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ABSTRACT

In this paper the stability of an umbilical-ROV system under nonlinear oscil-

lations in heave motion is analyzed using numerical methods for the uncontrolled

and controlled cases comparatively. Mainly the appearance of the so-called taut-

slack phenomenon on the umbilical cable produced by interactions of monochromatic

waves and an operated the ROV is specially focused. Nonlinear elements were con-

sidered as nonlinear drag damping, bilinear restoring force and saturation of the

actuators. Free-of-taut/slack stability regions are investigated in a space of physi-

cal bifurcation parameters involving a set of both operation and design parameters.

They indicate a wide diversity in qualitative bahaviours, both in the periodicity
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and possible routes to chaos from the stability regions to outside. For detection

of periodicity of the nonlinear oscillations inside and outside the stability regions a

method based on Cauchy series is developed. A �rst part of the results are dedicated

to the stability of the uncontrolled dynamics. These suggest the design of a control

system that be able to counteract hefty hauls of the cable during the sinking/lifting

operation under perturbation. A combination of a force and cinematic controller

based on nonlinear model-reference control is proposed. Through a comparative

study of the stability regions for uncontrolled and controlled dynamics it is shown

that the control system can extend considerably these regions without appearance of

the taut-slack phenomenon despite the presence of wave perturbations. The limits

between the taut and taut-slack zones are de�ned by the wave steepness and the

available energy of the actuators.

Key words: Cauchy series, chaos, drag coe cient, force control, nonlinear hydro-

dynamics, nonlinear sti ness, ROV dynamics, stability regions, taut-slack phenom-

enon, cinematic control
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I. Introduction

Tethered subsea units such as remote operated underwater vehicles (ROVs) are widely used

in o shore engineering, scienti�c investigations and rescue operations (Fossen [8], Kijima and

Fossen [16], El-Hawary [6]). Due to the inherent nonlinear equations of motions, ROVs require

the design of sophisticated controllers that involve automatic speed control, systems for dynamic

positioning and tracking, as well as autopilot systems for automatic steering of depth and altitude

(see Fossen [8], for basic details).

Also the dynamics of the umbilical cable interacts with the body and the environment in a

complex way, mainly at low and middle levels of depths, where waves and currents are signi�ca-

tive. The top end of the cable is generally subject to motions of the supporting vessel -usually a

surface ship- which in turn responds to the sea excitation. Additionally, strong currents may act

directly along the cable and cause strumming oscillations due to vortex shedding phenomena.

The main e ect on the vehicle is that its forward speed is reduced and undesirable rotational

motions are induced (Feng and Allen [4]).

Even when vortex shedding in cables could be not so important (Indiveri [11]), a taut-slack

phenomenon of the umbilical cable may be signi�cant when a combination of forces due to strong

currents or thrusters and super�cial waves produces acceleration in the port/starboard direction

up to the advent of intermittent slackness and hauls. Afterwards, it can eventually occur a lack of

motion predictability, which makes di cult to take control actions by the operator. Commonly,

high frequent and hefty oscillations of the cable are involved in these transitions.

Also this e ect may occur in a more simple situation, e.g., in the sinking of the unit up to

or lifting from a working depth. These are usually subject to resonance phenomena mainly due

to time-varying lengths of the cable which changes the natural frequency of the system (Huang

and Vassalos [10], Huang [9], Behbahani-Nejad and Perkins [2], Plaut et al. [19]). If the unit is

deployed in a sea with weak currents, the dynamics can be simpli�ed to a simple heave motion
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alone. In such situation, the rate at which the cable varies its length can a ect the dynamics

of the cable-body system, manifesting quite qualitatively di erent behaviors (Papazoglou et al.

[18], Jordán and Beltrán-Aguedo [13]).

A special aspect of the operation is that the cable tension can become null if the ascent of the

ROV occurs su ciently fast. This can also arise for relatively large frequencies of the wave. In

Huang [9], the dynamics of a cable-body system under taut-slack conditions is analyzed through

a piecewise linear equation of the cable force. Herein, the cable sti ness is assumed to have

linear elastic traction and null compression while the damping is considered constant and the

body with punctual geometry (cf. Smith [21]). Using a dimensionless di erential equation and

considering an harmonic motion of the upper cable extreme, the system behavior is shown to

manifest nonlinear oscillations.

The simpli�ed model of Huang, however, does not cover the nonlinear e ects of damping

and added mass. Hydrodynamic aspects may in�uence the qualitative response of the ROV

decisively (Kleczka and Kreuzer [17], Ellermann et al. [7]). For instance, the body can radiate

and hydrodynamics memory e ects can in�uence the damping and the inertia at small depths.

Another not considered point in the Huang�s model is the nonlinear drag term in the equation

of the forced oscillator, which depends on the body shape and Reynolds number.

In order to simplify our analysis of stability and controller design, we examine simple spheric

forms of the ROV with di erent diameters providing varying drag resistance and inertia forces.

In our contribution we aim to provide a more realistic stability study of a ROV motion under

taut-slack phenomenon in the heave motion through simulations and numeric stability analysis.

The �delity of the results in the simulations will be backed up by the accuracy of the physical

laws that describe the dynamics more rigorously than previous models.

Since there does not exists an analytic solution for the nonlinear equations of motion, we

propose numeric methods for searching bifurcations of stable solutions based on temporal series
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analysis extracted from Poincaré maps. Regions that characterize stability are also constructed

in a space of di erent bifurcation parameters, namely cable length and sti ness, wave amplitude

and frequency, wet area of the ROV and magnitudes of thruster forces. From them, fundamental

information about the dynamic behavior of the umbilical-ROV system in taut-slack condition and

vertical operation can already be obtained in physical models with di erent degrees of knowledge.

A second aim in this paper will consist in designing a control system for the sinking/lifting

process. Nonlinearities that a ect unfavorably the performance of the control will be compen-

sated by nonlinear feedback. The main control objective will be focused on rejecting eventual

taut-slack behaviors employing for that purpose thrusters for vertical displacements and adjust-

ments in the velocity of the hoisting crane motor unit. Another control objective will be looked at

the control of the cable tension in order to get it away from critical values. A basis for the control

system analysis will be stability regions for a set of bifurcation parameters. Numerous simula-

tions has been planed in the paper to illustrate the features of the control system in comparison

with the former uncontrolled umbilical-ROV system.

II. Dynamics

Let us consider the following scenario for our study. During the sinking/lifting operation of a

ROV, harmonic vertical motion of the hoisting crane due to the action of a monochromatic wave

causes taut-slack transitions in the umbilical cord. Usually the ROV is being deployed over the

aft of the ship. The cable remains on a vertical plane and takes a particular bent shape given

by the action of a current as shown in Fig. (1). Depending on the ROV operation and the crane

jib elevation, the wire can be tensed from both upper and lower extremes (taut condition). Also

when both extremes moves oppositely a looseness of the wire can take place (slack condition).

This particular motion occurs intermittently, mainly when a periodic excitation like a wave acts

on the system.
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Figure 1: Remotely operated vehicle and surface ship

In this paper we analyze the phenomenon in one degree of freedom namely vertically, as for

example in the sinking/lifting phase and assume that there exists a static equilibrium tension of

the cable given by the weight of the vehicle in water (see Fig. (2)). Additionally we describe

the nonlinear hydrodynamics completely, in order to show that from this simple operation with

monochromatic excitation, complex behaviors can happen.

For the analysis of the dynamics of the umbilical-ROV system, following general assumptions

are considered:

a) motion takes place vertically (heave mode)

b) mass cable is inappreciable

c) ROV has a slight positive buoyancy and its hull is spherical

d) mass of the surface ship is very large in comparison with ROV mass

e) cable has a null sti ness in slack condition

f) sea provides a persistent monochromatic vertical excitation of the pivot at which cable is

attached.

g) ROV thrusters for vertical push and hoisting crane motor unit are available for control

purposes.

