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Abstract: Grapevine phenology is being modified by climate change, particularly by the increase of
temperatures that affect grape attributes for wine production. Besides the existing oenological and
viticultural approaches, the thorough exploration of the current intra-cultivar genetic variability to
select late-ripening genotypes emerges as an interesting alternative. In the present work, we have
analyzed the natural genetic variation for phenology and agronomic traits among 21 ‘Malbec’ clones
and we demonstrated that fruiting cuttings are a useful tool for the analysis of such variation in
‘Malbec’. Several clones could be distinguished by agronomic traits like berry number or cluster
weight, and mainly by phenology characteristics like the length of the phase between flowering and
veraison, which reached more than 16 days between early and late clones. These results support the
approach of exploring grapevine clone collections in searching for genotypes with delayed phenology,
and thus with the potential to maintain some expected quality characteristics under warm conditions.

Keywords: Vitis vinifera L.; ‘Malbec’; climate change; fruiting cuttings; clonal genetic variability;
high temperature; phenology

1. Introduction

Climatic conditions have changed over the past decades, and simulations with different scenarios
of greenhouse gas emissions show that the observed tendencies will continue in the near future and the
real situation is worse than the more pessimistic prediction [1]. According to the Intergovernmental
Panel on Climate Change (IPCC, www.ipcc.ch), the increase of global mean surface temperature by
the end of the 21st century (2081–2100), relative to the current reference period (1986–2005), is likely
to be from 0.3 ◦C to 4.8 ◦C depending on the mitigation scenario. In addition, it is likely that heat
waves will occur with higher frequency and longer duration as a consequence of the increase in
temperature variability.

Among human activities, agriculture and particularly viticulture, are highly dependent upon
climatic conditions during the growing season. Grape berry composition is known to be highly sensitive
to environmental conditions, with the temperature being one of the most critical environmental
factors during berry development and ripening [2]. Many studies have linked the temperature rise
to accelerated phenology, with the potential to greatly affect grape attributes for red table wines
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production [3–5]. For example, increased temperatures have been reported to advance budburst,
flowering, and to hasten berry development [6–8]. Simulations using a model for the developmental
stages of Riesling and Gewurztraminer predict earlier onset of veraison (up to 23 days before), by the
end of the present century compared with its timing in 1976–2008, resulting in an important increase in
mean temperatures (more than 7 ◦C) during the ripening period [9]. Such changes are likely to have a
substantial impact on grape and wine quality. One of the clearest relationships between temperature
and fruit quality concerns grape berry acidity, as high temperatures reduce the concentration of organic
acids, especially malic acid, desynchronizing sugar, and organic acid metabolisms [10]. In addition,
high temperatures during ripening may decrease anthocyanin concentration in grapes, due to the
inhibition of anthocyanin biosynthesis, chemical or enzymatic degradation and/or the imbalance in the
expression and function of specific transmembrane transporters [5]. In previous studies, seed ripening
was advanced in relation to other berry tissues, and this asynchrony may have direct oenological
implications affecting the resultant phenolic composition and sensory attributes of wines [10,11].

Several approaches have been assessed in order to avoid quality alterations caused by high
temperatures. Oenological approaches like the use of yeast strains producing less alcohol yield [12] or
viticultural practices including modifications of training systems (higher trunks, late pruning, minimal
pruning of reduced leaf area to fruit weight ratios) were thoroughly investigated [13]. On the other
hand, changes in vineyard location (higher latitudes and/or altitudes) may be possible in some regions,
but not in countries with a “terroir”-based viticulture [14]. However, if the objective is to maintain
wine typicity, one alternative is to explore in-depth the existing intra-varietal genetic variability in each
cultivar to select late-ripening genotypes [14]. By this approach, it could be possible to identify clones
with several weeks of ripening delay. [15].

Variability is an intrinsic property of all biological systems, including grapevine, and may occur
at different levels. Thus, considering the great diversity within the Vitis genus, the genotype is an
important source of variability [16]. Since most wine grape varieties are reproduced by vegetative
propagation, spontaneous mutations can accumulate over time. When these natural events have
significant phenotypical effects, the new plant can bear interesting traits, thus leading to somatic
variants within a variety that can be exploited for clonal selection and propagation [17]. During the
last two centuries, clonal selections were performed to improve vineyard health and production traits
like yield, precocity, flavor, and color among others [17,18]. The need to evaluate grape variability
(both genetic diversity and phenotypic plasticity) is further increased by ongoing climate change.
The existing clone collections worldwide can be explored to detect any phenotypic variation that could
be effective means of adaptation to climate change, looking for either late-ripening clones or clones
with a high ability to maintain some required characteristics under warmer conditions [13].

