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A genetic algorithm has been developed in order to estimate not only the main effects but also the
association of terms when analyzing the influence of experimental factors through a Plackett–Burman design
of experiments. The results for a series of simulated systems as well as experimental examples show
excellent agreement with a Bayesian-Gibbs approach. The Plackett–Burman design is usually employed for
screening, but its performance depends on the assumption that the interaction effects are negligible.
Simulations allow one to analyze the effect of increasing interactions on the significance of main factors
when Plackett–Burman designs are processed by neglecting factor associations.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Experimental design helps chemometricians to select sample points
for anexperiment, all plannedout in advance [1]. For this purpose,when
one can freely select the ranges and levels for all variables, several
designs have been developed whose main geometrical characteristic is
the symmetric position of the samples in the multivariate space.
Classical symmetrical designs are full factorial, fractional factorial,
central composite, Box–Behnken, etc. [2–4]. Usually, the main purpose
of an experimental design is to build a statistical model capable of
estimating the behavior of the system under study (the response),
starting from the factor values. These statistical models are mathemat-
ically described, in general, as a polynomial equation. A quadraticmodel
to the analyzed response including k factors, when enough factor levels
are available, is given by:

y = β0 + ∑
k

i=1
βixi + ∑

k

i=1
∑
k

j= i
βijxixj + e; ð1Þ

where y is the system response, the values of β are coefficients to be
estimated, xi, xj are the model factors, and e collects the model error.
Eq. (1) includes an intercept (β0), kmain factor effects (βi), [k(k−1)/2]
two-factor interaction terms (βij, i≠ j), and k quadratic terms (βii).
Three-factor interaction terms are rarely needed, as models of order

higher than two; in case of necessity it is more practical to shorten the
variable ranges in order to describe the data using a simpler relationship
of lower order.

An appropriate design will save time and effort by reducing the
number of runs and decreasing the model errors to a minimum for a
given number of experiments. Classical designs requiring only two
levels for each variable, such as a two-level full factorial design, are
only capable of describing linear relationships among the variables, as
well as associations between different factors. For fully describing a
second-order model [including the quadratic terms βii xi

2 in Eq. (1)] it
is necessary to have more than two levels for the relevant factors, and
consequently the number of runs is increased.

A two-level full factorial design requires a total of 2k runs to build a
model, where k is the number of factors. One of the most important
properties of the full factorial designs is its orthogonality, meaning that,
from the point of view of regression, the variables are not correlated. As
a consequence, the estimated β values do not influence each other. For
more than three factors, the number of runs increases rapidly; due to
this fact, fractional factorial designs have been devised, which save
experiments by dividing the number of runs by 2 (or powers of 2). As a
consequence, the possibility of independently estimating each model
term is lost, and only estimations of confounded effects can be obtained
[2,3]. In a general case, experimentalists may not suspect the existence
of specific interactions, but may want to know which factors are
significant and, at the same time, to verify whether some interactions
could be significant or not, in order to validate the calculation of the
main factors. This makes it difficult to set a specific fractional factorial
design from the start.
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An extremely economic design from the point of view of the number
of experimental runs is the Plackett–Burman (PB) design, which is also
a two-level orthogonal design [5]. A 12-experiment PB design, for
example, allowsone to studyup to11 factors. In comparison, a two-level
full factorial design requires 32 runs for 5 factors, 64 for 6 factors, etc.

Considering two-level second-ordermodels for evaluating onlymain
factors and two-factor interactions, i.e., those given by the following
expression:

y = β0 + ∑
k

i=1
βixi + ∑

k

i=1
∑
k

j= i + 1
βijxixj; ð2Þ

the number of PB runs is not enough towork out the complete systemof
equations for more than four factors (see below). As a consequence, PB
designs can only estimate the main factors, and the terms taking into
account the associations among them are confounded with the main
effects or other associations, but not determined individually. The
confounding pattern of the PB design is complex: every main factor is
partially confounded with all possible two-factor interactions not
involving the factor in question. Because of this fact, PB is described as
a screening design. It is important to notice that the validity of a PB
screening design to estimate the main factor effects depends on the
assumption that the interaction effects are negligible, and thus such
validity is often questionable [2]. The limits of this assumption have not
beenprecisely established, and there exists the difficulty of not knowing
the interactions beforehand. The subject is relevant since ignoring
interactions may lead to the missing of important effects, to the
incorrect consideration of irrelevant effects, or to themistaking of effect
signs, leading to wrong recommended factor levels.