The position of the ROV in the sinking/lifting operation is appropriately given by the im-
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Figure 2: Umbilical-ROV system in taut condition (left) and slack condition (right)

mersion depth d with respect to the water line. When the top end of the cable moves upwards

in the quantity b a sin t and the bottom end downwards in the quantity d (cf. Fig. (2)), the

tension of the cable is

Fc =
EA0

L
(d L+ b a sin( t)) , (1)

with L the length of the cable, b the crane jib elevation, a sin ( t) the oscillation about it due

to a monochromatic wave, E the Young�s modulus of the cable and A0 its cross section. On the

other side the cable remains loose when Fc = 0.

These cable conditions are summarized as

d L+ b a sin ( t) > 0 taut condition Fc > 0 (2)

d L+ b a sin ( t) 0 slack condition Fc = 0. (3)

It is noticing from (1) and (2)-(3) that the characteristic stress-deformation is continuous but

broken at d L+ b = a sin ( t), i.e., in the transition from slack to taut states and vice versa.

Besides the cable sti ness EA0
L varies inversely proportional to L.

For characterizing the heave motion a single-degree-of-freedom model is applied. The dy-

namics is approximated by di erent mathematical approaches, involving each one a progressive
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increment of physical knowledge, starting from a coarse characterization with a simple model of

the hydrodynamics up to a more re�ned model including a velocity-depending drag coe cient

and radiation-potential forces. Each one of these descriptions is analyzed separately and then

comparatively under the same setting of common parameters.

A. Equations of motion - Model 1

The equations of motion in vertical z axis are subject to the rigid body mechanics and to the

hydrodynamics given by Potential Flow Theory and Morison�s law.

Let the hydrodynamics of the umbilical-ROV system be described uniquely by the so-called

added mass of the ROV geometry and by the drag force with a constant drag coe cient.

The parameters of the system are the ROV mass m, the so-called added mass m due to

acceleration of the water particles in the surrounding of the ROV surface, the gravity acceleration

g, the sea water density , the hydrodynamic drag force coe cient CD, the diameter of the ROV

D and �nally the resultant of the vertical thruster force Ft.

As the cable characteristic has two linear portions according to (2)-(3), the equations can be

established separately for these two states. On one side, for the taut condition (2), it is valid

(m+m ) pccd+
D2

8
CD pccd |pccd|+ EA0

L
(d L+ b) +

D3

6
g + Ft =

mg +
EA0a
L

sin( t) , (4)

and, on the other side, for the slack condition (3), it is accomplished

(m+m ) pccd+
D2

8
CD pccd |pccd|+ D3

6
g + Ft =

mg . (5)

Then a solution d(t) can be composed piecewise from the solutions of (4) and (5).

The approximation of the hydrodynamics through the constant coe cient m is su ciently

accurate for large depths. Practically, this is ful�lled for d >> D. For the spherical surface
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considered, the added mass is equal to the half of the displaced �uid mass by the body, i.e.,

m = D3

12 . As in the case study, the ROV is assumed with a slightly positive buoyancy, it is

valid m
m ' 2.

B. Equations of motion - Model 2

In addition to the added mass for the ROV geometry, we can incorporate a velocity-dependent

drag coe cient for the same spherical geometry (see Figs. (3) and (4)). This leads to a better

description of the system dynamics.

It is worth noticing that CD depends basically on the shape of the ROV along the motion

direction and consequently it will be classi�ed as a design parameter. However, as it depends

also on Reynolds number, which changes during operation, it is also an operation parameter.

The Reynolds number is de�ned as

Re =
D

H2O

pccd = 1.026× 106D pccd (6)

with = 1.026 × 103[Kg/m3] the sea water density and H2O
= 10 3[Kg/ms] water dynamic

viscosity. Taken Fig. (3) into account, CD can be approximately calculated in the range Re

[10 1, 107] by means of a linear regression like

CD = T
Re Re, (7)

with

T
Re =

£
(log10Re)

21 , (log10Re)
20 ,

..., (log10Re)
2 , (log10Re) , 1

¤
(8)

Re = [ 8.332× 10 9, 5.389× 10 7, 1.592× 10 5, 2.841× 10 4, 3.412× 10 3,

2.905× 10 2, 1.798× 10 1, 8.132× 10 1, 2.648, 5.925, 7.871, 2.121, 12.407,

20.641, 6.411, 17.352, 26.194, 28.856, 45.340, 62.735, 56.695, 27.193]T
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Figure 3: Drag coe cient for a spherical-shape body as function of Reynolds number

Eq. (7) describes a polynomial approximation of degree 21 of the curve in Fig. (3) based on

experimental data in steady state.

In the new model, equations of motion are given �rst for the taut condition (2) as

(m+m ) pccd+
D2

8
CD (pccd) pccd |pccd|+ EA0

L
(d L+ b) +

D3

6
g + Ft =

mg +
EA0a
L

sin( t) , (9)

and then for slack condition (3)

(m+m ) pccd+
D2

8
CD (pccd) pccd |pccd|+ D3

6
g + Ft =

mg . (10)

In Fig. (5) the drag force characteristic based on the relation Fv =
D2

8 CD (pccd) pccd |pccd|

is described for di erent volumes.

C. Equations of motion - Model 3

A better characterization of the cable-ROV dynamics will include the radiation capability of the

submersed body in motion. The radiation is signi�cant mainly at small immersion depths. It

declines exponentially with increasing d.
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Figure 6: Potential damping of a submersed spherical body with D = 2[m] and d = 15[m]

In this situation the dynamics is a ected by a new force, namely the so-called induced-

radiation force given by

Fr(t) = m pccd(t)
Z t

( ;D, d) pccd(t ) d , (11)

where ( ;D,d) is an impulse-response function accounting for the memory of the �uid response

to a sudden body displacement. It depends on the geometry of the wet part of the submersed

body as well as on the immersion depth. For a sphere, the geometry is parametrized by D.

A straightforward form to calculate is by means of the so-called damping function as

( ;D,d) =
2
Z

0
( ;D, d) cos( t)d , (12)

where ( ;D, d) is the potential damping function parametrized in D and d. It can be calculated

numerically using Strip Theory and Flow Potential Theory (cf. Jordán and Beltrán-Aguedo [14]).

For instance, Fig. (6) represents the potential-damping function of a spherical body for particular

values of D = 2[m] and d = 15[m]. This was obtained with the tool AQWA
R°

for hydrodynamics

computation (AQWA [1]).
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The dependency of with D and d can be approximated for d > D/2 by

( ;D, d) = f(D, d) (g(d) ; 2, 15), (13)

with attenuation and contraction functions

f(D, d) = 4.8× 106
D4.58

(d+ 7.05)6
(14)

g(d) =
8.28

(d+ 2.51)0.73
, (15)

respectively. Relations (14)-(15) were obtained by interpolating various curves ( ;D, d) for a

set of values of D and d and normalizing with respect to ( ; 2, 15).

Using Fig. (6) and putting Eq. (13) into Eq. (12) the impulse response function is numerically

found. Fig. (7) shows di erent impulse-response functions for a set of values of D and d. One

concludes the importance of the response for low depths and relatively large diameters. Other

feature of the model is the oscillating evolution of the response with a resonance frequency that

decreases with the depth.

After calculating ( ;D, d) for the body diameter and depth, (11) can be applied so as to

evaluate the induced-radiation force Fr for the sinking/lifting process.

As d is a system state, the impulse response becomes time-dependent

( , t) = ( , d(t)) (16)
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Thus the equations of motion in vertical z axis become �rst for the taut condition

[m+m ] pccd+
D2

8
CD(pccd) pccd |pccd|+

EA0

L
(d L+ b) +

D3

6
g + Ft =

mg +
EA0a
L

sin ( t)
Z t

( , t) pccd(t ) d , (17)

and for the slack condition

[m+m ] pccd+
D2

8
CD(pccd) pccd |pccd|+

D3

6
g + Ft =

mg
Z t

( , t) pccd(t ) d . (18)

It is noticing that

fo =
Z 0

( , 0) pccd(t ) d , (19)

describes the e ect of the past evolution of the hydrodynamics at t = 0, i.e., it describes the

initial condition for the di erential equations (17)-(18). Fortunately, the evanescence of ( ) for

and the passivity of system (17)-(18) indicate that the fact of supposing fo = 0 has no

e ect in the accuracy of the solution d(t) at steady state (see Jordán [12]). So, for the following

studies in steady state it is assumed null.

