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The words “sex” and “gender” are often used interchangeably in common usage.
In fact, the Merriam-Webster dictionary offers “sex” as the definition of gender. The
authors of this review are neuroscientists, and the words “sex” and “gender” mean very
different things to us: sex is based on biological factors such as sex chromosomes and
gonads, whereas gender has a social component and involves differential expectations
or treatment by conspecifics, based on an individual’s perceived sex. While we are
accustomed to thinking about “sex” and differences between males and females in
epigenetic marks in the brain, we are much less used to thinking about the biological
implications of gender. Nonetheless, careful consideration of the field of epigenetics
leads us to conclude that gender must also leave an epigenetic imprint on the brain.
Indeed, it would be strange if this were not the case, because all environmental
influences of any import can epigenetically change the brain. In the following pages,
we explain why there is now sufficient evidence to suggest that an epigenetic imprint for
gender is a logical conclusion. We define our terms for sex, gender, and epigenetics, and
describe research demonstrating sex differences in epigenetic mechanisms in the brain
which, to date, is mainly based on work in non-human animals. We then give several
examples of how gender, rather than sex, may cause the brain epigenome to differ in
males and females, and finally consider the myriad of ways that sex and gender interact
to shape gene expression in the brain.
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SEX AND GENDER

Most animals on earth come in two sexes. From a biological perspective, sex is defined by gamete
size within a species: animals with large gametes (i.e., eggs) are female and those with small gametes
(i.e., sperm) are male (Maynard Smith, 1978). In mammals, eggs are made in ovaries and sperm in
testes, so gonad type is often used as a shorthand for defining sex. Intersex gonads (part testis-part
ovary) are very rare, so biological sex in mammals is a largely dichotomous variable.

Which gonad develops is determined by chromosomal sex (XX versus XY). If a Y chromosome
is present, a gene cascade is initiated that causes the previously undifferentiated gonads to become
testes; in the absence of a Y chromosome, an alternate cascade leads to the differentiation of ovaries
(Brennan and Capel, 2004; Bowles and Koopman, 2013). The testes produce an androgenic steroid
hormone, testosterone, for a brief perinatal period, and this hormonal exposure is responsible
for masculinization of the external genitalia, internal duct systems, and other somatic differences
(Jost, 1978). Testosterone also enters the developing brain and acts via androgen receptors or,
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after aromatization to an estrogen, via estrogen receptors to cause
many of the known neural sex differences in animals (Morris
et al., 2004; Forger et al., 2016; McCarthy et al., 2017).

Thus, biologists define “sex” based on what gonad is present
and, in most cases, the chromosomal, gonadal, hormonal,
and anatomical sex are all in accord. In individuals with
Differences of Sexual Development, however, this is not the
case, e.g., chromosomal males who have testes, but do not
make the receptors to respond to testosterone, or chromosomal
females exposed to excess androgens early in development
(Lee et al., 2016).

In contrast to the relatively well-accepted delineation of
sex, suggested definitions of “gender” are more varied. The
Canadian Institutes of Health Research defines gender as,
“socially constructed roles, behaviors, expressions and identities of
girls, women, boys, men, and gender-diverse people. It influences
how people perceive themselves and each other, how they act
and interact, and the distribution of power and resources in
society” (CIHR, 2015). Most of the work on epigenetics in
the brain has been performed on experimental animals, which
complicates the job of this essay because it is debatable whether
non-human animals have gender, based on this definition.
If gender requires socially constructed norms, and that an
individual identifies as one sex or the other, it is hard to
demonstrate gender in non-human animals. On the other hand,
to the extent that gender is based on how you are treated by
conspecifics, or to the “power and resources” you are likely to
accrue, there are many examples of gender in the animal world.
The biologist Joan Roughgarden has suggested defining gender
simply as, “the appearance, behavior, and life history of a sexed
body” (Roughgarden, 2009). Most social scientists embrace a
definition of gender as a “system that restricts and encourages
patterned behavior” (Risman and Davis, 2013). In other words,
the emphasis is not on the individual (i.e., gender identity) but on
social interactions that steer the individual’s behavior in different
ways, based on their biological sex.