Because PB designs are very appealing due to the apparent economy
of experimental runs, it is stimulating to look for strategies that may
allow practitioners to estimate the importance of interaction terms. In
this case, PB designs could be used to build models such as those
described by Eq. (2), besides its known utility as a screening design.
Interactions can be brought out in PB designs, when the number of
significantmain effects is small, by: 1) regression analysis guided by the
alias matrix [6], 2) the so-called frequentist approach and 3) Bayesian
analysis using Gibbs sampling (BG) [1,7–14]. Very recently, these two
latter approaches have been applied to some experimental systems by
Wong et al., concluding that the BG technique is preferable for finding
relevant associations when exploring factor influence using a PB design
[15].

In the present report we describe an alternative strategy to BG
analysis, based on a genetic algorithm (GA). Genetic algorithms are
promising numerical optimization techniques which mimic natural
selection processes [16–18], and can beused to obtain globalminima for
a complex multi-dimensional surface. In the context of experimental
design they have not been fully explored, although they have been
recently employed to aid in regression problems using supersaturated
designs [19].Wehave applied a suitably adaptedGA, incorporating both
the sparsity and heredity principles, to the analysis of simulated and
experimental PB designs including two-factor interactions. The results
to be described below are promising.

2. Strategies and methods

2.1. General considerations

As explained in the Introduction, the purpose of the present work
is to find suitable models, based on the experiments performed
according to a PB design, which are able to describe the most
significant terms (main factors and two-factor interactions). We take
as an example a 12-experiment, k-factor PB design. The complete
design matrix includes the k columns corresponding to the main
factors xi (i=1, 2,…, k), and the [k(k−1)/2] columns corresponding
to the interacting terms (xi xj) (for i≠ j). The total number of main and

interacting terms is [k(k+1)/2]. For kN4, this latter number is larger
than the number of runs required by the minimum PB design, and
thus the designmatrix is rank-deficient and cannot solve for all effects
directly.

Classically, interacting terms are neglected, and the 12×k design
matrixX, with columns corresponding to themain factors only, is full-
rank. It is employed to find the β coefficients through:

β = Xþy ð3Þ

where y is the vector of responses and the superscript ‘+’ stands for
the generalized inverse of a matrix. However, if interactions are
present, the model may lead to erroneous results concerning the
significance of the coefficients.

However, there are alternative models, which include some of the
main factors and also some of their two-factor interactions, whose
associated designmatrices are full-rank, and therefore they allow for a
direct least-squares solution of the corresponding model coefficients.
Selection of these reduced models follows the assumptions that:
1) only a small number of factors will usually be significant (factor
sparsity principle), and 2) significant interactions will occur between
factors when at least one of them is in itself significant (heredity
principle). The reduced models can be searched and guided by a
significant improvement in model fit, i.e., a decrease in the root mean
square error (RMSE), which is given by:

RMSE = jjy–XXþyjj = DOFð Þ1=2 ð4Þ

where X the designmatrix including bothmain and interacting terms,
and DOF the number of degrees of freedom, equal to twelveminus the
number of β coefficients to be estimated. It is assumed that the
reduced models fulfilling the above conditions will fit better than the
classical, main factors only, PB design.

Methods for performing the above task are: 1) Bayesian-Gibbs
analysis, 2) the frequentist approach and 3) the presently described
genetic algorithm, which are described in the next sections.

2.2. The Bayesian method

The method based on Bayesian statistics and Gibbs sampling has
been extensively described previously [2,7–11], and thus a brief
description will be given here. A simple and reduced expression of
Bayes theorem is the following [20]:

prob hypothesis jdata; Ið Þ αprob data jhypothesis; Ið Þ × prob hypothesis j Ið Þ ð5Þ

This expression shows the power of the Bayes relationship, and
relates the probability that the hypothesis be true given the data, to
the probability that would have been observed with the measured
data if the hypothesis was true. Although all the probabilities have
been made conditional to I, which implies the relevant background
information and assumptions one has about the system, it is often
omitted. Some terms in the Bayes theorem have formal names, then,
prob(hypothesis|I) is called the prior probability, and represent our
state of knowledge about the trueness of the hypothesis before the
current data have been analyzed. The prob(data|hypothesis,I) is the
likelihood function, which modifies the experimental measurements.
Both terms yield the posterior probability, prob(hypothesis|data,I),
representing our state of knowledge about the trueness of the
hypothesis in light of the data. A formal expression of the theorem,
equating the previous expression and omitting I, is:

π θ jyð Þ = f y jθð Þ:π θð Þ
∫f y jθð Þ:π θð Þdθ

ð6Þ

where y denotes the data and θ denotes the hypothesis.
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For our purpose, inference about θ can then be made using the
posterior distribution. Consider a general linear model:

y = Xβ + ε ð7Þ

whereX is themodelmatrix,β is a vector containing theβparameters of
Eq. (7) and ε∼N(0,σ2), is a vector of errors. For the variable selection
strategy, θ is a vector θ(β, δ,σ2)where δ specifies amodel inwhich δi=0
for statistically non-significant terms (βi→0) and δi=1 for the
significant ones. Then, the priors for θ in Eq. (6) are π(βi|δi). The prior
for σ2, which is related to the probability of π(βi|δi), is an inverted
gamma function distribution.

As stated above, δ specifies amodel, and if each δiwere independent,
the prior for δ would be:

π δð Þ = ∏
p + 1

i=1
pδii 1−pið Þ1−δi ð8Þ

where pi=prob(δi=1). In our problem, however, independent priors
are not realistic and hence hierarchical priors are established according
to the heredity principle. This principle establishes that the existence of
an association (xi xj) is only taken into account when either xi or xj is
present as significant factor.

The evaluation of the posterior in Eq. (6) is obtained using the
Gibbs sampling method, which is a Markov Chain Monte Carlo
technique [3 (p. 369)]. As a result of these calculations, a list is
obtained relating each term of the general linear model [Eq. (7)] with
the probability of its existence.

2.3. The frequentist approach and the genetic algorithms

In the frequentist approach, these three iterative steps are
followed: 1) the significant main factors are found using a model
which only includes linear terms in Eq. (2), 2) all possible two-factor
interacting terms involving at least one of the significant effects found
in the previous step are included in themodel and the significant ones
are identified by forward selection, and 3) the latter associations and
all linear terms are included, and the significant main factors are
identified by forward selection. The process is repeated until no
statistically meaningful changes are found in the model fit.

A genetic algorithm represents a more elaborate and efficient
version of the frequentist method. In a GA, a probabilistic approach
inspired in natural selection mechanisms is applied, employing binary
strings (chromosomes) containing geneswhich encode the experimen-
tal variables [21]. In thepresent case, an initial population is produced in
the formof an (X×Y) randombinarymatrix,whereX is the total number
of terms in Eq. (2) (main and two-factor associations), and Y is a
predetermined number of chromosomes. For the operation of the
heredity restriction, an association term is included if: 1) the cor-
responding gene encodes a ‘1’ in the binary matrix, and 2) either of the
corresponding main terms is included in the model as significant.

Once the Y different initial models are built, they are ranked according
to a given objective function to be minimized. Half of the chromosomes
having the best figures of merit are allowed to survive, mutate and
recombine to produce offspring. When a single-point crossover is
employed for chromosomerecombination, a randompoint isfirst selected
along a pair of parent chromosomes. The entire genetic information
encoded in one of the parents up to the selected point is then transferred
to the offspring, while the remaining genes are taken from the other
parent (an alternative information transfer operates in creating a second
offspring). After a number of generations in which the above scheme is
repeated, thefinal best chromosome (i.e., theone leading to theminimum
value for the objective function) is employed for model building.

In the present work, the GA was implemented starting with a
population of 20 chromosomes, initialized with random binary digits
with 20% probability for 1 and 80% for 0 values. The single crossover

scheme with 50% probability was employed for recombination (the
alternative multiple crossover procedure gave similar results), and a
probability of 0.05 was applied to mutations after offspring were
produced. The algorithm was stopped after 100 generations. The
population size and number of generations were estimated by trial
and error; for more complex systems (i.e., more active factors and
experimental runs) correspondingly larger values than those herein
employed might be required. Regarding the initialization scheme,
other alternatives were tried (all values set at 1, and all values set at
0), in all cases with analogous results to those reported in the present
paper. However, it should be noticed that these extreme alternatives
led to initial populations where all individuals correspond to
unacceptable solutions (rank-deficient when all values are set at 1
and empty when they are set to 0). Although the GA was able to find
reasonable solutions, even under these extreme initialization condi-
tions, it required more generations than the intermediate alternative.