Several previous studies showed the evaluation and use of grapevine fruiting cuttings to study the
development of vegetative and reproductive plant traits, as well as to analyze particular physiological
responses [2,4,15,19–24]. Most of these reports are focused on the study of one cultivar or the comparison
between different cultivars, with the exception of the work of Arrizabalaga et al. [15], where the authors
analyzed the response of 13 ‘Tempranillo’ clones to elevated temperatures. Thus, we present here a
thorough analysis of the intra-cultivar natural genetic variation for phenology and berry development
traits on a collection of 21 clones by setting up the fruiting cutting system in cultivar ‘Malbec’.

2. Materials and Methods

2.1. Plant Material

Twenty-one clones of Vitis vinifera L. cv. ‘Malbec’ were studied in the present study. The material
belongs to the Mercier Argentina nursery collection located at Pedriel (Lujan de Cuyo, Mendoza,
Argentina). The collection was developed by the nursery in 2001 from ‘Malbec’ selections from five
vineyards distributed along Lujan de Cuyo and Valle de Uco (http://viveromercier.com.ar/). The clones
were sorted in rows with 10 genotypes per row. The vineyard was a homogeneous field without slope.

http://viveromercier.com.ar/
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Each experimental unit (clone) was represented by five plants. During the 2018 season, three vines of
each clone were selected visually according to the vigor. At the pruning time, dormant cuttings of
40–50 cm-long were collected.

2.2. Fruiting Cutting Growing Conditions

The growing conditions were performed according to Lebon et al. [21] with minor modifications.
Briefly, ca. 50 cuttings per clone were treated with a Captan (2 g L−1) to prevent contamination, stored
in the dark for 4 weeks at 4 ◦C. After 12 h of hydration and acclimation at 25 ◦C, the proximal extremities
of the cuttings were dipped in indol-3-butyric acid (IBA) at 300 ppm for 8 h to promote rhizogenesis
and set in a “hot bed” inside a cool room. Once cuttings had developed roots (~3 weeks, Figure 1a),
they were transplanted to 0.3 L pots and transferred to a shade house with natural conditions. Plants
grew with natural light and were irrigated with the nutritive solution described by [25]. Under these
conditions, bud-break took place after 1 week (Figure 1b). Only one leaf was allowed to grow in the
developing shoot, manually removing the others. At the stage of the separated cluster, they were
transplanted to 3 L pots. The tip of the shoot was manually excised above the inflorescence. A new
shoot (lateral) was then allowed to develop and support the vine. Only one inflorescence was allowed
to develop on each plant, manually excising the rest (when and if they appeared as shown in Figure 1c).
Until fruit set, the vegetation of the lateral shoot was controlled and only four leaves per plant were
allowed to grow. We then monitored the reproductive development by scoring the stages of veraison
(Figure 1d) and harvest (Figure 1e).
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Figure 1. Developmental stages of ‘Malbec’ fruiting cuttings. (a) cuttings showing root development
on removal from the heated container after four weeks; (b) budburst; (c) fruit set; (d) veraison; (e) the
same cluster at harvest.

2.3. Phenology Assessment

Fruit set, flowering time (50% of opened flowers), veraison (50% of colored berries) were visually
assessed through daily observations and each event was individually determined for each plant.
Harvest time was determined as 60 days after veraison according to previous assays in the same
location. The phenological development was established as the elapsed time between flowering and
veraison (Figure S1).

2.4. Harvest Sampling

At harvest, bunches were weighted and all berries from each bunch were separated and counted
to determinate berry weight. Then, they were crushed and processed to estimate ◦Brix a measure of
the total soluble solids using a digital portable refractometer (Hach, Loveland, CO, USA).

2.5. Statistical Analysis

Statistical tests were carried out using R [26] with the help of RStudio [27]. The Shapiro-Wilk
normality test was performed for each variable [28]. We further compared those traits where the
null hypothesis was rejected (i.e., the distribution was not-normal) using a nonparametric approach.
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For those cases, we applied the Kruskal-Wallis rank-sum test [29] with a posthoc multiple comparison
test (R-pakage pgirmess).

