. cruzi 
infection remain to be fully elucidated. Considering the phenotypic profile acquired by Treg 

cells after the infection, it is plausible that both direct and indirect regulation of CD8+ T cell 

immunity may be involved [59]. Accordingly, TGF-β and CTLA-4 blocking suggested that 

these molecules may be partially involved in Treg cell suppression of CD8+ T cell priming, 

affecting CD8+ T cell proliferation and effector cytokine production, respectively [58]. 

Furthermore, at least two studies report that immunomodulatory molecules that support Treg 

cells concomitantly turn down the magnitude of the CD8+ T cell response after T. cruzi 
infection. Pharmacological inhibition of the enzyme Haeme Oxygenase-1 during acute 

infection results in decreased spleen Treg cell numbers and reduced cardiac Foxp3 

expression in parallel with a raise in the CD8+ T cell heart infiltrate [62]. In a similar 

direction, mice deficient in Galectin-1, a beta-galactoside-binding protein that participates in 

several immunoregulatory circuits [63], exhibit increased frequencies of CD8+ T cells and 

decreased parasite burden in skeletal muscle during the acute phase of T. cruzi infection, 

accompanied by a reduced frequency of Treg cells in the spleen and lymph nodes [64]. It 

remains to be elucidated whether Haeme Oxygenase-1 and Galectin-1 exert a direct effect on 
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the CD8+ T cell population and/or an indirect mechanism through suppression by regulatory 

cells.

Myeloid-derived suppressor cells (MDSCs) have also been implied in CD8+ T cell control 

during T. cruzi infection. MDSCs that produce peroxynitrites increase in the spleen and liver 

of acutely infected mice and associate with augmented numbers of CD8+ T cells that 

undergo surface tyrosine nitration. The interplay between these cell subsets was confirmed 

when MDSCs depletion with 5-fluorouracil decreased the frequency of tyrosine nitrated 

CD8+ T cells [65]. MDSC depletion also recovers the proliferative response of splenocytes 

and raises CD107a+ CD8+ T cell frequencies in T. cruzi-infected mice [65]. Altogether, 

these evidences suggest a suppressive function for MDSCs over CD8+ T cell response, 

although the direct impact of this suppression in parasite control could not be established 

given the reduced survival of 5-FU treated infected mice.It is likely that in spite of the 

enhanced cellular response, 5-FU mediated MDSC depletion unleashed inflammation and 

compromised tissue integrity, which in turn favored parasite circulation and reduced host 

survival. Whether MDSC suppressive role is exerted by granulocytic and/or monocytic 

subpopulations, and if other mediators apart from peroxynitrites are involved in MDSCs 

mediated CD8 T cell suppression is yet to be determined.

In addition to regulatory cells, cytokines released by different cell types in response to T. 
cruzi can also suppress cytotoxic responses. By the use of mice carrying a dominant negative 

form of the TGF-β type II receptor, Martin et al described that TGF- β can directly target 

total and parasite-specific CD8+ T cells to impair their expansion and therefore prevent their 

exacerbated accumulation, especially in the chronic phase of the infection [66]. In addition, 

Ebi3, likely as a part of IL-27 but not IL-35, was reported as a key modulator of CD8+ (and 

CD4+) T cell IFN-γ responses in the heart and spleen at the acute phase of T. cruzi infected 

mice [67]. IL-27 is produced in hearts by myeloid MHC class II+ CD11b+ cells and induces 

the expansion of CD3+ CD4+ IL-10+ Foxp3− Tr1 cells. Tr1-derived IL-10 would play a role 

in controlling IFN-γ-producing T cell responses in the context of this parasitic infection [67, 

68]. Interestingly, the pro-inflammatory cytokine IL-18 could also act as a modulator of the 

CD8+ T cell effector cytokine response, as deficiency in this molecule increased frequency 

of memory CD8+ T cells that produce IFN-γ in the spleen of mice chronically infected with 

T. cruzi Colombian strain [69]. As these mice also showed decreased proportion of splenic 

CD4+ CD25+ T cells and Foxp3 expression during the acute phase, it is likely that IL-18 

play an indirect role through Treg cells.

Altogether, the evidences discussed above underscore that multiple regulatory pathways act 

in concert to modulate CD8+ T cell immunity to T. cruzi (Figure 2). Currently, several 

groups are focused on targeting these immunoregulatory pathways as a mean to improve 

protective CD8+ T cell responses against T. cruzi without a deleterious exacerbation of tissue 

damage.

