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Abstract  15 

Agriculture accounts for about 70% of the fresh water use in the world, dominating 16 

rainfed production systems. As meeting future food demand will require an increase 17 

in crop production, new techniques are necessary to monitor the spatial variability of 18 

agricultural water use. However, the use of remote sensing for the water footprint 19 

estimation is limited. This study aims at evaluating the spatial variability of the soil-20 

water consumption in soybean crops, also termed as green water footprint (WFgreen), 21 

in a sector of the Argentine Pampas using satellite data. WFgreen was evaluated at 22 

spatial resolution of 250 m, estimating the soil water availability through the 23 

evaporative fraction and crop yield from Moderate-Resolution Imaging 24 

Spectroradiometer (MODIS/Aqua) data. In the analysed soybean plots, the WFgreen 25 

varied from 900 m³ t-1 to 1800 m³ t-1. The preliminary comparison of the method with 26 

field measurements showed a RMSE=494 m3 t-1 and Bias=-410 m3 t-1, respectively. 27 

The high spatial variability reflected the heterogeneity of soil-water use efficiency. 28 
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The proposed technique can be useful to obtain WFgreen maps at medium spatial 29 

resolutions (250 m - 1000 m). Also, it can be applied in regions with poor ground data 30 

coverage to estimate the WFgreen, after a parameterization of the model. The 31 

contribution to our understanding of the relationship between soil-water availability, 32 

rainfed-crop productivity and then WFgreen is expected. 33 

Keywords: Water Footprint, Evaporative fraction, Crop Yield, Efficient agriculture 34 

1. Introduction 35 

According to FAO projections, in order to meet the food demand by 2050, the 36 

productivity of existing farmlands needs to increase. This production growth should 37 

be accompanied by an efficient use and preservation of natural resources, including 38 

water, to prevent future scarcity (FAO, 2009, 2017; Xinchun et al., 2017). Currently, 39 

agriculture is responsible for 70% of freshwater use around the world (FAO, 2016), 40 

mainly by rainfed crops (Alexandratos and Bruinsma, 2012; Tadesse et al., 2015). 41 

Rainfed systems occupy approximately 80% of farmlands and generate 60% of the 42 

world food (IIASA/FAO, 2010; Alvarez et al., 2016). 43 

In Argentina, only about 15%-20% of the cropland is irrigated. Rainfed systems are 44 

dominant in Argentine Pampas (AP) (Viglizzo et al., 2001; Andrade et al., 2017), with 45 

soybean as the main summer crop (Viglizzo et al., 2004, Viglizzo and Frank, 2006; 46 

Manuel-Navarrete et al., 2014; Ferraro and Gagliostro, 2017). Argentina produces more 47 

than 18% of the world soybean production, being the third world exporter of grains 48 

and soy-based products (flour, oil), while 88% of the Argentinean production is 49 

generated in the AP (Ybran and Lacelli, 2016; MAGyP-Argentina, 2018; Bolsa de 50 

Comercio de Rosario, 2020). The increasing demand for food and fibres has led to the 51 
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intensification and expansion of soybean production (Viglizzo and Frank, 2006; 52 

Vazquez and Zulaica, 2014). There has been a strong pressure on the environment and 53 

natural resources, including water resources, limiting their availability for other uses 54 

and even competing with the ecological flow (Ghersa et al., 2002; Vazquez and Zulaica, 55 

2014). In order to move towards a sustainable crop production, efficient fertilization 56 

techniques, conservation tillage practices and efficient use of freshwater resources 57 

should be taken into account. Thus, the quantification of the soil-water involved in 58 

rainfed crop production and its spatial variability is required to evaluate and optimize 59 

its use in such systems (Galli et al., 2012; Jackson et al., 2015; San Luis Agua, 2015; 60 

Quinteiro et al.,2019). 61 

The water footprint (WF) concept, and particularly the green water footprint (WFgreen) 62 

indicator, is useful to analyse soil-water availability and water use efficiency. The WF 63 

is a multidimensional indicator that shows the volumes of water consumed by a 64 

product or activity, considering the type of water use: green water or soil water; blue 65 

water or surface and groundwater; grey water, or polluted water (Hoekstra and Hung, 66 

2002; Hoekstra, 2003; Chapagain and Hoekstra, 2004; Hoekstra et al., 2011). The WF 67 

consists of three components: a) green water footprint (WFgreen), which represents the 68 

rainwater insofar as it does not become run-off and remaining available to the plant 69 

use as soil moisture that is exclusively consumed through evapotranspiration process 70 

(ET), b) blue water (WFblue), refers to the surface water or groundwater consumed by 71 

plant, and c) grey water (WFgrey), is the volume of freshwater that is required to 72 

assimilate the load of pollutants given natural background concentrations and existing 73 

ambient water quality standards (Hoekstra et al., 2011).  74 
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Over the last few decades, remote sensing techniques have been suggested to estimate 75 

WF (Romaguera et al., 2010; Toulios et al., 2013; Mekonnen and Hoekstra, 2014; 76 