Given the latter two definitions, it may be argued that animals
have gender, and this is how we define gender for the purposes
of this review. Biological sex and gender often interact in
complicated ways. However, we will refer to something as a “sex
difference” when the difference appears to be due to factors such
as sex chromosomes or gonadal hormones, and as a “gender
difference” when the difference is likely due to social factors, i.e.,
when an individual is treated differently by conspecifics due to
the individual’s perceived sex.

EPIGENETICS

Epigenetic modifications determine what genes are expressed
and represent mechanisms by which the genome can respond
to environmental stimuli. The word “epigenetic” (literally, above
genetics) was coined by C.H. Waddington in the 1950s to explain
how different phenotypes can emerge from the same genotype. In
other words, individuals (or cells) with the same genes may wind
up with very different observable characteristics (phenotypes)
based on environmental interventions at key developmental

stages (Waddington, 1957). What controlled those changes was
mysterious at the time, but many of the molecular mechanisms
underlying the phenomena envisioned by Waddington have now
been identified.

The DNA in every cell nucleus is packaged into chromatin
by winding around histone proteins. The two best-understood
types of epigenetic modifications are (1) post-translational
modifications to histones, such as acetylation or methylation,
and (2) covalent modifications to the DNA strand itself, e.g., by
the addition of methyl or hydroxymethyl groups (Stricker et al.,
2017). These epigenetic modifications are controlled by enzymes
(e.g., histone acetyltransferases or DNA methyltransferases)
and, once placed, they influence the likelihood that a given
gene is expressed. For example, DNA methylation is often
associated with gene repression, whereas DNA hydroxy-
methylation may facilitate transcription (Spruijt et al., 2013;
Mendonca et al., 2014).

EPIGENETICS AND SEXUAL
DIFFERENTIATION OF THE BRAIN

A transient perinatal exposure to testosterone or its metabolite,
estradiol, causes many of the best-studied sex differences in
rodent brains, and recent evidence suggests that epigenetic
mechanisms underlie many of these hormonal effects (McCarthy
et al., 2009; McCarthy and Nugent, 2015; Forger, 2016, 2018). For
example, sex differences in the preoptic area of the hypothalamus
are disrupted by injecting a DNA methyltransferase inhibitor
directly into the brains of newborn rats or mice during the
critical period for sexual differentiation (Nugent et al., 2015;
Mosley et al., 2017). Similarly, a neonatal disruption of histone
acetylation (again, by inhibiting the enzymes that place these
marks) prevents the development of sex differences in male rat
copulatory behavior (Matsuda et al., 2011), and in size of the bed
nucleus of the stria terminalis in mice, a brain region linked to
male sexual behavior (Murray et al., 2009). These findings suggest
that sexual differentiation of the brain requires orchestrated
changes in DNA methylation and histone acetylation.

In another approach, epigenetic marks have been compared
between males and females. Based on whole-genome surveys,
both histone methylation and DNA methylation patterns differ
by sex in the mouse preoptic area (Ghahramani et al., 2014; Shen
et al., 2015). Treating newborn female mice with testosterone
partially masculinizes the DNA methylation pattern present in
adulthood (Ghahramani et al., 2014), and sex differences in
the methylation of specific genes also are reversed by neonatal
treatment with gonadal steroids in rats (Schwarz et al., 2010).
Steroid hormones alter the expression or activity of enzymes
that place epigenetic marks (Kolodkin and Auger, 2011; Nugent
et al., 2015; Bramble et al., 2016), which may be the mechanism
whereby hormones affect the epigenome.