Strategies to enhance parasite-specific CD8+ T cell immunity

Given the features of CD8+ T cell responses discussed in the precedent sections, many 

research groups have focused on the development of different strategies aimed to 
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prophylactically induce CD8+ T cell immunity against T. cruzi and/or potentiate it, 

particularly during the acute infection. Although the maximal goal during this infection 

stage is achieving parasite elimination and cure, a more realistic objective would be to 

reduce parasite levels to a minimum in order to prevent transmission and reduce the 

frequency of symptomatic individuals. Below we discuss different approaches aimed at 

boosting parasite-specific CD8+ T cell immunity before or during the acute phase.

Whether potentiating CD8+ T cell responses during the chronic phase may be beneficial for 

the host is still matter of debate. However, recent reports have linked increased CD8+ T cell 

terminal differentiation and dysfunction in chronically infected individuals with a more 

severe clinical disease [22] and even enhanced congenital transmission [70]. These reports 

raise the possibility that reprogramming and/or reinvigorating CD8+ T cells through 

checkpoint blockade (i.e. anti-PD-1, anti-CTLA-4) or other immunomodulatory approaches 

may be useful by reducing parasite loads in tissues and ameliorating clinical disease. 

Extensive research in this direction is needed to evaluate the potentiality of these strategies.

Vaccines

Several prophylactic and therapeutic vaccine prototypes for Chagas disease have been 

developed exploiting a variety of delivery systems (plasmids, adenoviruses and recombinant 

proteins/peptides) and adjuvants. Of note, only a fraction of these vaccines explicitly 

evaluated the effects on the potentiation of parasite-specific CD8+ T cell responses (Table 2). 

Among them, the conventional design approach is to use as immunogen those parasite 

antigens that dominate the response against natural infection such as TS and ASP2 [71-76]. 

In a similar direction, recent alternatives consist in the usage of fragments from one or more 

parasite proteins and even individual epitopes [77-79]. However, given the remaining 

questions about the potential detrimental role of immunodominant CD8+ T cell responses 

for protection against T. cruzi, other research groups searched for alternative candidates. 

This strategy consisted in the selection of antigens based on in silico analysis that followed 

the premises of identifying proteins that are phylogenetically conserved in diverse T. cruzi 
strains and expressed in the infective and intracellular mammalian stages of T. cruzi [80, 81]. 

All these different approaches showed prophylactic effect inducing, in a variable extent, 

different effector immune mechanisms that result in the reduction of parasite loads and 

tissue damage, in parallel with increased host survival. Furthermore, a few of these vaccines 

were also shown to have therapeutic potential.

Besides evaluating the vaccine efficiency, two of the reports summarized in Table 2 provided 

interesting information about the characteristics of the elicited CD8+ T cell response that 

may be associated with their effectiveness. In this way, protection by heterologous prime-

boost vaccination was linked to their ability to induce parasite-specific CD8+ T cells that 

exhibit phenotypic and functional attributes of superior quality in comparison to those 

induced by natural infection [71-73]. Vaccine-elicited CD8+ T cells show low expression of 

the death receptor CD95 and a phenotype compatible with an effector T cell fate. These 

cells, in turn, give rise to long-lived effector memory T cells that do not extensively 

proliferate but migrate and differentiate into effector cells upon infection challenge. These 

authors propose that even though the naturally-triggered immunity to T. cruzi is strong, 
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vaccination could be exploited to induce CD8+ T cells of improved quality and fitness to 

cope with the infection. Moreover, a combination of genetic and cell-based immunization 

approaches allowed to obtain important data related to epitope immunodominance [76]. 

These authors showed that a DNA vaccine encoding an enzymatically active TS and an 

immunodominant CD8+ T cell epitope is able to enhance subdominant pathogen-specific 

CD8+ T cell responses as consequence of a co-stimulatory effect mediated by active TS. 