3. Results and Discussion

3.1. Fruiting Cuttings Allow Displaying the Variation for the Growing Conditions between ‘Malbec’ Clones

We recorded the number of days from flowering to veraison and, at harvest, the cuttings were
analyzed by recording cluster weight, berry number, berry weight, and degrees Brix (see below).
Considering average values, we started the experiment with 49 ± 6 cuttings per clone (Table 1).
From those, 59% presented adequate roots, while 46% of the rotted cuttings reached the stage of
fruit set. A large proportion (89%) of the cuttings with a suitable fruit set were finally harvested
(Table 1). These results evidenced the existence of natural variation for the analyzed development
traits, particularly for rooting and fruit set. While the average values for these two traits were close to
50%, extremes clones showed values from 27% to 80%. The displayed inter-clonal variation was even
higher than the observed for cultivars ‘Gewurztraminer’ and ‘Pinot Noir’ [21]. On the other hand,
we observed a lower variation for the transition from fruit set to maturity (Table 1). Thus, fruit set
seems to be a crucial step in establishing the fruiting cuttings, since most of the samples (89%) reaching
this stage were finally harvested (Table 1).

Table 1. Clone names, number of cuttings at the start, rotting, fruit-set, and harvest stages of
the experiment.

Clone Start (n) Rooting (n) (%) Fruit Set (n) (%) Harvest (n) (%)

501 47 32 68 25 78 22 88
502 46 32 70 18 56 16 89
503 43 26 60 15 58 11 73
504 42 21 50 8 38 6 75
505 46 25 54 8 32 5 63
506 55 41 75 23 56 21 91
507 55 43 78 15 35 12 80
508 49 33 67 11 33 10 91
510 54 32 59 17 53 16 94
513 50 31 62 11 35 11 100
514 50 14 28 7 50 6 86
515 48 30 63 16 53 14 88

136_S 42 22 52 12 55 10 83
136_N 39 20 51 9 45 8 89

711 52 20 38 9 45 9 100
712 50 40 80 19 48 19 100
713 53 25 47 16 64 15 94
714 56 33 59 11 33 11 100
42 41 20 49 8 40 8 100

598 58 34 59 14 41 13 93
595 56 41 73 11 27 11 100

mean 49 29 59 13 46 12 89
sdt 6 8 13 5 13 5 10

max 58 43 80 25 78 22 100
min 39 14 28 7 27 5 63

3.2. ‘Malbec’ Clones Show Significant Variation for Phenology and Berry Traits

We found significant intra-varietal variation for three out of the five analyzed traits (i.e., cluster
weight, berry number, and days from flowering to veraison; Table 2). Cluster weight (CW) showed
significant differences between the different clones, (Table 2 and Figure 2a). This trait presented a mean
of 21.3 g and a range between 11.1 g and 32.1 g (Table S1).
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Table 2. Kruskal-Wallis rank-sum (H) test for phenology and berry traits. The p-value, H statistic,
and degrees of freedom (df) for the five analyzed characters are presented. DFV: days from flowering
to veraison; CW: cluster weight; BN: berry number; BW: berry weight; Brix: degrees Brix. Significant
p-values after the multiple comparison test are highlighted in bold.

Trait p-Value H df

DFV <0.001 81 20
CW <0.001 40 20
BN <0.001 48 20
BW 0.03 33 20
Brix 0.01 37 20
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Figure 2. Mean values for phenology and agronomical traits between 21 ‘Malbec’ clones. (a) Cluster
weight; (b) Berry number; (c) Days from flowering to veraison. Error bars represent standard error of
the calculated means.

Similarly, berry number (BN) also differed significantly within the evaluated clones (Table 2 and
Figure 2b), with a mean of 27.0 berries/cluster and a ranging from 42 to 15 berries/cluster (Table S1).
Considering the components of CW analyzed here (i.e., BN and BW), BN emerged as the main
determinant of CW. While CW and BN were strongly correlated (R = 0.81, p < 0.001; Figure 3a),
the correlation of CW and BW was clearly lower (R = 0.37, p < 0.001; Figure 3b). The trait showing the
more extreme differences between the clones was days from flowering to veraison (DFV). As described
in Table 2, this trait presented an H value of 87 for the Kruskal-Wallis rank-sum test with a p-value
< 0.0001. DFV showed a mean of 85.5 days with a range between 76.9 and 93.3 days. The higher
differences were observed between clones 598 and 501, more than 16 days on average (Figure 2c;
Table S1).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 8 

Table 2. Kruskal-Wallis rank-sum (H) test for phenology and berry traits. The p-value, H statistic, and 
degrees of freedom (df) for the five analyzed characters are presented. DFV: days from flowering to 
veraison; CW: cluster weight; BN: berry number; BW: berry weight; Brix: degrees Brix. Significant p-
values after the multiple comparison test are highlighted in bold. 

Trait p-value H df 
DFV <0.001 81 20 
CW <0.001 40 20 
BN <0.001 48 20 
BW 0.03 33 20 
Brix 0.01 37 20 

 
Figure 2. Mean values for phenology and agronomical traits between 21 ‘Malbec’ clones. (a) Cluster 
weight; (b) Berry number; (c) Days from flowering to veraison. Error bars represent standard error of 
the calculated means. 