One study in rodents hints at a role for gender in brain
epigenetics. Mother rats lick their male neonates more than
females (Moore and Morelli, 1979), and the amount of maternal
care a rat pup receives affects DNA methylation of the estrogen
receptor alpha gene in the brain (Champagne et al., 2006;
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Kurian et al., 2010). Edelmann and Auger (2011) randomly
assigned some newborn females to receive the extra attention
normally given to males by simulating maternal licking using a
paintbrush. This did, in fact, masculinize the DNA methylation
pattern and expression of the estrogen receptor alpha gene in
the amygdala of the treated females (Edelmann and Auger,
2011). Being treated differently by your parents based on your
perceived sex is an aspect of gender. In this case, however, the
differential treatment is based on the odor of the neonate’s urine
(Moore, 1985), which in turn is due to differences in circulating
testosterone (i.e., sex).

Some sex differences in the brain are independent of gonadal
hormones, and are instead due to sex chromosome complement
(Arnold et al., 2003; Cisternas et al., 2018). Similarly, sex
chromosomes influence the expression of epigenetic enzymes
and cause sex differences in the epigenome of rodents and
flies (Xu et al., 2008a,b; Jiang et al., 2010; Lemos et al., 2010;
Arnold, 2012). Thus, based on animal studies, both major
determinants of biological sex (sex chromosomes and gonadal
steroids) contribute to differences in the epigenome.

Information on sex differences in the human brain epigenome
is very limited. During some stages of human fetal development,
the brains of males and females differ in both DNA methylation
and hydroxymethylation (Spiers et al., 2015, 2017). Because these
differences are seen before birth, and presumably prior to social
influences, these are “sex differences.” There are also differences
in epigenetic marks in the prefrontal cortex of men and women
(Lister et al., 2013; Xu et al., 2014; Gross et al., 2015). Adults
have had plenty of gendered experiences, however, so whether
these differences are due to sex or gender is not clear. In the
next section, we will consider how gender could – and probably
does – leave an epigenetic imprint on the brain. We present
three specific gendered experiences/exposures occurring at
different periods of human development, and for which
there are data demonstrating epigenetic effects of those
experiences/exposures in animal or human studies.

GENDERED EXPERIENCES AND
EXPOSURES

Early Life Stress
A growing literature demonstrates that early life stress leaves an
epigenetic signature (Roth et al., 2009; Lutz et al., 2018). For
example, rodents separated from their mothers throughout early
life have reduced DNA methylation and altered gene expression
in adulthood within a stress-regulatory brain region (Murgatroyd
et al., 2009). Early life maltreatment – being stepped on and
ignored by the mother – also alters DNA methylation in genes
associated with learning and cell growth, as well as expression
levels of epigenetic enzymes in the rat prefrontal cortex (Roth
et al., 2009; Blaze and Roth, 2013; Blaze and Roth, 2017).

Similar observations have been made in humans. Compared
to children raised by their biological parents, children raised in
orphanages have higher DNA methylation of genes associated
with immune response, mood, and social behaviors (Naumova
et al., 2012). These findings are based on analyses of blood

lymphocytes, however, which are often used for this kind
of work in humans given the difficulty of obtaining brain
samples. In another approach, DNA methylation was compared
in the brains of adults who died by suicide, with or without a
history of childhood abuse. Those who experienced childhood
abuse had decreased hydroxymethylation and expression of
the kappa opioid receptor gene in the cortex, suggesting
epigenetic programming by a history of early life maltreatment
(Lutz et al., 2018).

This work is relevant to the question of whether gender leaves
an epigenetic imprint on the brain because the sex of a baby may
significantly affect the likelihood that it will face early life stress
(Jeffery et al., 1984; van Balen and Inhorn, 2003; Puri et al., 2011).
In recent history, for example, China’s “one child policy” resulted
in the abandonment of many girls and sharply skewed sex ratios
within orphanages (Johnson et al., 1998; Chen et al., 2015).
Similarly, during the Great Chinese Famine, families preferred
to spend their limited resources on boys, leading to disparities
in disability and illiteracy between men and women a generation
later (Mu and Zhang, 2011). Treating children differently based
on their biological sex is an important part of our definition of
gender. Thus, exposure to early life stress changes the neural
epigenome, and early life stress can be a gendered experience.