Remarkably, vaccines inducing both immunodominant and subdominant epitope responses 

are significantly less protective than those inducing only immunodominant-specific 

responses. Altogether, these results suggest that increasing breadth of T cell epitope 

responses, at least during vaccination, is not necessarily advantageous for resistance against 

T. cruzi.

The knowledge gained in experimental models could guide efforts to move forward towards 

a vaccine candidate in humans. This translational step presents a new layer of difficulty as 

the selected parasite epitopes need not only to be immunogenic and conserved among 

different parasite strains, but also to bind the extremely polymorphic human HLA 

molecules. So far, attempts in this direction include immunoinformatic approaches aimed to 

identify potential parasite epitopes that could bind HLA classI supertypes (group of HLA 

alleles with largely overlapping peptide binding specificities) such as A2, that are able to 

induce CD8+ T cell immunity with a high population coverage [82]. Moreover, HLA class II 

epitopes for CD4+ T cell induction as well as lineal and conformational epitopes for B cell 

activation, are also being explored for the design of multiepitope subunit vaccines capable of 

triggering different arms of the anti-parasitic immune response [83].

Immunomodulatory drugs

In the last years, it has become increasingly clear that the combination of antiparasitic agents 

with strategies aimed to modulate particular immunological pathways triggered by T. cruzi 
infection may be useful to reduce the associated pathology. Also, there is growing interest in 

evaluating possible immunomodulatory potential of conventional chemotherapeutics as well 

as novel drugs that showed promising trypanocidal effect. Accumulating evidences indicate 

that treatment with conventional drugs for chemotherapy of Chagas disease markedly impact 

on the quality of the host immune response. Benznidazole treatment initially increases and 

lately reduces the frequency of IFN-γ producing T cells [84], improves CD8+ T cell 

response [24, 85] and restores the phenotype of CD8+ (and CD4+) T cells, as evidenced by a 

decrease in the frequency of activated and effector cells [86]. Although it remains to be 

established whether these are direct effects or rather indirect consequences of parasite load 

reduction, the immunological changes induced by conventional drugs have been postulated 

to improve treatment efficacy or at least, to serve as biomarkers of treatment efficacy.

In regard to novel drug candidates, it was reported that the Tryptophan-derived catabolite 3-

hydroxykynurenine (3-HK) shows a direct antiparasitic effect [87] and also induces Treg 

cells and suppresses Th1 and Th2 responses, reducing the incidence and severity of chronic 

cardiomyopathy in an experimental infection model [88]. The mechanism underlying 3-HK 

immunomodulatory role seems to be linked to its ability to ligate the Aryl hydrocarbon 

Receptor (AhR), a ligand-activated transcription factor that plays important roles in the 
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modulation of immune responses. Of note, AhR was recently reported to have a 

dichotomous role in the generation of memory CD8+ T cells during T. cruzi infection [89]. 

Strong and/or sustained AhR activation induced by different ligands has negative effects in 

the development of parasite-specific memory CD8+ T cell subsets. In contrast, very weak (or 

lack of) AhR activation observed upon T. cruzi infection in AhRd mice, which express the 

hyporesponsive variant d of the Ah allele, enhances CD8+ T cell immunity and parasite 

control. It remains to be specifically evaluated whether drugs able to inhibit AhR pathways 

may be useful to improve CD8+ T cell responses during T. cruzi infection or vaccination.

In addition, promising chemotherapeutic candidates that resulted from the Drugs for 

Neglected Diseases Initiative (DNDi) such as K777, a vinyl sulfone cysteine protease 

inhibitor of cruzain, are being evaluated by their immunomodulatory properties. In particular 

for CD8+ T cells, in vitro K777 treatment of peripheral blood mononuclear cells from 

patients with Chagas disease increases the frequency of cells producing IFN-γ, TNF and 

IL-10, suggesting it may induce beneficial changes in the immunological profile of infected 

individuals [90].

Finally, unspecific therapies used to mitigate cardiovascular symptoms may also modulate 

immunological pathways showing an impact on disease progression [91-93]. Particularly, 

pentoxifylline (PTX), a methylxanthine phosphodiesterase inhibitor used as cardioprotective 

and as treatment for peripheral vascular diseases, show important effects on CD8+ T cells 

activated during T. cruzi infection. PTX administration reduces the frequency of spleen 

CD8+ T cells expressing activation and migration markers and more remarkably, decreases 

the cardiac infiltration of perforin+ CD8+ T cells preserving the presence of IFN-γ 
producers. Consequently, PTX hampers the progression of heart injury and reverse 

functional cardiac abnormalities without compromising tissue parasite control [94].