III. Stability analysis

An attempt to obtain an analytical solution for the di erent nonlinear equations (4)-(5), (9)-(10)

and (17)-(18) generally fails. The motion equations can be put generically as

pccd+ f(pccd, d, µi) = h(u, µj), (20)

with u = a sin( t) the input, f a function containing the nonlinear sti ness and damping, and

h a nonlinear input function. The coe cients represented by µi and µj are free parameters that

in�uence the features of the behavior and are transcendent for accounting for physical changes

in the cable properties like premature fatigue strength or fracture. The existence of conditions
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for period-one solutions and approximated methods of solution are discussed for instance in

Rossenwasser [20], Guckenheimer and Holmes [5].

In Huang [9] was established an analytical procedure for detecting stability of forced period-

one stable orbits based on the observation of eigenvalues of a discrete system that relates cross

points through zero of periodic orbits. The method is complemented with an iterative algorithm

for enhancing the information given by the eigenvalues about stability. The domain of attraction

is extremely sensible to bad initial conditions, so that the result is not always reliable to be

extended here.

In this paper we develop numerical procedures in order to establish stability. These are based

on Poincaré maps, time averaging and asymptotic measures (Guckenheimer and Holmes [5]).

A. Periodic solutions

Let us assume the behavior of the umbilical-ROV system starts from an initial condition (d(0),pccd(0))

and its state trajectory sampled at a rate T = 2 . The resulting time-discrete dynamics is de-

scribed by

d(k + 1)

pccd(k + 1)

= F
d(k)

pccd(k)

,> . (21)

with k a positive integer, F a nonlinear vector-valued function that is smooth in both regions

delimited by d L + b a sin( t) > 0 and d L + b a sin( t) 0, and > a vector that

describes the control parameters for bifurcation analysis. These parameters conform a complete

space for searching stability regions, i.e., regions that are free of taut-slack motions for given

initial conditions in an attraction domain.

The exact determination of F rests on the analytical availability of solutions of (4)-(5) (or

(9)-(10) or (17)-(18)), which is only possible in the slack motion in (10) by solving analytically

Bernoulli-type di erential equations. For this reason, we attempt to follow a numerical way

instead.
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B. Identi�cation of periodic solutions

Periodic orbits of the continuous systems (4)-(5), (9)-(10) and (17)-(18) correspond to a �xed

point of the discrete system (21) described in the Poincaré map.

So for a particular valued >, there exists a solution d(t) and a state trajectory that starts

from an arbitrary initial condition (0) in an attraction domain and is asymptotically periodic

with period nT = n2 .

Considering the sampled trajectory conformed as

(k) =
1(k)

2(k)

=
d(t0 + kT )

pccd(t0 + kT )

, (22)

we say the system is asymptotically stable and has a �xed point, when the series { (k)}k=0

converges to a periodic series. Moreover, there exists a su ciently large delay q such that

{ (k) (k q)}k=0 is a Cauchy series.

In order to detect the periodicity nT of (k) during the transient state, one takes two positive

test integers q and n, with q/n >> 1 and some small real-valued . Thus, if (k) is nT periodic,

then there exists a sample time k0 from which on, i.e., up to k k0, following relations are
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ful�lled

k (k) (k 1)k >
...

k (k) (k n+ 1)k >

k (k) (k n)k <

k (k) (k n 1)k >
...

k (k) (k 2n+ 1)k >

k (k) (k 2n)k <

k (k) (k 2n 1)k >
...

k (k) (k q)k > .

. (23)

and the series of the previous system within the band will also accomplish

lim
k

k (k) (k v n)k = 0, (24)

for v = 0,±1,±2, ... Moreover (23) and (24) are independent on t0 except for a set with measure

zero of series that are identically zero or constant.

Equation system (23) is equivalently to the autocorrelation function ( ) =
P

k=0 (k) T (k+

), for = 0, 1, .... The cadency of peaks of ( ) for large will reveal the periodicity of .

The detection method developed above can also be used to identify a chaotic state. In this

case, there does not exist any �nite integer q that satis�es (23). Assuming the system is in

stationary state then the chaos condition means

lim
q

k (k) (k j)k > 0, with j = 0, ..., q, (25)

it is, none series { (k) (k j)}k=0 is a Cauchy series. Moreover, in this case ( ) 6= 0 for all

except, perhaps, for a countable set of measure zero.
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Figure 8: Period-4 behaviour of the ROV dynamics

It is observing that the detection method proposed above performs well in the transition of

the transitory to the steady state. The application of the identi�cation method is illustrated

in Fig. (9) for a P4 behavior of the cable-ROV system with free parameter: D = 0.85[m],

EA0 = 5× 106[N] and CD = 0.2, whose time evolution is depicted in Fig. (8).

The detection of this period is performed on the sampled series on 1(t) of Fig. (8) at a rate

equal to the wave period T = 6.5[s].

According to the restrictions (23) and for a tolerance selected as

= 10 6 max
t [0, ], (0, ]

| (t) (t )| = 10 6

µ
max
t [0, ]

(t) min
t [0, ]

(t)
¶
, (26)

four series are analyzed, namely the ones for n = 1 up to n = 4, where P4 is established through

the convergence testing see Fig. (9). Also the series for n = 8 produced a Cauchy series during

the stability analysis, but the �rst detected by the method was for n = 4. This concludes the

�xed point P4 for the set of free parameters.
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Figure 9: Detection of bifurcations for a P4-case upon Cauchy series

IV. Stability regions

In this paper a stability region is de�ned as a zone in the free-parameter space, in which the

behavior of the umbilical-ROV system is characterized by a bounded oscillation in steady state

subject to the taut condition Fc > 0. From a practical point of view, such regions characterize

predictable and safe ROV operations.

The boundary of a stability region depends on the initial vector (d(0),pccd(0))T , which is

assumed equal to (L(0) b, 0)T in the set of experiments. For speci�c values of free parameters,

the dynamics can also bifurcate showing high period oscillations or even chaos. To �nd stability

regions, the three models stated before will be employed.

A. Free parameters

First, let us distinguish between design and operation parameters, i.e., those that are �xed in

the ROV design and those that may vary during the operation, respectively. These are listed

below in Table 1

Most of them are suitable for a study of nonlinear oscillations, i.e., the system behavior

changes signi�cantly with respect to those parameters. So we de�ne the parametric space for
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Design Operation

D : ROV diameter L : cable length

A0 : cable cross section : wave frequency

m : ROV mass a : wave amplitude

CD(shape): drag coe cient CD(Re): drag coe cient

m : added mass Ft : vertical thruster force

E : Young�s modulus b : crane jib elevation

(27)

Table 1: Design and operation parameters

stability regions with a set of them conforming the vector

> = [D,EA0, CD(shape), CD(Re), L, Ft, a, ]T . (28)

The ROV mass m and added mass m are not directly employed in (28), but through the

relations m
D3/6 = c1 > 1 and m

D3/6 = c2 = 0.5, respectively, with c1 and c2 being speci�ed

constants.

In order to perform simulations for several kinds of operations and for a wide class of umbilical-

ROVs with spherical shell, the basic settings are prescribed mostly in intervals (see Table (2).

Design parameters Span Operation parameters Span

D = 1[m] [0.5 : 2] L = 50[m] [1 : 102]

EA0 = 106[N] [105 : 107] = 1[rad/s] [10 1 : 5]

m
D3
6

= 1.1 a = 1[m] [0 : 3]

CD(shape) = 0.2 CD(Re) see Fig. (3)

b = 3[m] Ft = 0[N] [ 600 : 600]

Table 2: Basic simulation parameters

Due to the large dimension of the free-parameter space, stability regions are constructed in
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subspaces conformed by pairs of components of >, while the complement of each of them is

maintained constant. In order to identify the kind of oscillation, particular stability regions are

shaded so as to indicate orbits with the same periodicity. Also each orbit is depicted with a

symbol that identi�es its periodicity. The detection of periodicity is performed according to the

identi�cation method developed previously on the basis of Cauchy series for a tolerance given by

(26).

B. Stability according to Model 1

To study the taut-slack phenomenon and its stability properties, simulations are carried out on

the basis of model (4)-(5).