The objective function to be optimized was the ratio of two RMSE
values, one corresponding to the fit of the experimental responses to
the current model and the second one to the fit of the classical PB
analysis, i.e., Eq. (2) with only linear terms included (herein called
RMSE0). Before starting the GA, the responses where all converted to a
scale with a minimum of 0 and a maximum of 1, and then mean-
centered, which removes the need of the intercept β0 in Eq. (2). All
models which were not full-rank where automatically discarded by
assigning an arbitrarily large RMSE value. The GA calculations were
repeated ten times for each of the analyzed cases. A histogram was
built registering the average value of coefficient terms over the ten GA
cycles, and finally the terms having average coefficients larger than a
certain tolerance (usually 0.05) were selected and included in a final
model (in the case of the two-factor interactions, this was done
provided they comply with the heredity principle). The least-squares
coefficients solving for this model were normalized to unit length and
reported with their associated standard deviations in order to judge
their statistical significance. Specifically, the confidence interval for
each coefficient was computed as [4]:

CI βið Þ = tν;α=2s βið Þ = tν;α=2 RMSE
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XTX
� �−1
h ir

ii
ð9Þ

where t is a Student coefficient for ν degrees of freedom (number of
experiments minus number of estimated coefficients) and a (1−α)×
100% confidence level, and s(βi) is the standard error in the estimation of
coefficient βi. A term is not considered significant when βi±CI(βi)
includes the value of zero.

2.4. Comparison of models

The above mentioned methods for model evaluation rely on the
improvement of the fit to Eq. (2). The predictive ability of different
models can be judged from the distribution of prediction errors when
they are used topredict a given response. In this sense, theRMSE is often
used as a simple criterion for scoring predictive abilities of models.
However, the question should be addressed whether selecting the
model with minimum RMSE is indeed the best answer. Therefore, in
order to check the significance of the assertion ‘smaller RMSE values’, a
statistical F test and also the Van der Voet's randomization test based on
t-testMonte Carlo simulationswere applied [22]. In the present case the
comparison involved the actual responses and those obtained by each of
the different methods (Bayesian-Gibbs, frequentist or GA) and by the
classical PB approach (i.e., neglecting interactions). For details on the
Monte Carlo calculations, see Ref. [22]. As regards the F test, the ratio
between both squared RMSE values was first computed, and the
associated probability was found with the corresponding degrees of
freedom (number of experimental runs minus number of adjustable
parameters). In both cases, significance was established if the
probability for the applied test was smaller than 0.05.
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3. Results

3.1. Simulated systems

Two series of four models, including five main factors each, have
been simulated. For the first of these models, the following expression
was employed to simulate the responses:

y1 = β1x1 + β3x3 + β5x5 + β13x1x3 ð10Þ

The β coefficients were selected so that factors 1, 3 and 5 were
significant, as well as an association between two significant main
factors (1 and 3). Factors 2 and 4 were not considered significant, as all
associations except 1–3. In the four y1models, the values ofβ1,β3 andβ5

were kept constant at 1,−1 and 1 respectively, while β13 was given the
values1, 2, 3 and4. The vector of coefficientsβwas thennormalized (see
systems 1–4 in Table 1), and the models were analyzed at two-factor
levels (−1 and 1), according to a PB design of 12 runs. Once the twelve
responses were calculated, they were scaled (in the range of 0–1) and
random Gaussian noise N(μ,σ2), μ=0, σ=0.05 was added. Then the
models were evaluated in order to assess the terms recovered as
statistically significant. Three different methods were used to work out
the models: direct estimation of effects through critical errors from PB
chart, the GA method and the Bayesian method.

Table 1 shows the results using classical PB analysis: the PB column
indicates with ‘Yes’ the main factor effects that are higher than the
critical error, which was calculated as:

Cerr = td;α=2jjedjj = d ð11Þ

where td,α/2 is as in Eq. (9), ed is the vector of effects of the dummy
factors and d is the number of dummy factors [2, pp. 697–698].

The results of Table 1 show that for systems 1–4, increasing the
relative weight of the interaction β13 leads to increasingly wrong
performances of the PB evaluation.Moreover, the correlation coefficient
r2 decreases from ca. 1 when the interaction is absent to ca. 0.40 for the
maximum β13 studied, indicating how the fit is degraded when strong
two-factor interactions are present. Fig. 1A shows the progression of the
five standardPBcoefficients and thecritical error for increasingvalues of
β13 in the studied range (normalized values are shown in Fig. 1A). The
shaded area in Fig. 1A is bounded by the critical error [Eq. (11)], with
significant terms having β values outside this region. Fig. 1A shows the
standard PB evaluation of the main factors starts to fail when the
association term β13 is ca. 0.55, i.e., a squared weight of about 30%
(computedwith reference to the sum of squared β coefficients, which is
equal to unity). Fig. 1A also shows a progressive decrease of the
estimated value for β5, indicating how this term looses significance
when PB analysis is applied without taking into account the (x1x3)

Table 1
Results for the eight simulated systems studied with standard Plackett–Burman (PB),
Bayesian-Gibbs (BG) and genetic algorithm (GA) analyses.