Of note, conventional chemotherapeutic drugs result in the modulation of several immune 

parameters including subpopulation distribution and function of CD8+ T cells that have been 

attributed to the success of the treatment to reduce parasite burden [24, 95]. Therefore, future 

work is required to establish whether the immunomodulatory effects of novel candidates are 

directly exerted on particular immune pathways or an indirect consequence of the 

trypanocidal activity.

Concluding remarks

Described more than a century ago, Chagas disease remains a major health problem in 

endemic areas and is becoming a global concern due to migratory movements. There is 

consensus in that variable disease progression results from complex host-microbe 

interactions. After decades of research, it is well-accepted that the magnitude and quality of 

the host CD8+ T cell immunity is a key element for resistance to T. cruzi. Particular features 

of parasite-specific CD8+ T cell responses include slow induction, immunodominance, high 

functional competence or cell dysfunction according to the particular infection setting, 

among others. However, continued efforts are required to improve our understanding of the 

biological pathways underlying the development and maintenance of a balanced CD8+ T cell 

immunity to T. cruzi (see Outstanding Questions). Furthermore, given that features of the 
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CD8+ T cell immunity to T. cruzi have been delineated mainly based on data from 

experimental infection, future work should also be oriented to overcome the scarcity of 

detailed studies in the context of human Chagas disease. Altogether, data obtained from 

experimental and human infections will be critical to guide future work aimed to develop 

prophylactic and/or therapeutic strategies to achieve maximal parasite control (and ideally 

elimination), together with minimal tissue damage during the acute phase, in order to 

prevent clinical disease in chronicity.
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GLOSSARY

DEREG (DEpletion of REGulatory T cells) mice
These mice express a simian diphtheria toxin receptor-enhanced green fluorescent protein 

(DTR-eGFP) fusion protein under control of the endogenous forkhead box P3 promoter/

enhancer regions. DTR-eGFP expression is observed in fully functional 

Foxp3+CD4+regulatory T cell populations allowing fluorescent detection or diphtheria 

toxin-induced ablation of Foxp3+ Treg cells.

Exhausted T cells
Distinct CD8+ T cell lineage that arises during chronic infections and cancers. Exhausted T 

cells are characterized by progressive loss of effector functions, high and sustained 

inhibitory receptor expression, metabolic dysregulation, poor memory recall and 

homeostatic self-renewal, as well as distinct transcriptional and epigenetic programs.

Foxp3+ regulatory T (Treg) cells
a population of T cells that inhibits the activation of other immune cells and is necessary to 

maintain peripheral tolerance to self-antigens. Treg cells are CD4+ and express the α chain 

of the IL-2 receptor (CD25), CTLA-4 as well as other inhibitory receptors.

Immunodominance
The dominance of an antigen (over all others) in its ability to induce an immune response.

Immunogen
is a specific type of antigen (typically above 20kDa) that is able to elicit an immune 

response.

Immunoproteasome
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highly efficient proteolytic machinery abundantly expressed in immune cells, that after 

exposition to inflammatory stimuli (i.e. interferons) replace the three subunits of 

conventional proteasomes. It plays an essential role in the immune system, degrading 

intracellular proteins to allow peptide presentation in an MHC class I context.

Myeloid-derived suppressor cells (MDSCs)
a heterogeneous group of immature myeloid precursors that suppress immune responses. 

This cell population expresses Ly6C or Ly6G and CD11b in mice, and CD33, CD11b, and 

CD15 in humans.

Priming
It is the first contact of a naive T or B cell with its specific antigen that leads to cell 

activation and differentiation into effector T or B cells.

Senescent effector CD8+ T cells
Particular population of effector CD8+ T cells described in humans during aging, chronic 

infection and cancer characterized by cell cycle arrest, critical telomere shortening, loss of 

co-stimulatory molecules CD27 and CD28 expression, increased expression of CD57 and 

KLRG1, and increased expression of proteins involved in DNA damage responses.

Stem cell memory
a rare subset of memory lymphocytes endowed with the stem cell–like ability to self-renew 

and the multipotent capacity to reconstitute the entire spectrum of memory and effector T 

cell subsets.

Tyrosine nitration
is a form of post-traslational protein modification induced by peroxynitrites that may affect 

molecules of the TCR: CD8 complex, leading to apoptosis, unresponsiveness and 

dysfunction.
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Box1.