Figures from (10) up to (16) illustrate the stability region in di erent subspaces corresponding

to an experiment series for a constant drag coe cient, which is the main particularity of model

1. Generally speaking, it is seen that the stability region is composed by de�nition of behaviors

of periodicity one, termed P1, with a taut condition ful�lled. Outside the stability region the

diversity of behavior is wide, ranging from P1 up to chaos. The presence of period doubling

is not a characteristic of the stability regions as, for instance, this occurs in related ODEs like

the Mathieu and Du ng quadratic nonlinear di erential equations. The reason for that is the

presence of two actuating nonlinearities, i.e., due to the bilinear and the quadratic characteristics

for the cable force and drag, respectively. Moreover, the behavior diversity in the subspace is

characterized with both odd- and even-high-period oscillations. This suggests di erent scenarios

of the routes to chaos.

Fig. (10) shows the role of the monochromatic wave excitation through its parameters a and

on the system stability. It is seen that large wave steepness, i.e., (a ), leads to the phenomenon

taut-slack with chaos as one of the most common behavior in this subspace. The band between

the stability region and that of chaos is thin and composed mostly by oscillations P1 and P2.
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Figure 10: Stability region: wave amplitude vs. frequency for CD = 0.2, EA0 = 106[N] and

L = 50[m]

Fig. (11) demonstrates the balance between the ROV mass through D and cable sti ness

for a middle cable length. Accordingly, one sees that the larger is the diameter of the ROV, the

more elastic has to be the cable in order to avoid the taut-slack condition.

Fig. (12) shows a marked insensitivity of the oscillation with depth. This occurs inside and

outside the stability region, except for super�cial depths, for which the sti ness is high, i.e.,

where L is small. Roughly speaking, the smaller L and the larger the sti ness, the more feasible

is that the ROV can follow the harmonic motion of the jib. Conversely, the behavior shows a

great sensibility with wave frequency.

A similar insensitivity, yet not so pronounced as in the case before, is encountered in the

relation of the depth with the wave amplitude, see Fig. (13). It is noticed that a second portion

of the stability region emerges at the right side of the picture for large a and small L. This

suggests a disconnection of both stable portions in the subspace considered.

Fig. (14) shows the e ect of the ROV thrust and the wave excitation on the system behavior

about a �xed depth. Clearly, when Ft > 0 (i.e., the ROV is pulled down) it is valid that the
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larger is the thruster power, the larger would be the stability region even for increasing wave

amplitudes. Conversely, for the thrusters actuating in the other direction (see at Ft < 0) the

ROV is pulled to the surface and the �slack� condition arises for large Ft. This indicates no

stable orbit but unbounded behavior.

Fig. (15) illustrates the e ect of the thruster force on the stability for di erent depths. It is

seen that stable oscillations occur when the actuators can maintain the cable tension su ciently

large. The same as before is said for the portion shaded as �slack�.

The last �gure, Fig (16), depicts similar results as Fig. (14), i.e., the stability region enlarges

for increasing and Ft. In general, both �gures indicate the fact that with increasing wave

energy in the system (e.g., increasing wave steepness) the only way to circumvent the taut-

slack phenomenon is achieved through strengthening the cable by investing more power in the

actuators. Later, we will illustrate an application of a control system that can accomplish this

goal in which thruster and hoisting crane will play an important role as actuators to ensure

stability.
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C. Stability according to Model 2

In this section model (9)-(10) is considered with the same setup for simulations as in model 1.

The main improvement of model 2 in comparison to model 1 is the incorporation of a variable

drag coe cient with motion dependence. The experiments are illustrated in Figs. (17) to (23).

In general, it is noticed, that the diversity of orbits is qualitatively broader than in the

cases handled before. This feature was expected due to the complexity of the nonlinear drag

characteristic. Additionally, it is worth noticing that the limits of the stability regions remain

almost the same as in the case earlier. Particular di erences will be exalted comparatively with

respect to homologous pictures of model 1.

Fig. (17) shows similitudes in the behavior diversity with respect to the homologous case

in Fig. (10), above all in the zone of small steepness (a ), just there where the motion is not

too signi�cant and accordingly the drag coe cient does not vary too much. This coincidence is

observed also outside the stability region at many points in which (a ) is considered relatively
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Figure 17: Stability region: wave amplitude vs. frequency for CD variable, EA0 = 106[N] and

L = 50[m]

small.

Similar conclusions are worked out from Fig. (18) with respect to Fig. (11). A di erence to

stand out is the enlargement of the stability region for small D and large sti ness.

Fig. (19) illustrates a marked insensitivity of the oscillation with respect to the length. The

di erence here with respect to the homologous case in Fig. (12) is that the diversity in the

frequency is higher.

Similar conclusions are deduced from Fig. (20) with respect to Fig. (13). The variant here

is that the chaotic zone is broader and periodic solutions of odd periodicity are more common,

whereas in the previous homologous case the solutions were mostly of even period.

Fig. (21) and the related homologous Fig. (14) are resembling. In addition to a qualitatively

more varied scene, it is to mention that the stability region and its adjacent band of P1 solutions

are wider than in the homologous case before.

The two next �gures, Figs. (22) and (23) illustrate the in�uence of the thruster force on

the stability in relation to L and a, respectively. The stability regions are slightly di erent in
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Figure 22: Stability region: ROV depth vs. thruster force for CD variable, a = 1[m], = 1
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comparison to those of their homologous cases of Figs. (15) and (16). However outside them the

di erences are signi�cative. Nevertheless the order of the diversity in homologous cases is not

too dissimilar.

D. Stability according to Model 3

Finally, model (17)-(18) is simulated under the same scheduling as former models. Apart from

having a motion-dependent drag coe cient like model 2, the improvement provided by this model

is the consideration of the potential radiation force Fr. As this force is signi�cant, mainly for

shallow waters, the experiments are focused for small depths varied stepwise from 1[m], up to

5[m]. The stability region is investigated in the subspace a versus only. Both the pictures of

the model 3 and their homologous from model 2 are put in the same frame for direct comparison.

Fig. (24) considers the oscillatory behaviors at a depth of 1[m]. The stability region enlarges

slightly comparatively with consideration of Fr, but the diversity outside this region is dissimilar

in the periodicity. However, the chaotic behaviors remain in the same positions in the space.
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Figure 24: Stability regions: wave amplitude vs. wave frequency for CD variable, EA0 = 106[N]

and L = 4[m]. Top: simulation without radiation force. Bottom: simulation with radiation force
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Fig. (25) depicts a scenario at a depth d = 2[m]. This is characterized by equal stability

regions with and without Fr, and almost identical variations in the periodicity in both cases.

The chaotic region is comparatively slightly di erent.
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Figure 25: Stability regions: wave amplitude vs. wave frequency for CD variable, EA0 = 106[N]

and L = 5[m]. Top: simulation without radiation force. Bottom: simulation with radiation force

Fig. (26) illustrates the periodicity at a depth d = 5[m] comparatively. The stability regions

are slightly di erent. Also the regions with presence of chaos are very similar. The periodicity

changes at some speci�c points only, however not so abrupt when considering Fr.

It is concluded that radiation forces have an insigni�cant in�uence in the system dynamics

for depths d 5[m]. As the usual depths of the ROV in the operation are much larger than this

limit, it is inferred that model 2 is su ciently accurate for the analysis intended in this paper.

V. Taut/slack control

In the sinking/lifting operation the taut state of the cable describes actually the less stressed

condition from the viewpoint of magnitude of strength and fatigue. This can be inferred from

a case study in Fig. (27), where the evolution of the cable force is shown traveling from the
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Figure 26: Stability regions: wave amplitude vs. wave frequency for CD variable, EA0 = 106[N]

and L = 8[m]. Top: simulation without radiation force. Bottom: simulation with radiation force
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Figure 27: Evolution of the cable force for a wave amplitude a = 0.1[m], frequency =

1.87[rad/s], sti ness constant EA0 = 106[N] and cable length L = 50[m]

taut through the taut-slack state. This qualitative change occurs during the transient behavior

and is typically characterized by abrupt and hefty increments of the force magnitude due to

accelerations of the upper extreme of the cable during the slack condition followed by violent

yanks when the cable tows the ROV again. This scenario takes place at higher frequencies

depending of the natural frequency of the mass-spring system constituted by ROV and cable.