Environmental Endocrine Disruptors
It is nearly impossible in industrialized societies to avoid exposure
to environmental endocrine disruptors such as bisphenol A,
phthalates, and parabens. In rodents, developmental exposure to
bisphenol A alters DNA methylation in the brain, and changes the
expression of DNA methyltransferases in a brain region-specific
manner (Yaoi et al., 2008; Kundakovic et al., 2013; Zhou et al.,
2013; Walker and Gore, 2017). Moreover, phthalate exposure
during adolescence reduces levels of the epigenetic regulatory
protein, methyl CpG binding protein 2, and alters social and fear
behaviors in rats (Betz et al., 2013). Environmental endocrine
disruptors therefore are clearly capable of altering the brain’s
epigenome and, to the extent that exposure to these chemicals is
gender-based, epigenetic changes may also be gendered.

Interestingly, bisphenol A, phthalates, and parabens are
commonly found in cosmetics, scented lotions, nail polish, and
feminine care products. There is a vast difference in the use of
personal care products between women and men in many parts
of the world, and women do, in fact, have higher urinary levels of
phthalates and parabens than men (Calafat et al., 2010; Biesterbos
et al., 2013; Saravanabhavan et al., 2013). The application of
lotions and cosmetics acutely increases levels of urinary paraben
concentrations (Meeker et al., 2013), and the difference in urinary
levels between males and females emerges in adolescence – the
age at which many girls start experimenting with cosmetics and
skin care products (Calafat et al., 2010; Dewalque et al., 2014).

The elevated phthalates and parabens in women is likely
related to their greater cosmetic use, but is this due to sex or
gender? We would say “sex” if, for example, sex chromosomes
or gonadal hormones control the desire to use cosmetics, or alter
the metabolism or storage of these chemicals in the body. On
the other hand, gender is at play if the difference is primarily
based on social expectations. Evidence strongly suggests a role
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for gender because societal norms for cosmetic use vary over
time and geography: cosmetics were used by men in ancient
Egypt, at the French court in the 17th and 18th centuries, and
by British military officers (Carter, 1998; Tapsoba et al., 2010;
Ribechini et al., 2011). Very recently, cosmetic use has again
become acceptable among men in Western societies (Souiden and
Diagne, 2009). Thus, societal gender norms influence cosmetic
use. Although no human studies have directly addressed this
question, there may well be epigenetic consequences of gendered
exposure to cosmetics and other environmental chemicals.

Alcohol Consumption
Throughout the world, men are more likely to consume alcohol
than are women (Wilsnack et al., 2009). A recent meta-analysis
found that 39% of men and 25% of women globally are
drinkers; moreover, men are more likely to drink excessively,
and the increase in disease burden due to alcohol consumption
is three times higher in men than in women (GBD 2016
Alcohol Collaborators, 2018). This could reflect sex differences:
rodents and non-human primates show sex differences in
voluntary alcohol consumption, and gonadal hormones influence
preference for an alcohol solution in rodents (Forger and Morin,
1982; Morin and Forger, 1982; Juarez et al., 1993; Ford et al.,
2004). Critically, however, the difference in drinking rate between
men and women varies enormously by location. In Nepal, for
example, men are 14 times as likely as women to be drinkers,
whereas in Sweden, the prevalence of drinking is nearly equal
between men and women (GBD 2016 Alcohol Collaborators,
2018). Societal factors therefore play a large role, and alcohol
consumption can safely be categorized as a gendered behavior in
many human societies.