Chagas disease - epidemiology, transmission and pathology

Chagas disease (American Trypanosomiasis) is a life-threatening illness caused by the 

protozoan parasite Trypanosoma cruzi [96]. Last estimates calculated an infected 

population of about 6 million in Latin America, with more than 70 million people living 

at risk of infection and 40000 new cases diagnosed per year [97]. Modern migration has 

led to Chagas disease spreading beyond endemic areas, becoming a global public health 

concern [98].

In areas where Chagas disease is common, the main way of transmission is vector-borne, 

through blood-sucking insects of the triatomine family. Other routes of T. cruzi 
transmission include blood transfusion, transplantation, consumption of contaminated 

food or vertical transmission (from mother to fetus). When vectorially acquired, Chagas 

disease has two major phases: acute and chronic. Severe acute disease occurs in less than 

5% of patients and around 30-40% of the chronically infected people can develop 

cardiac, digestive, neurological or mixed alterations. Chronic chagasic cardiomyopathy 

(CCC) is the most serious manifestation of the chronic form of Chagas disease and 

constitutes the most common type of infectious myocarditis in the world [99]. In addition 

to CCC, skeletal muscle alterations such as myositis, vasculitis, atrophy and necrosis of 

myofibrils may be responsible for the physical dysfunction of patients with severe 

chronic Chagas disease [100]. Although much less studied, adipose tissue is also an 

important target tissue of T. cruzi and its infection is associated with a profound impact 

on systemic metabolism, increasing the risk of metabolic syndrome [101].

It is generally accepted that parasite persistence and chronic inflammation play an 

important role in host tissue damage [102]. In the setting of a chronic infection, a balance 

exists between immune activation that controls parasite replication, and immune 

suppression, which prevents immunopathology. Despite many decades of research on the 

subject, the infection remains incurable, and the factors that steer chronic Chagas disease 

from an asymptomatic state to clinical onset are still unclear.
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Box 2.

Development of CD8+ T cell responses during acute versus chronic 
infections

Adaptive immune responses consist of distinct phases: antigen recognition and activation 

of lymphocytes (the induction phase) followed by elimination of the pathogen (the 

effector phase). Afterwards, the immune response contracts as antigen-stimulated 

lymphocytes die by apoptosis, restoring homeostasis. Few antigen-specific cells survive 

and become long-lived cells responsible of the immunological memory. The duration of 

each phase may vary in immune responses triggered by different challenges.

During acute infection or following vaccination, antigen-specific naïve CD8+ T cells 

undergo robust proliferation and clonal expansion to differentiate into an effector 

population that includes KLRG1hi CD127lo short-lived effector cells and KLRG1lo 

CD127hi memory precursor cells. Effector T cell differentiation is accompanied by 

transcriptional, epigenetic, and metabolic reprogramming, with the acquisition of 

hallmark effector features such as the ability to produce cytokines and cytotoxic 

molecules. Following antigen clearance and resolution of inflammation, the CD8+ T cell 

response suffers a contraction in which the majority of activated effector T cells die. A 

small subset, however, persists and differentiates into memory T (Tmem) cells. Tmem 

cells downregulate their effector program and acquire a stem cell–like ability to survive 

in an antigen-independent fashion as long-lived cells that undergo slow homeostatic self-

renewal driven by IL-7 and IL-15 [103]. CD8+ Tmem cells retain the ability to re-expand 

upon secondary antigen encounter, resulting in an anamnestic response that controls the 

infection more rapidly than during the primary response [104]. In the chronic infection, 

antigen-specific naïve CD8+ T cells differentiate into an effector T cell population similar 

to that observed following acutely resolved antigen encounter. However, antigen 

persistence and the consequently sustained inflammatory microenvironment drive cell 

exhaustion, a phenomenon in which pathogen-specific T cells gradually loose effector 

function [23]. Exhausted T cells arise from the KLRG110 CD127hi subset, and therefore 

share certain features with memory T cells [105]. To date, exhausted T cells have been 

described in the context of chronic infections (and other chronic pathologies) in mice and 

humans [106-110].
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Outstanding Questions

• Would the acceleration in the development of pathogen-specific CD8+ T cells 

be the best approach to achieve complete elimination of T. cruzi?

• Is it possible to target immune pathways in order to potentiate T. cruzi-
specific CD8+ T cell immunity, and thereby enhance the control of parasite 

replication, without unleashing uncontrolled inflammation?

• Is the repertoire breadth of human CD8+ T cell responses to T. cruzi 
associated with the severity of clinical disease?