Term β PB GA BG β PB GA BG

System 1 System 2

x1 0.50 Yes 0.48 1.000 0.38 Yes 0.47 0.873
x2 0.00 No − b0.001 0.00 No − 0.009
x3 −0.50 Yes −0.47 1.000 −0.38 Yes −0.36 0.919
x4 0.00 No − b0.001 0.00 No − b0.001
x5 0.50 Yes 0.49 1.000 0.38 No 0.39 0.871
x1 x3 0.50 − 0.55 1.000 0.76 − 0.71 0.919

System 3 System 4

x1 0.29 No 0.28 0.734 0.23 No 0.21 0.462
x2 0.00 No − 0.015 0.00 No − b0.001
x3 −0.29 No −0.28 0.871 −0.23 No −0.19 0.677
x4 0.00 No − 0.023 0.00 No − 0.003
x5 0.29 No 0.28 0.364 0.23 No 0.21 0.062
x1 x3 0.87 − 0.87 1.000 0.92 − 0.93 1.000

System 5 System 6

x1 0.50 Yes 0.50 1.000 0.38 Yes 0.38 0.999
x2 0.00 No − b0.001 0.00 No − 0.001
x3 0.50 Yes 0.49 1.000 0.38 No 0.40 0.999
x4 0.00 No − 0.003 0.00 No − 0.008
x5 −0.50 Yes −0.52 0.998 −0.38 No −0.43 0.992
x1 x2 0.50 − 0.48 0.998 0.76 − 0.71 1.000

System 7 System 8

x1 0.29 No 0.32 1.000 0.23 No 0.27 1.000
x2 0.00 No − b0.001 0.00 No − b0.001
x3 0.29 No 0.29 0.651 0.23 No 0.23 0.122
x4 0.00 No − 0.004 0.00 No − b0.001
x5 −0.29 No −0.30 0.670 −0.23 No −0.23 0.150
x1 x2 0.87 − 0.85 1.000 0.92 − 0.91 1.000

The β values indicate the original coefficients employed in Eq. (10) to simulate the
responses, PB the results of standard Plackett–Burman analysis (incorrect results in
boldface), GA the significant coefficients provided by the genetic algorithm, and BG the
Bayesian-Gibbs probabilities associated to each term. For BG calculations, the following
parameters were used: iterations, 5000, inverse Wishart parameters, 2 and 0.01, prior
for main effects, 0.1, probability for the interaction ij if both i and j are present, 0.5,
probability for the presence of ij if either i or j is present, 0.5, probability for the presence
of ij if neither i nor j are present, 0.00001.

Fig. 1. A) Changes in the values of the five coefficients (corresponding to the five main
factors) obtained by standard PB analysis of the simulated system 3, as a function of
increasing interaction between factors 1 and3 [normalizedβ13 values in Eq. (10)]. B) Same
as A) for system 7, as a function of increasing interaction between factors 1 and 2
[normalizedβ12 values in Eq. (12)]. The shaded area is bounded by the critical error values
[see Eq. (11)]. Coefficients outside the shaded area are considered as significant.
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interaction. Moreover, beyond the limit β13=0.85 the sign of the
coefficient is reversed. This result can be explained by the relationship
among coefficients in this particular system. If β50 is the coefficient
corresponding to the linear term x5 when standard PB analysis is
applied, and β5 and β13 are the estimated coefficients for a model
described by Eq. (10), then it can be shown that:

β50 = β5–β13 = 3 ð12Þ

which can be traced to the fact that (x1x3) is partially confounded with
all linear terms except 1 and 3, i.e., with x2, x4 and x5 (seeRef. [2], p. 351).
Since only x5 is significant, the correlation between the interaction
(x1x3) and the main term x5 is:

x1⋅x3ð ÞTx5 = –1 = 3 ð13Þ

where · is the Hadamard or element-wise product operator. This
explains the (−1/3) factor in Eq. (12) in front of β13, which shows that
under strongβ13 interactions, β50 tends to decrease, up to a pointwhere
it can be (incorrectly) considered as non-significant (Fig. 1A).