Similarly, berry number (BN) also differed significantly within the evaluated clones (Table 2 and 
Figure 2b), with a mean of 27.0 berries/cluster and a ranging from 42 to 15 berries/cluster (Table S1). 
Considering the components of CW analyzed here (i.e., BN and BW), BN emerged as the main 
determinant of CW. While CW and BN were strongly correlated (R = 0.81, p < 0.001; Figure 3a), the 
correlation of CW and BW was clearly lower (R = 0.37, p < 0.001; Figure 3b). The trait showing the 
more extreme differences between the clones was days from flowering to veraison (DFV). As 
described in Table 2, this trait presented an H value of 87 for the Kruskal-Wallis rank-sum test with 
a p-value < 0.0001. DFV showed a mean of 85.5 days with a range between 76.9 and 93.3 days. The 
higher differences were observed between clones 598 and 501, more than 16 days on average (Figure 
2c; Table S1). 

 
Figure 3. Pearson correlation of cluster weight (CW) and its determinants: (a) berry number (BN) and 
(b) berry weight (BW). 

Intra-cultivar variation for agricultural and phenology traits was largely analyzed using field 
clones [30–34]. However, despite the proven usefulness of fruiting cuttings for study developmental 
and physiological traits [2,4,15,19–24], just one work utilized this tool to compare clones of the same 
cultivar [15]. Particularly, significant differences for phenology traits were also observed in cultivar 
‘Tempranillo’, where the authors analyzed cuttings from 13 clones, finding significant differences in 
the number of days that elapsed fruit set and mid-veraison [15]. The results of the present study and 

10

20

30

40

50

711 598 42 515 715 512 136
N 506 595 513 503 502 509 501 508 510 136

S 714 514 505 712 596 504 713 507

clone

C
W

70

80

90

100

598 136
S 512 509 513 712 507 136

N 508 713 514 42 596 714 595 505 506 515 711 510 502 715 503 504 501

clone

D
FV

20

40

60

42 598 711 715 515 513 595 512 502 509 136
N 510 508 506 503 712 514 501 714 505 136

S 596 713 504 507

clone

BN

(a) (c)(b)

●

● ●●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

● ●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●●

●

● ●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

R = 0.37 , p = 1.6e−09

0.5

1.0

1.5

0 20 40 60
CW (g)

BW
 (g

)

●

●

●

●

●
●

●●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●
● ●

●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

R = 0.87 , p < 2.2e−16

0

20

40

60

80

0 20 40 60
CW (g)

BN

(a) (b)R=0.87, p<2.2e-16
R=0.37, p<1.6e-09

Figure 3. Pearson correlation of cluster weight (CW) and its determinants: (a) berry number (BN) and
(b) berry weight (BW).

Intra-cultivar variation for agricultural and phenology traits was largely analyzed using field
clones [30–34]. However, despite the proven usefulness of fruiting cuttings for study developmental
and physiological traits [2,4,15,19–24], just one work utilized this tool to compare clones of the same
cultivar [15]. Particularly, significant differences for phenology traits were also observed in cultivar
‘Tempranillo’, where the authors analyzed cuttings from 13 clones, finding significant differences in
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the number of days that elapsed fruit set and mid-veraison [15]. The results of the present study and
those reported in ‘Tempranillo’ [15] demonstrated the usefulness of grapevine fruit-bearing cuttings
for comparing the phenological behavior of different clones from the same cultivar.

4. Conclusions

We presented here a detailed analysis of the intra-cultivar natural genetic variation for phenology
and berry development traits within 21 ‘Malbec’ accessions and we demonstrated that fruiting cuttings
are a useful tool for the analysis of clonal diversity in the grapevine cultivar ‘Malbec’. Berry traits
allowed the differentiation between several clones, and particularly cluster weight displayed significant
variations, explained mainly by the numbers of berries per cluster. Phenological diversity, evaluated by
the phase between flowering and veraison, was the trait showing the most extreme differences within
the clones, reaching more than 16 days between early and late clones. These results demonstrated
the utility of exploring the grapevine intra-cultivar variation in searching for genotypes with delayed
phenology with the help of fruiting cuttings. Those genotypes may probably present the potential
to maintain some required characteristics under warm conditions and prospective adaptation to
climate change.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3417/10/16/5573/s1,
Table S1: Summary values (mean, standard error and n) for traits showing significant differences between the
21 ‘Malbec’ clones: days from flowering to veraison (DFV), cluster weight (CW) and berry number (BN), Figure S1:
Phenological events recorded during the growing season. Temperature conditions during the 2018–2019 season
(orange line) and historic (last 17 years, blue line).
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