The link to epigenetic changes in the brain in this case
is relatively strong. Several studies have reported changes in
DNA methylation and histone modifications in the postmortem
human brain in association with chronic alcohol consumption
(Ponomarev, 2013; Tulisiak et al., 2017). As in most human
studies, these are correlations, so it remains possible that alcohol
consumption does not cause epigenetic changes in the human
brain, but that existing epigenetic differences predispose some
people to drink. This is where animal studies are again very
helpful: many rodent studies in which animals are randomly
assigned to ethanol exposure demonstrate a causal relationship
between acute or chronic ethanol consumption and epigenetic
changes in the brain (Pandey et al., 2008; Kyzar et al., 2016).

CONNECTING THE DOTS

The argument we are making is that boys and girls, and
men and women, have different exposures and experiences
based on societal expectations or perceived expectations (i.e.,
gender), and that some of these exposures/experiences are
known to cause epigenetic changes in the brain based on
carefully controlled animal studies. In a few cases, the gendered
exposures/experiences have also been associated with epigenetic
changes in humans, although most studies are correlational.
We have presented just three examples above, but countless
experiences/exposures will differ based on gender over a lifetime,
and they will interact in complex ways with one another and with
the epigenetic consequences of biological sex (Figure 1).

A logical extension of this argument is that variations in
gender within a sex will also affect the epigenome. For example,
cosmetic use among Western women varies from zero to many

FIGURE 1 | Hypothetical depiction of the complex interplay of sex and gender on the brain epigenome throughout the lifespan. Chromosomal sex is determined at
conception and can have effects on the epigenome throughout life (red). The gonads differentiate after the first 10 weeks of fetal life in humans; thereafter, sex
differences in gonadal hormones can have acute or lasting effects on the epigenome (gold). The gendered experiences described in this review start as early as birth
(early life stress based on gender; green) and continue into adolescence and adulthood (cosmetic use, alcohol consumption; light blue, purple). Many other
gendered experiences not explicitly addressed in this review will also impact the neuroepigenome (dark blue). The relative contribution of various factors and how
they may change throughout development are not known, but the effects of biological sex and gender will interact in myriad ways throughout life. In some cases,
gender may amplify epigenetic differences due to sex, whereas in other cases, gendered experiences may counteract differences in the epigenome based on
biological sex. Not shown here is the fact that with our current ability to know the sex of an unborn child, gender can start before birth (Al-Akour, 2008).
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products a day and correlates with gender expression and
sexuality (Loretz et al., 2005; Moore, 2006). If cosmetics cause
epigenetic changes, those changes will vary not just between
sexes, but also within sex, across cultures, and over the lifespan.
Indeed, any differences in the brain between men and women –
including those in the epigenome – must be viewed within a
social, historical, and developmental context (Springer et al.,
2012; Rippon et al., 2014).

Our three examples given above emphasize exposures that
differ by gender, because these are more likely to have been
modeled in animal studies (and therefore to have applicable
epigenetic data). However, gender is multi-dimensional, and
any aspect (gender roles, identities, beliefs, etc. . .) may
affect the epigenome. Epigenetic modifications are a way
for experience to alter gene expression and, taken together,
it seems inescapable that gender will leave an epigenetic imprint
on the brain.

That said, few studies have directly examined differences
in epigenetic marks in the brains of men and women, and
none have attempted to separate the contributions of sex and
gender. Demonstrating a causal relationship between gender
and human brain epigenetics will be very challenging, because
this will require not only an experimental design, but also

brain samples collected at the relevant time point(s). Several
authors have proposed methods or best practices for studying
effects of gender on biological outcomes, and inroads have been
made in separating the effects of sex and gender on disease
risk (e.g., Krieger, 2003; Rippon et al., 2014; Pelletier et al.,
2015). Given our lifetimes of layered gendered experiences, and
their inevitable, iterative interactions with sex, it may never
be possible to completely disentangle the effects of sex and
gender on the human brain epigenome. We can start, however,
by including gender in our thinking any time a difference between
the epigenome of men and women is reported.
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