It is also worth noting that the importance of both β2 and β4

increases with increasing interaction between factors 1 and 3, with
the concomitant risk of misinterpreting the spurious factors 2 and 4 as
significant (Fig. 1A).

It is interesting to note that the frequentist approachmentioned in
Section 2.3. cannot be applied to some of the systems in Table 1, e.g.,
those inwhich none of the standard PB coefficients are significant (i.e.,
systems 3, 4, 7 and 8). However, in all cases cited in Table 1,
application of the GA method allows one to significantly improve the
fit, by combining main factors and associations fulfilling both the
factor sparsity and the heredity principles. Fig. 2A shows how the ratio
(RMSE/RMSE0) decreases for a typical GA run corresponding to
system 3 in Table 1, while Fig. 2B displays the final results in the form
of a histogram, where the significance of the average coefficients can
be graphically gathered. For the analysis of this particular system 3,
the value of r2 increases from 0.372 (standard PB analysis) to 0.982
(final GA model), while the RMSE decreases from 0.33 (standard PB
analysis) to 0.051 (final GA model), the latter being nicely compatible
with the degree of response noise introduced in the system (0.05
units). Furthermore, GA allows one to find a full-rank model whose
expression is identical to the response generating expression (10), i.e.,
including only factors 1, 3 and 5, and the association 1–3.

Table 1 collects the significant model terms according to GA
calculations, in the form of normalized values for the coefficients for
all systems. As can be seen, correct solutions were found in the
simulated cases using GA analysis, including the finding of the
significant interacting term (x1x3), apart from the significant main
factors (x1, x3 and x5). Agreementwas found in the absolute values of the
coefficients for the significant terms, and also in their signs (see Table 1).
The comparison of the RMSE values with the standard PB RMSE0 value
using both the F test and the randomization test discussed above led to a
significant improvement in all cases (pb0.05). It is important to remark
that amodel such as that described by Eq. (2), which hypothetically has
15 different coefficients, has been analyzed with only 12 runs.

The results from BG analysis are also quoted in Table 1, in the form
of posterior probabilities associated with the different terms. The
results agree with those provided by GA. However, it may be noticed
that BG probabilities associated with the important factor x5 appear to
be rather small for the strong interacting systems 3 and 4 (Table 1).

The second series of four models was generated from the following
expression:

y2 = β1x1 + β3x3 + β5x5 + β12x1x2 ð14Þ

In these systems, the values ofβ1, β3 and β5were kept constant at 1, 1
and−1 respectively, while β12 was given the values 1, 2, 3 and 4. Then a

similar approach to that discussed above for y1 models was applied.
Notice that in thismodel the interaction takes place between a significant
(x1) and a non-significant (x2) main factor. Applying the heredity
principle should allow the different methods to find this interaction.

Standard PB evaluation leads to the results quoted in Table 1. As
before, increasing the interaction leads to increasingly incorrect
results regarding the significance of the main factors. Fig. 1B shows
the changes in the standard PB coefficients and critical error for
increasing the values of β12. The standard PB evaluation starts to fail
when the association term β12 has a squared weight of about 30%.
Fig. 1B also shows a progressive loss of significance for the important
factors β3 and β5, and, beyond the limit β12=0.85, a reversal in the
signs of these two coefficients. Interestingly, the irrelevant factors β2

and β4 appear to gain importance as β12 increases, which may lead
them to be confused with important effects.

GA analysis leads to correctly identifying the main factors and the
relevant interaction, as can be seen in Table 1. Again, the signs and
values of the coefficients agree well with those employed to generate
the simulated responses. The least-squares fit did also significantly
improve in comparison with standard PB analysis, leading to all quoted
coefficients in Table 1 to be significant. Finally, the comparison of the
RMSE values with the standard PB RMSE0 value using both statistical
tests discussed above led to significant improvement in all cases.

Fig. 2. A) Evolution of the objective function with the generations, during the ten runs of
the genetic algorithmwhich corresponds to systemno. 3 in Table 1. The objective function
is the ratio of RMSE for the current model and the RMSE0 for the standard PB analysis.
B)Histogram registered after calculationswith the genetic algorithm corresponding to the
same system. The bars represent the average coefficients found after ten GA cycles.
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In the case of BG analysis, as can be seen in Table 1, general agreement
is foundwith the use of the GA, except perhaps in systemswith strong 1–
2 interactions, where the contribution from the significant main terms 3
and 5 is found to be comparatively smaller than x1 and (x1x2).