The shorter is the cable length, the larger will be the frequency of the taut-slack state evolution.

Also the maximal magnitude of the force in the taut-slack condition depends directly on the

magnitude of the wave steepness (a ).

Another advantage of preserving the taut state in the operation, is the more predictable

evolution of the ROV trajectory than under the taut-slack state. It is clearly seen from Figs.

(10)-(23) that the system behavior is always periodic P1 in the taut condition and that generally

this periodic evolution turns unstable with high periods inclusive chaos under the presence of the

taut-slack phenomenon.

Bearing the mentioned advantages in mind, an appropriate control law for the sinking/lifting

process has consequently to care for the limit cable stress and simultaneously to maintain the
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taut condition. Additionally, a practical requirement by the descent or ascent of the unit is to

minimize the times required for these operations.

To achieve these control objectives, the hoisting crane system and the ROV thrusters are

involved in a controller design. They must properly be synchronized in a simultaneous, optimal

and secure form for reaching a desired depth in short times. In return, it would be expected that

the bene�t of any controlled operation be a signi�cative extension of the stability regions with

respect to the uncontrolled system.

To this end, the control system can be conceived as a dynamic system with two inputs,

namely the set points dref and Fcref for depth and a suitable cable strength, respectively, and

an unavoidable wave perturbation a sin ( t). On the other side, it would have three measurable

outputs, namely the ROV velocity pccd, the cable length L and the cable tension Fc (see Fig.

(28))

So, the control strategy can be achieved with the help of two mechanisms. First, the cable

tension is regulated from both extremes using controllers on the crane motor and the ROV

thrusters, respectively. On the other hand, in order to track desired trajectories for ascent/descent

fast and accurately, the ROV velocity is controlled separately. All controllers are nonlinearly

coupled through multiple feedbacks as seen from the proposed structure in Fig. (28).

It is noticing that the main cause of the taut-slack phenomenon is the wave perturbation. The

phenomenon is the more accentuated the higher is the energy of the wave. For monochromatic

waves, the mean energy is proportional to ( a)2. Since the actuators can produced a limited

energy for reaching levels of thrust and velocity, the e ectiveness of any control system will be

obviously restrained by a speci�ed maximal wave steepness ( a).
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Figure 28: Control of depth and cable tension in lowering/lifting operation of a ROV

A. Nonlinear control law

To achieve the control goal, a two-degree-of-freedom control law is proposed with a control action

vector

u(t) = [ut(t), ucr(t)]
T , (29)

where ut is the thruster voltage and ucr the crane motor voltage (see Fig. (28)).

The set point for cable stress Fcref is de�ned as a fraction of the fracture tension. The cable

force has to be dynamically regulated around this set point avoiding the slack of the cable.

Considering the model 2, the nonlinearities of the dynamics in the terms of Eqs. (9) and (10)
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are included in the forces and moments, namely

Fv =
D2

8
CD (pccd) pccd |pccd| (30)

Fc =
EA0
L z, for z 0

0 , otherwise

, with z = d L+ b a sin( t) (31)

Ft =

Kt
s2+ 1s+ 0

ut |ut| , for ut [utmin, utmax]

Ftmin, for ut utmin

Ftmax, for ut utmax

(32)

Mcr =

k1s
LaJ
k1k2

s2+ RaJ
k1k2

s+1
ucr, for ucr [ucrmin, ucrmax]

Mcrmin, for ucr ucrmin

Mcrmax, for ucr ucrmax

, (33)

where 0 and 1 are coe cients of the thruster motor dynamics, Kt is its gain, Mcr the moment

of the crane drum, La and Ra the armature inductance and resistance of the crane motor,

respectively, J the moment of inertia, r the radius of the wrapping drum, k1 the transfer gain

between the armature current and the drum angular acceleration, and �nally k2 the transfer gain

between the drum angular speed and the back e.f.m. The coe cients utmin, utmax, ucrmin, ucrmax

are limiting saturation values of the thrusters and crane motor, respectively.

The nonlinearity (30) is nonconvex over an interval that depends on the ROV diameter

(see Fig. (5)). Additionally, it is only two times derivable with respect to pccd because of the

singularity at pccd = 0. It similarly occurs with the nonlinearities (31) and (32), whose high

derivatives with respect to z and ut, respectively, there not exist at z = ut = 0. Because of

the lack of smoothness, nonlinear controls based on di erential geometry can not be applied

to achieve the control objectives. However a great part of such a nonlinear dynamics can be

cancelled using nonlinear feedback as shown next.

To regulate the cable tension, two controllers are employed, one for each extreme (see Fig.

(28)). The cable force controllers are driven by the force error ef = Fcref Fc and generate
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corrections termed as pccL and pccd for the crane system and the ROV thrusters, respectively.

For these speci�c tasks, the equilibrium stress point of the cable given by the restriction

pccd pccL a cos( t) = 0, (34)

is modi�ed to

pccd pccL a cos( t) = pccd, (35)

with the property
Z

0
| pccd| dt = c1 (36)

and c1 > 0 being a constant for a bounded response. In this way, the lower point of the cable is

then tensed conveniently by selecting the function pccd(t). Similarly, for the upper extreme it is

valid

pccd pccL a cos( t) = pccL, (37)

with
Z

0
| pccL| dt = c2 (38)

and c2 > 0 being another constant for a bounded response. In the same way the upper extreme of

the cable is then tensed conveniently by selecting the function pccL(t). Thus the energy deployed

by the cable force controllers for damping down a spurious is �nite.

On the other side, since forces (30) and (32) are involved in the ROV dynamics, the ROV

velocity controller can compensate these nonlinearities in order to accomplish high-quality per-

formance, mainly in the nonconvex zone of (30).

Finally, for the implementation of the control law (29) it is necessary to measure Fc, L and

pccd. Additionally, the motion of the crane jib, i.e., a sin( t), must also be known, at least roughly.

Another general requisite in the design, is that the use of high derivatives would be avoided so

far as possible in the control law design.
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B. Design of a ROV velocity controller

In order to reach a high-quality control of the ROV kinematics, we focus the design of a reference

controller with a tunable reference dynamics. It is proposed a realizable control law which be

able to force the ROV velocity pccd to track an auxiliary velocity pccdm, which is the output of a

reference dynamics given by

pccdm = 0

(s)
pccdref , (39)

with pccdref a piecewise continuous and bounded reference signal of the control system, 0 a gain

and (s) a Hurwitz polynomial, whose order will be determined next.

Denoting = ut |ut| as the auxiliary control action of the thrusters and taking (9)-(10) and

(32) into account, one gets a basic equation of the system dynamics for controller design

=
m+m

Kt

¡
s2 + 1s+ 0

¢
pccd+

+
D2

8Kt

¡
s2 + 1s+ 0

¢
CD (pccd) pccd |pccd|

¡
s2 + 1s+ 0

¢ 1
Kt

Fc 0
m D3

6

Kt
g . (40)

The last equation manifests a di erential relation of third order with a high degree of nonlin-

earity between pccd and . So the order of (s) has to be three in order for the reference dynamics

to have a relative degree equal to the order of the system dynamics. Thus

(s) = s3 + 2s2 + 1s+ 0, (41)

with the i�s coe cients that determine the desired behavior of the reference dynamics.

In order to achieve the model-following objective (39) according to the structure in Fig. (28),
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a suitable control law have to combined similar linear and nonlinear terms in (40) according to

= 1

f
+ 2

f

pccd+ 3

f
Fv +

4

f
Fc +

+ 5

f

pccd+ 6

f

.
F v +

7

f

.
F c +

+ 8

f

..
F v +

9

f

..
F c +

+ 10 pccd+ 11 Fv + 12 Fc +

+ 13 pccd+ 14 pccFv + 15 pccFc +

+ 16 pccFv + 17 pccFc +

+ 18 + 19 pccdref , (42)

where i are the controller coe cients, Fv = CD (pccd) pccd |pccd| and f is an adjustable Hurwitz

polynomial, for instance, of the simple form

f = s+ a0, (43)

whose minimal order helps to minimize the number of i necessary to achieve the objective.