• The dysfunction of CD8+ T cells observed in Chagas disease patients, is a 

cause or rather a consequence of high parasite burden and severity of the 

clinical disease?

• Could treatments oriented to restore proliferative potential and/or effector 

function of dysfunctional CD8+ T cells be useful to ameliorate chronic 

clinical pathology in patients with Chagas disease?

• Is it possible to design a unique vaccine able to confer protection for all the 

diverse parasite strains described?

• Could the combination of selected trypanocidal drugs and immunomodulatory 

agents achieve superior anti-parasitic effect by limiting parasite replication 

and, concomitantly, potentiating CD8+ T cell immunity?
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Highlights

• CD8+ T cells are critical for host resistance during T. cruzi infection given 

their effectiveness to control parasite outgrowth throughout all infection 

stages.

• T. cruzi-specific CD8+ T cell immunity shows a significant magnitude but 

develops with a delayed kinetics, displays a relatively reduced breadth and 

may acquire dysfunctional features.

• Proliferation, survival and cell exhaustion of T. cruzi-specific CD8+ T cells 

are conditioned by particular cytokines and soluble mediators secreted by 

different effector and regulatory immune cell populations.

• Dysfunctional CD8+ T cells in patients with Chagas disease are associated 

with higher parasite loads and more severe clinical disease.

• Several strategies including vaccines and trypanocidal drugs with 

immunomodulatory properties have shown diverse success to enhance CD8+ 

T cell immunity, reduce parasite burden and limit clinical severity.
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Figure 1, Key Figure. Priming and maintenance of T. cruzi CD8+ T cell response.
a) T. cruzi infects different cell types within the host but at least one round of parasite 

replication is necessary to allow the accumulation of sufficient amounts of parasite antigens 

(Ags) and ligands able to activate antigen presenting cells with T cell priming ability. 

Dendritic cells (DC) recognize T. cruzi through ligation of toll-like receptors (TLR) that are 

nevertheless not essential for CD8+ T cell priming. Alternatively, Nod-like receptors (NLR) 

or bradykinin 2 receptors (B2R) may be involved in this process. b) Activated DCs prime 

naïve CD8+ T cells (TN) that recognizes immunodominant as well as subdominant parasite 

epitopes. CD4+ T cell help seems to be mainly required in the induction of CD8+ T cells 

specific for immunodominant peptides. c) Upon priming, there is a robust expansion of 

parasite-specific effector CD8+ T cells (TE) that show polyfunctional effector response and 

are critical for the control of parasite replication. TE CD8+ T cell survival and effector 

function is sustained by particular cytokines and soluble mediators produced by different 

cell subsets. d) After the limitation of parasite burden, the CD8+ T cell response contracts 

and gives rise to effector memory (TEM) and central memory (TCM) CD8+ T cells that 

persist during the chronic phase. e) Although memory CD8+ T cells remains functional to 

limit parasite outgrowth, at least two scenarios have been reported in the chronic phase in 

relation to CD8+ T cell phenotype and functional competence.
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Figure 2. Pathways of CD8+ T cell suppression during T. cruzi infection.
T. cruzi infection induces the secretion of soluble anti- and pro-inflammatory mediators by a 

wide range of immune cell populations as well as the upregulation of inhibitory receptors, 

such as CTLA-4, by Treg cells. In turn, each mediator may target one or several functional 

mechanisms of the CD8+ T cell response, either acting directly on CD8+ T cells or indirectly 

through other cell subtypes. Concurrently, each aspect of the CD8+ T cell effector response 

might be controlled by more than one inhibitory mechanism. Suppression pathways are 

represented by different colors that show correspondence with the color of the arrow next to 

the CD8+ T cell process that they suppress (i.e proliferation, effector cytokine production or 

cytotoxicity). Solid lines indicate a demonstrated mechanism, while dashed lines illustrate 

possible interactions; arrow heads stand for activation/production while blunt ends denote 

inhibition/suppression. Treg cell, CD4+ Foxp3+ regulatory T cell; Tr1 cell, CD4+ Foxp3- 

IL-10+ regulatory T cell; DC, dendritic cell; MDSC, myeloid derived suppressor cell; NO, 

Nitric Oxide; CTLA-4, Cytotoxic T-Lymphocyte Antigen 4; TGF-b, transforming growth 

factor beta; IL, interleukin; TCR, T cell receptor.
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