3.2. Real systems

3.2.1. Cast fatigue experiment
An experimental example concerning cast fatigue has been discussed

byWu [2], and originally by Hunter et al. [23]. In this experiment, seven
factors (named A to G) have been studied as main factors by Hunter
through a PB design of 12 runs. Standard PB analysis gives F as the only
significant main factor. The simple model implied by this result, i.e.:

Z = 5:73 + 0:46F ð15Þ

where Z is the estimated response, gives an RMSE of 0.55 units (ca. 10%
with respect to themean response) and r2=0.67.Wu did also consider
the interactions using the same data set, concluding that the significant
termswere the6th (F) both asmain factor andas an interactionwith the
7th factor (G), i.e., FG [2].We analyzed again these results using both BG
and GAmethods. Aswe remarked previously, in this case the number of
hypothetical terms of amodel obeying Eq. (2) is larger than the number
of PB runs.

The application of BG analysis confirms the result obtained by Wu,
with a probability for the F factor as 0.973, and for the interaction FG as
0.951. Theprobability for themain termD,whichwas carefully considered
by Wu, was 0.065 and all the hypothetical two-factor interaction terms
have probabilities of less than 0.05 (readers interested in further details
may refer to Ref. [2]).

The outcome of the GAmethod is in agreement with these previous
results. The fit to models which include interactions among factors
considerably improves in comparison with the standard PB analysis,
with the largest coefficients corresponding to the terms F (0.72) and FG
(−0.66) (normalized β values are given in parenthesis), both of which
are significant. Furthermore, a small contribution fromDwas also found
(the normalized β is −0.19), which does also appear to be significant.

A model including only F and FG terms leads to the following
expression:

Z = 5:73 + 0:46F−0:46FG ð16Þ

yielding RMSE=0.26 units (4.5%) and r2=0.945. This implies an
important improvement in fit with regard to traditional PB analysis.

On the other hand, including the smaller term D leads to the
following model:

Z = 5:73−0:17D + 0:46F−0:46FG ð17Þ

which provides RMSE=0.20 units (3.5%) and r2=0.979.
Application of Van der Voet's randomization test leads to the

conclusion that themodel shown in Eq. (16) is indeed significantly better
than standard PB analysis (p=5×10−4). However, comparison of the
RMSE furnished by the model expressions (16) and (17) gives p=0.19,
indicating that the latter is not significantly better than the former. Hence,
the inclusion of D does not imply a statistically significant better fit.

Using F test considerations, similar conclusions are reached: while
the RMSE value for Eq. (16) is significantly smaller than for Eq. (15)
(p=2×10−3), the comparison of RMSE values for Eqs. (16) and (17)
implies that they are statistically undistinguishable (p=0.17).

3.2.2. Adsorption of arsenic by biogenic hydroxyapatite
A study about the arsenic adsorption by biogenic hydroxyapatite in

water has been carried out by Czerniczyniec et al., with the intention of
developing a technique for reducing the concentration levels of As in
drinking water [24]. The influence of five factors on the adsorption
performance was analyzed using a PB design of 12 runs. The factors

were: pH (H), water hardness (I), alkalinity (J), calcination temperature
of bones (the source of biogenic hydroxyapatite, K) and salinity ofwater
(L). Table 2 shows the PB experimental chart. When applying standard
PB analysis, salinity (L) appears to be the only significant factor, leading
to RMSE=90 ppm (11%) and r2=0.672, i.e., a rather poor fit.

If the frequentist approach is applied to this experimental system,
one starts by finding the only significant effect by standard PB analysis,
which is L (step 1). Then the fit tomodels having L and all possible two-
factor associations including L are considered (step 2). However, this
leads to four models, all having a similar poor fit, meaning that in this
case the frequentist approach is not able tofindany relevant interaction.

The application of the GA approach to this system provides
interesting results concerning factor associations. Table 3 shows that
the most significant coefficient found by GA is L. The interactions HI
and KL are also considered important by the GA. Additional terms and
interactions such as I, HL, IK and IL do also appear to play a role.
Including the significant GA terms leads to the model:

W = 795:0–39:2I–82:3L + 49:2HI– 37:2HL + 27:3IK
+ 21:3IL––58:8KL

ð18Þ

where W is the estimated response. This gives an improved fit,
because RMSE decreases to 15 ppm (2%) and r2=0.997 are obtained.
The randomization test indicates that the fit improvement by using
Eq. (18) is significant over standard PB analysis (p=2.5×10−3). An
analogous conclusion is reached using the F test (p=2×10−3). This
implies that factors I, K and H should be considered for subsequent
research phases (i.e., optimization), a result which does not follow
from standard PB analysis. The weights of the significant association
terms provided by GA results may help to explain the unsuccessful

Table 2
PB design of the adsorption of arsenic by biogenic hydroxyapatite in water.