Hence the control action is obtained through the inverse relation

ut = sign( )
p
| |, (44)

subject to saturation according to (32).
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From (42) and using fpccdref = f pccd/ 0 one gets

( f 1) = 2pccd+ 3Fv + 4Fc+

+ 5pccd+ 6pccFv + 7pccFc

+ 8pccFv + 9pccFc +

+ 10 fpccd+ 11 fFv + 12 fFc +

+ 13 fpccd+ 14 fpccFv + 15 fpccFc +

+ 16 fpccFv + 17 fpccFc +

+ 18a0 +

+ 19 f pccd/ 0 , (45)

and with (40) one achieves

( f - 1) =
m+m
Kt

( f - 1)
¡
s3+ 1s2+ 0s

¢
pccd+

+
D2

8Kt
( f - 1)

¡
s2+ 1s+ 0

¢
Fv

( f 1)
µ

1
Kt

s2+ 1

Kt
s+ 0

Kt

¶
Fc

0
m D3

6

Kt
g (a0 1) . (46)

Equaling both last expressions one obtains a set of four equations to determine the controller

coe cients i�s, namely:
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1) a relation associated to a polynomial in pccd

m+m
Kt

m+m
Kt

( 1 + a0)

m+m
Kt

( 0 + a0 1)

m+m
Kt

a0 0

0

= (47)

0 0 0 0 0 1
0

m+m
Kt

0 0 0 0 2+a0
0

(m+m ) 1

Kt
0 0 0 1 1+a0 2

0

(m+m ) 0

Kt
0 1 1 a0 0+a0 1

0

0 1 0 a0 0 a0 0

0

1

2

5

10

13

19

,

2) a relation associated to a polynomial in Fv

D2

8Kt

D2

8Kt
( 1 + a0)

D2

8Kt
( 0 + a0 1)

D2

8Kt
a0 0

= (48)

=

0 0 0 0 0 0 1

D2

8Kt
0 0 1 0 1 a0

D2

8Kt 1 0 1 0 1 a0 0

D2

8Kt 0 1 0 0 a0 0 0

1

3

6

8

11

14

16

,
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3) a relation associated to a polynomial in Fc

1
Kt

( 1+a0)
Kt

0+a0 1
Kt

a0 0
Kt

= (49)

=

0 0 0 0 0 0 1

1
Kt

0 0 1 0 1 a0

1
Kt

0 1 0 1 a0 0

0
Kt

1 0 0 a0 0 0

1

4

7

9

12

15

17

,

4) a relation associated to the independent term

·

0
m D3

6
Kt

ga0

¸
=

=
·

0
m D3

6
Kt

g a0

¸
1

18

. (50)

As seen in (47)-(50), there exist more unknowns than equations for the identi�cation of the

coe cients i�s. Eq. (47) describes an overparametrized system with one free parameter and �ve

unknowns. Similarly, (48) and (49) have three free parameters and four unknowns each one, and

(50) has one free parameter and one unknown. The problem now is to decide which coe cients

would be free and which ones unknowns.

An analysis carried out on (47) reveals that either 1 or 13 or 19 should not be �xed, since

the problem would become singular. However, choosing 2 or 5 or 10 the determination of

the rest should be viable. As 1 is calculated by (47), then (48) and (49) will contain only two
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free parameters each one. It is observing that 16 and 17 are irremovable in (48) and (49),

respectively, and that the pairs { 8, 14} and { 15, 9} can not be eliminated due to singularity.

On the other side, the parameters to be potentially eliminated has to be just those involved

in terms with high derivatives. Under this criterion, for instance, 5, 6, 7, 8 and 9 can

be eliminated. This leads basically to a minimal and optimal con�guration of the controller

coe cients.

Besides, there exists a last requirement of damping down transients when the controller starts

at t = 0 from an equilibrium point. This can be achieved, for instance, by imposing (0) = 0.

From (42) it is seen that for all derivatives and �ltered variables equal to zero at t = 0, it emerges

another condition between 12 and 18, e.g.,

(0) = 12 Fc(0) + 18 (51)

= 0

So, from the set of redundant parameters { 5, 6, 7, 8, 9} one chooses one of them to accomplish

minimal-set design and long-term transient elimination simultaneously. A glance at (42) reveals

that 7 is the more suitable parameter to be chosen because it involves a �ltered �rst derivative

of Fc while the others coe cients are embedded in terms involving higher derivatives of variables.

In this way (0) = 0.

Bearing this reasoning in mind, one concludes that the minimal-set selection yielding to

= 1

f
+ 2

f

pccd+ 3

f
Fv +

4

f
Fc +

+ 7

f

.
F c + 10pccd+ 11 Fv + 12Fc +

+ 13pccd+ 14 pccFv + 15 pccFc +

+ 16 pccFv + 17 pccFc +

+ 18 + 19pccdref (52)

is quite suitable. Then the control action results from (44) with (52) and saturations given in
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(32).

It is worth noticing the necessity of employing an observer to obtain high derivatives of

pccd,Fv and Fc, since these are commonly not measurable. A nonlinear observer for this purpose

is described in Jordán and Bustamante [15].

C. Force controllers

The cable strength is controlled from the upper and lower extremes of the cable according to the

structure proposed in Fig. (28). From (35) one sees that the lower extreme of the cable can be

tensed by de�ning a perturbation pccd(t) about the equilibrium point of the cable force de�ned

by (34). Taking also the nonlinearity (31) into account, a PD controller will be su cient able

to generate pccd. However, its gain has to be variable to compensate the cable length changes.

Thus

pccd(t) = (d(t) + b) (KP1 +KD1s)
¡
Fcref Fc

¢
. (53)

Similarly, using (37) and (31) for the upper extreme of the cable, the crane motor will be

perturbed by acting directly on its voltage by means of another PD controller which generates

pccL(t) = (d(t) + b) (KP2 + sKD2)
¡
Fcref Fc

¢
. (54)

The PD controller parameters in both cases are set constant for a desired behavior of the

cable tension. The tuning of these 4 coe cients is performed simultaneously by numerically

optimizing a quadratic cost functional of the force error. To this end, the model reference (39)

is employed directly instead the cinematic control system described in the previous subsection,

i.e., one assumes pccd = pccdm. Moreover the parameter tuning is performed for a monochromatic

perturbation of the wave with amplitude a = 1[m] and frequency = 0.55[rad/s]. The well-

known robustness of PD controllers is taken as argument to achieve a good control performance

for other settings of the wave in the real control system.
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Finally, a �xed PD controller is applied for the hoisting crane (see Fig. (28)) with equation

ucr(t) = (KP3 + sKD3) (Lref L) . (55)

The controller coe cients are tuned in the control loop of the hoisting system separately from

the control loop of the umbilical-ROV system, taking the model in (33) with saturations into

account for this purpose.

D. Summary of control components

The components of the controlled umbilical-ROV system are summarized in table (3).

Control components Input(s) Output(s) Eq. number

Umbilical-ROV
L

ut

Fc

pccd

(4), (5)

(9), (10)

(17), (18)

Propulsion system ut Ft
(32)

Crane ucr L (33)

Cinematic controller

pccdref

pccd

Fc

ut (44), (52)

Reference model pccdref pccdm (39), (41)

Force controller 1 Fcref Fc pccL (54)

Force controller 2 Fcref Fc pccd (53)

Crane controller Lref L ucr (55)

(56)

Table 3: Control system components

In order to simulate the controlled umbilical-ROV system in a wide range of heave operations,
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the controllers and actuators are selected with design parameters given according to table (4).

Other settings are indicated in the �gures that illustrate the results.

System component Coe cient set Values in S.I. units

Reference model {Km, 2, 1, 0} {6.498, 4.80, 9.01, 6.498}

Kinematic controller

{ 1, 2, 3, 4, 7,

10, 11, 12, 13, 14,

15, 16, 17, 18, 19}

{ 3.80, 767.78, 359.89, 1.96× 10 13, 0.89,

111.32, 94.70, 1.12, 708.17, 227.30,

0.56, 47.35, 0.11, 594.42, 656.45}

Hoisting crane motor
n
k1, LaJk1k2

, RaJk1k2

o
{0.015, 0, 5}

Force controller 1 {KP1,KD1} {0.0016, 4.5× 10 14}

Force controller 2 {KP2,KD2} {0.0021, 0.0034}

Crane controller {KP3,KD3} {1700.0, 1320.0}

Propulsion system {Kt, 1, 0} {8.5, 1, 2}

Thruster voltage saturation {utmin, utmin} { 12, 12}

Crane voltage saturation {ucrmin, ucrmin} { 110, 110}

Umbilical cable {EA0, b} {106, 3}

ROV dynamics {D,m} {1, 590.36}

Hydrodynamics {m , ,CD(Re)} {268.35, 1025, Eq. (7)}
(57)

Table 4: Parameter settings for simulations

The dynamic model used in the numerical simulations is the model 2.

VI. Control stability

The taut-slack control system described in the previous section is simulated and its steady state

dynamics is compared with the uncontrolled dynamics for identical values of their common
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parameters. As in Sec. IV done, most of these parameters are suitable for a bifurcation study

and to establish stability regions free of the taut-slack phenomenon. Similarly, the parametric

space for determining stability regions is de�ned here as

> = [a, ,D,EA0, L]
T , (58)

where Ft is not longer available as free parameter since it is regulated by the ROV cinematic and

force controllers.

The detection of high periods is carried out in the same way as done in Sec. III. Alike as

before, the zone drawn in shades corresponds to regions where the cable remains taut, at least

in steady state, for a monochromatic perturbation.

Fig. (29) depicts the qualitative diversity of behavior that can be produced in the heave

operation under the control system with respect to the wave amplitude. In this sense, it is noticed

that the variety of periodic solutions has been increased inside the stability region and decreased

outside it in comparison with homologous case without control. Additionally one observes that

the control imposes a tendency to chaos, however with damped energy. It is also appreciated a

signi�cative increment of the stable region L versus a comparatively. One important property of

the results shown in Sec. III was that the stability region is exclusively represented by period-one

solutions. Now in the controlled case, the appearance of high-period orbits and even chaos is

common.

Fig. (30) shows also a signi�cative extension of the stability region d versus with the same

characteristic as before. The tendency to chaotic behaviors is found out inside and outside the

stability region mainly for small and middle cable lengths.

Fig. (31) illustrates the stability in the region a versus at a mean depth. The increment

of the stability region is registered mainly for small wave amplitudes and large frequencies.

The reason because the control is not so much e ective is the fact pointed out in the previous

section about the limited energy of the thrusters and crane motor ,which are able to cope with a
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Figure 29: Comparisson of stability regions: ROV depth vs. wave amplitude for EA0 = 106[N]

and = 1[rad/s]. Top: without control. Bottom: with control
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restrained wave steepness ( a). The behavior diversity has not changed too much comparatively

inside the stability region.

Fig. (32) shows the region D versus EA0 for a given wave and depth. It re�ects the depen-

dence between ROV weight and volume, and cable sti ness. Also in this case, it was possible to

obtain an extension of the stability region. It is inferred that a great volume with a relatively

small cable sti ness is easy to controlled than otherwise.

The appearance of chaotic behaviors is very common in the controlled case even in the stability

region. One strange attractor is depicted in Fig. (33) with a cross section of its volume for

pccd = 10[m/s2]. The attractor shape is very common for other points considered in the study.

VII. Control performance

In this section an investigation of the overall control performance of the system in the sink-

ing/lifting operation is presented. The �rst experiments consist in prescribing a pro�le of the

desired depth to be followed in the shortest possible time, that cares for maximal cable strength

and avoids as far as possible entering the taut-slack region.

In Figs. (34)-(35) and (36)-(37) the pro�les of the reference Lref are the same and are built

up as ramps for sinking up to 100[m] from a starting depth L = 15[m] (i.e., d = 12[m]), pausing

and lifting again to the same depth at the beginning. The dynamics is subject to di erent

perturbations explained in the next.

In Fig. (34) the wave steepness amounts (a ) = 0.275[m rad/s]. The cable force is regulated

about the value Fref = 526[N]. It is seen that the force controllers are able to maintain the

oscillations quite small about this reference point. The cable tension �uctuates mainly about

singular points of the pro�le, i.e., when pccL(t) is discontinuous, otherwise it behaves smooth.

The ROV velocity pccd behaves underdamped during the changes. It is noticing that pccd has a

similar path as the reference velocity pccdref , except during a short period with high-frequency
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Figure 33: Construction of a strange attractor for the control system behaviour with a = 0.45[m],

= 4.11[rad/s], EA0 = 106 and L = 50[m]. Cross section for pccd = 10 [m/s2]

oscillations caused by transients of the equivalent mass-spring system. Fig. (35) shows the

evolution of the control actions on the ROV thrusters and crane motor, respectively. In the

�rst one, it is perceiving an increment of the energy of ut with even a saturation for a short

time. On the other side, the control action for the crane motor shows a continuous oscillatory

behavior with steps at the break points of Lref . The frequency of these oscillations correspond

to the wave frequency, which indicates that during the sinking/lifting of the ROV, the crane

motor attempts to follow the wave perturbation in order to care for the cable strength and

simultaneously diminish the error (dref d). In summary, the overall achievable performance in

this operation is of high quality.

The next experiment illustrated in Figs. (36)-(37), exempli�es the control behavior under a

larger wave steepness than in the previous case. It amounts (a ) = 0.4125[m rad/s]. The cable

force is regulated as before about the value Fref = 526[N]. In this case the oscillation of the force

in the transient phase is stronger than earlier but less than 20% of the reference value. The ROV

velocity pccd behaves more irregular than in the former case, but the overall performance of the
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= 0.55[rad/s] and EA0 = 106[N]
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Figure 35: Evolution of the cable length, square tension of the thrusters and tension of the crane

motor for a = 0.5[m], = 0.55[rad/s] and EA0 = 106[N]
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Figure 36: Evolution of the cable length, cable force and ROV velocity for a = 0.75[m], =

0.55[rad/s] and EA0 = 106[N]

operation is nevertheless very good. The evolution of the thruster excitation saturates during

the ascent and descent, and turns o in the pause. On the other side, the control action for

the crane motor saturates from time to time, recovering sometimes the low-frequency oscillation

with a wave-shaped appearance. The error (Lref L) is mainly perceived in the starting phase,

after an ascent or descent, however it amounts a maximal value less than 5% of the total change

of the length.

The next couple of �gures (38)-(39) and (40)-(41) show the control performance for the

regulation operation about a �xed depth dref = Lref b = 47[m] under wave perturbations.

In the �rst case, the control variables L, Fc and pccd show relatively small variations along

the time for a wave steepness (a ) = 0.387[m rad/s]. Also here it is seen the e ect of the

wave perturbation in the steady-state oscillation. The control action for the thrusters has a

fundamental component in the wave frequency and a small high-frequency oscillation produced

by the elongation of the cable. This e ect does not appear by the control action for the crane

motor, whose behavior is sine-shaped.

Figs. (40)-(41) depict the control performance for a signi�cative larger wave steepness (a )
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Figure 37: Evolution of the cable length, square tension of the thrusters and tension of the crane

motor for a = 0.75[m], = 0.55[rad/s] and EA0 = 106[N]
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Figure 38: Evolution of the cable length, cable force and ROV velocity for a wave amplitude

a = 0.45[m] and frequency = 0.86[rad/s] and EA0 = 106[N]
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Figure 39: Evolution of the cable, length, square tension of the thrusters and tension crane motor

for a wave amplitude a = 0.45[m] and frequency = 0.86[rad/s] and EA0 = 106[N]

than the case before, equal to 0.645[m rad/s]. In this case the behavior becomes chaotic for all

variables, however the control goal of maintaining the cable tense is achieved. Despite the almost

permanent saturation of the control action for the thrusters, the depth and length errors are less

than 2% of the reference values and the taut-slack phenomenon is quite afar.