Factor Unit Level + Level− Run H I J K L Response

pH 8.6 6 1 + − + − − 892
Hardness ppm 180 30 2 + + − + − 995
Alkalinity ppm 250 90 3 − + + − + 722
Temp. calc. °C 900 500 4 + − + + − 952
Salinity M 0.5 0.05 5 + + − + + 670

6 + + + − + 736
7 − + + + − 805
8 − − + + + 744
9 − − − + + 712

10 + − − − + 736
11 − + − − − 650
12 − − − − − 926

H = pH, I = hardness, J = alkalinity, K = temperature of calcination, L = salinity.
Response = As concentration in ppm.

Table 3
Results obtained using Bayesian-Gibbs (BG) and genetic algorithm (GA) analysis for the
five factors influencing the arsenic adsorption by biogenic hydroxyapatite in water.

Main factors Term BG probability GA coefficient

pH H 0.302 −
Hardness I 0.419 −0.34
Alkalinity J 0.041 −
Calcination temperature K 0.095 −
Salinity L 0.826 −0.62

HI 0.404 0.35
HJ 0.010 −
HK 0.014 −
HL 0.265 −0.30
IJ 0.048 −
IK 0.061 0.25
IL 0.053 0.17
JK 0.008 −
JL 0.135 −
KL 0.150 −0.45

BG parameters as in Table 1.
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performance of PB to this case. Fig. 3 shows the changes in standard PB
coefficients which are expected for a hypothetical system having
βI=βL /2 (both negative), and increasing values of the principal
associations βKL=−βHI (βHI positive), i.e, similar to the presently
studied one. As can be seen, the standard PB value for term I looses
significance when the normalized interaction coefficient is larger than
0.38, which is attained in the experimental system (Table 3).

Table 3 shows the corresponding BG results for this design, which
reveal that salinity (L) is the most important main factor, but pH (H)
and hardness (I) are also significant. Furthermore, two relevant
interactions appear for the pair of factors pH-hardness (HI) and pH-
salinity (HL), as well as two additional, minor interactions (JL and KL).
A model including all these terms leads to:

W = 795:0 + 18:9H– 42:3I– 91:3L + 48:9HI–27:1HL
–4:6JL–53:4KL

ð19Þ

which furnishes RMSE=50 (6.3 %), r2=0.934, indicating an apparent
worse fit in comparison with the GA model, a fact which is confirmed
by application of the randomization test for the comparison of RMSE
values (p=2.5×10−3) and also by the F test (p=2×10−3).

This is a good example where BG and GA can find not only the
main factors hidden by the associations, but the associations
themselves. Overall, however, the results tend to favor the GA
calculations for this system. The present results are confirmed by a
previously published report where a Doehlert design with a larger
number of factor levels was processed with an artificial neural
network [24]. This latter work showed that salinity (L) is the major
variable affecting the efficiency of the arsenic immobilization process,
with the following significant interactions: pH-salinity (HL), pH-
hardness (HI), hardness-salinity (IL) and hardness-calcination tem-
perature (IK). These more elaborate results, requiring a larger number
of experiments, are in good agreement with those furnished by GA
analysis of the simpler, 12-experiment PB design.

4. Conclusions

A study about the possibility of using the Plackett–Burman
experimental design to build models that include associated terms
has been carried out. In this regard, Bayesian-Gibbs analysis provides
an efficient tool for estimating the significant terms, while an
alternative genetic algorithm has the ability to provide the values of
the model coefficients directly. The agreement in the estimation of
terms between these two latter techniques is satisfactory. Regarding
the use of the Plackett–Burman design for screening, it seems very
risky to directly apply it for estimating main factors without the
knowledge of whether the associated factors are negligible or not.
This inconvenience can be solved by applying any of the presently
discussed methods (Bayesian-Gibbs or genetic algorithms) to the
same data set. From this point of view, the Plackett–Burman design
could not only be considered as a screening design, but as a design
which allows one to build models with a great economy of runs,
provided it is complemented with the appropriate approaches for
uncovering factor interactions.
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