VIII. Cable tension

The presence of the taut-slack phenomenon during the sinking/lifting operation of the ROV

demands a signi�cative stress resistance from the umbilical cable. The rampant rising and large

strengths may not only be the cause of premature fatigue but also of overcoming the cut resistance

of the cable. In this section, the cable tension is analyzed in qualitatively di erent stationary

behaviors of the ROV operation. To this end, some selected scenarios of the Figs. (29)-(32)

are picked up and their corresponding force evolution comparatively depicted. The comparison

involves the uncontrolled and the controlled systems in a common �gure.

Fig. (42) reproduces the evolution of the forces for a relatively small wave steepness equal

to 0.28[m rad/s]. After a transient period, the uncontrolled system enters the taut-slack zone
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Figure 40: Evolution of the cable length, cable force and ROV velocity for a wave amplitude

a = 0.75[m] and frequency = 0.86[rad/s] and EA0 = 106[N]
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Figure 41: Evolution of the cable, length, square tension of the thrusters and tension crane motor

for a wave amplitude a = 0.75[m] and frequency = 0.86[rad/s] and EA0 = 106[N]
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with evidence of hefty hauls of the cable. On the contrary, the controlled system can successfully

regulate the force about the reference in the taut zone.

The next four �gures illustrate the force evolution for a relatively large wave amplitude equal

to 0.75[m] and high frequencies, ranging from 0.86[rad/s] till 1.27[rad/s], and lengths in the

span starting at L = 4, 12[m] up to L = 50[m]. Fig. (43) represents the force progressing

under a wave steepness of (a ) = 0.645[m rad/s]. Similarly as before, in the control system

the cable remains tense and the force regulated within a relatively narrow band, while on the

other side, the uncontrolled dynamics of the system produces large and stark increments of the

tension of circa 10 times larger than in the controlled case. Figs. (44) and (45) characterize

a similar situation for an increment of the wave steepness to (a ) = 0.75[m rad/s] and two

di erent lengths. It is noticing that the control of the cable tension becomes more di cult with

increasing lengths, however, despite the increment in the error energy, the tension remains within

a band without the appearance of the taut-slack phenomenon. In Fig. (46), the wave steepness

represents (a ) = 0.9527[m rad/s]. This seems to be too large with respect to energy available in

the actuators to achieve the control goal. Thus, the taut-slack phenomenon can not be avoided

as well as in the uncontrolled system. Additionally, one notices much more hefty oscillations in
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Figure 43: Cable force comparisson for a = 0.75[m], = 0, 86[rad/s] and L = 50[m]. Top:

without control. Bottom: with control
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Figure 44: Cable force comparisson for a = 0.75[m], = 1[rad/s] and L = 4.12[m]. Top: without

control. Bottom: with control

the controller case than in the uncontrolled one.

The next three �gures, Figs. (47)-(49), illustrate the force evolution for a greater wave

amplitude than the previous cases, but with smaller wave frequencies. The wave energy remains

constant in all the cases. They exemplify the same experiments as earlier but with 3 di erent

lengths of L = 14, 22[m], L = 47, 66[m] and L = 73, 80[m]. In these runs, the control system can

regulate the force satisfactorily, however one notices that by increasing of the length, the limit

for cable slackness will be closer.
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Figure 45: Cable force comparisson for a = 0.75[m], = 1[rad/s] and L = 47, 66[m]. Top:

without control. Bottom: with control
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Figure 46: Cable force comparisson for a = 0.75[m], = 1.27[rad/s] and L = 50[m]. Top:

without control. Bottom: with control
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Figure 47: Cable force comparisson for a = 1[m], = 0.85[rad/s] and L = 14.22[m]. Top:

without control. Bottom: with control

F c
[N

] 
F c

[N
] 

t [s] 

0
2000
4000
6000
8000

10000
12000

50 100 150 200 250 300 350 4000
t [s] 

50 100 150 200 250 300 350 4000
200
400
600
800

1000

0

Figure 48: Cable force comparisson for a = 1[m], = 0.85[rad/s] and L = 47.66[m]. Top:

without control. Bottom: with control
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Figure 49: Cable force comparisson for a = 1[m], = 0.85[rad/s] and L = 73.80[m]. Top:

without control. Bottom: with control
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Figure 50: Cable force comparisson for a = 1.05[m], = 0, 86[rad/s] and L = 50[m]. Top:

without control. Bottom: with control

Fig. (50) displays an extreme situation where the wave steepness amounts a relatively large

value of (a ) = 0.903[m rad/s] for a middle length. Here the control system works successfully,

however the operation stays to the limit of the cable slackness.

Summarizing, in the majority of the experiments, the control system had success in reaching

the control goals. In contrast with the operation of the free system, whose dynamics enters usually

the taut-slack zone producing violent hauls of the cable, the control system can accomplish length

path-following and regulation quite satisfactory with bounded cable force.
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IX. Conclusions

In this paper the stability of an umbilical-ROV system under nonlinear oscillations in heave

motion was analyzed using numerical methods for the uncontrolled and controlled cases compar-

atively. Mainly the appearance of the taut-slack phenomenon on the umbilical cable produced by

the interaction of monochromatic waves with the ROV is particularly focused. Nonlinear elements

were considered in the dynamics in three models with di erent degrees of physical knowledge.

These encompass nonlinear drag damping, bilinear restoring force, radiation potential forces and

saturation of the actuators. It is concluded that the most complex model including all nonlinear

elements produces the widest qualitatively diverse behavior in steady state, even when the inte-

gration of radiation forces only contributes with improvements at super�cial depths. In order to

simplify the analysis, a ROV with spherical shape was selected and a nonlinear drag characteris-

tic for this shape was introduced in the model. This characteristic is variable with the Reynolds

number and presents a nonconvex zone just in the span of the operating ROV velocities.

The sinking/lifting operation in a wide interval of the cable length is characterized by the

appearance of the taut-slack phenomenon, which is described by hefty hauls of the cable with

tension magnitudes close to the tolerable limits. This unpredictable behavior was observed in

simulations of the uncontrolled ROV dynamics, mainly for signi�cative wave steepness and great

depths of operation. In the paper, a solution via control to avoid this phenomenon and in

consequence its negative e ects on the cable strength was presented. The control system design

is based on the composition of two criteria. First the cable strength is regulated about a desired

secure tension by pulling the extremes of the cable by means of the crane motor and ROV

thrusters interactively and independently of the sinking/lifting pro�le. The second criterion is

to design a velocity controller for the ROV that can compensate the nonlinearities of the drag

coe cients and restoring force. This was achieved by means of a reference-model controller that

speci�es the desired reference behavior by means of a dynamic model of third order. The features
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of diverse operations in steady state by means of the controlled system and the free system are

comparatively investigated under equal perturbations and parameter settings.

The comparative stability study is performed using physical bifurcation parameters and de-

tection methods of high periods based on Poincaré maps and analysis of Cauchy series. The

bifurcation parameters are divided into two sets, namely operation parameters (cable length,

wave amplitude and frequency, thruster force) and design parameters (ROV shape, mass and

cable sti ness). One of the main results is the construction of stability regions that are free

of these phenomenon on the free parameter space. They indicate a qualitative diversity in the

behavior and possible routes to chaos from the stability regions to outside.

From the results it was clear that stability regions can be extended considerably with the

use of control, e.g., the control system can avoid the slackness of the cable in a heave operation

despite the presence of wave perturbations. A particularity of the system is that stability regions

can exhibit not only period-one behaviors but also chaotic dynamics. The reason for that is

the dominance of the restoring force of the cable against the hydrodynamic drag force. The

limits between the taut and taut-slack zones are signi�cantly in�uence by the wave steepness,

whose square value represents the energy of the perturbation. From a practical point of view,

the e ectiveness of the control system proposed here begins to fall o when the energy of the

actuators is not su cient to counteract the amount of the energy of the perturbation.

Future work is dedicated to the analysis of the phenomenon �taut-slack� in 3 degree of

freedom in the operation of ROVs in estuaries, where the umbilical cable exerts harmonic tugs

due to combined e ects of steep waves with strong currents. The study of this dynamics is

important in the design of vision control systems in order for the vehicle to maintain speci�ed

courses with constant attitude and pitch angle. Afterwards, this analysis will be complemented

with experimental research in �ow canal.
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