Hoekstra, 2017; Quinteiro et al., 2018). The high temporal and spatial coverage of 77 

satellite missions can complement the calculation of WFgreen in regions with poor 78 

ground data. Although water productivity, which is calculated as the inverse equation 79 

of WFgreen, has been obtained from remotely sensed data in different studies (e.g. Cai 80 

et al., 2009; Bastiaanssen and Steduto, 2017; Amarasinghe and Smakhtin, 2014; de 81 

Oliveira Costa et al., 2020), the estimation of WFgreen requires more analysis. 82 

Romaguera et al. (2010) and Toulios et al. (2013) showed the potential of remote 83 

sensing to calculate the parameters involved in WFgreen.  84 

Other studies of WF have contributed to the calculation of ET, but not to the 85 

estimation of crop yield (Y). Romaguera et al. (2010) proposed a remote sensing 86 

model to obtain WFgreen and WFblue in Egypt, based on mapping irrigated surfaces and 87 

soil water balance. Such method incorporates multi-source data and low spatial 88 

resolution (10000 m) and simulates continuous data for the entire crop growth cycle 89 

from certain crop stages. Also, Y was taken from official statistics. Romaguera et al. 90 

(2012) proposed a model for green water evapotranspiration (ETgreen) and blue water 91 

evapotranspiration (ETblue) calculation from the Global Land Data Assimilation System 92 

(GLDAS). Karantzalos et al. (2015) compared empirical methods and the global 93 

evapotranspiration product from MODIS (MOD16) for WFgreen calculation in Vasileia 94 

river basin for 4 years over cropland, wood and grassland. However, they did not 95 

consider different crop types and their phenology. Also, studies as Romaguera et al., 96 

(2010); Karantzalos et al., (2015); Ortiz, (2016) proposed the use of the MODIS global 97 

evapotranspiration product (MOD16) for ETgreen calculation. Different authors have 98 
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reported the low performance of such product, with RMSE about 2-13 mm 8 day-1 99 

(0.25-1.63 mm per day) and 4-21 mm 8 day-1 (0.50-2.63 mm per day) for actual and 100 

potential evapotranspiration, respectively (e.g. Kim et al., 2012; Autovino et al., 2016; 101 

Degano et al., 2018a; 2018b). 102 

Data of Y at medium spatial resolution is crucial for the calculation of WFgreen. Also, 103 

given that continuous ground measurements of Y are frequently scarce, different 104 

remote sensing methods based on optical and thermal data have been developed (e.g. 105 

Anderson et al., 2016; Holzman and Rivas, 2016; Shrestha et al., 2017; Holzman et al., 106 

2018). Recently, the relationship between a water vegetation stress index and Y in AP 107 

has been tested, with expected errors about 20% (Holzman et al., 2014b; Holzman et 108 

al., 2018). 109 

Another group of studies (e.g. Siebert and Doll, 2010; Mekonnen and Hoekstra, 2010; 110 

Mekonnen and Hoekstra, 2011; Mekonnen and Hoekstra, 2014) uses the grid method 111 

for WF estimation at global scale with a spatial resolution of 10000 m (10000 ha). 112 

Input data (rainfall, reference evapotranspiration, soil and crop parameters) to 113 

compute ETgreen, ETblue are obtained from a grid covering the whole world and Y 114 

comes from official statistics. Although these studies have pioneered the use of remote 115 

sensing for the calculation of the WF, the coarse spatial resolution and the 116 

combination of multi-source data with different spatial and temporal resolutions can 117 

produce biases derived from data integration (Bastiaanssen and Steduto, 2017; de 118 

Oliveira Costa et al., 2020). In this context, it is necessary to develop methods with 119 

finer spatial resolution and reduced multi-source data. 120 

In this framework, the aim of this study is to assess the spatial estimation of soybean 121 

WFgreen from satellite data in Southeast AP at a spatial resolution of 250 m (~ 6.25 ha). 122 
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An alternative approach to the traditional methods that considers the calculation of 123 

evaporative fraction (EF) and Y from remotely sensed data is proposed. In addition, 124 

this study can be a down-to-earth contribution to the WF calculation of soy-based 125 

products consumed around the world, which use imported Argentine soybean as raw 126 

materials. 127 

2. Materials and methods 128 

2.1. Study area 129 

The study was carried out in Tandil county, Buenos Aires province, located in the 130 

Southeast of AP, covering an area of 4935 km² (Fig. 1a). The central area of Buenos 131 

Aires province is characterized by a humid-sub humid climate (Kottek et al., 2006). 132 

The average annual precipitation is approximately 1000 mm, with sporadic water 133 

deficit during December, January and February (which can affect Y of summer crops) 134 

and water excess distributed from March to August. The interannual variability 135 

determines occasional droughts and floods, producing noticeable Y fluctuations 136 

(Holzman et al., 2014b; Ares et al., 2016; Holzman et al., 2018). The average annual 137 

temperature is 16 °C and the potential evapotranspiration is about 1200 mm 138 

(Holzman et al., 2014a). The main soil order is Mollisol, characterized by a fertile 139 

mollic epipedon, high water retention capacity (≈170-220 mm at 0.8 m depth) and 140 

good cropping conditions (GeoINTA, 2020). These climatic and soil characteristics 141 

have favoured the increase of agricultural activities and the displacement of other 142 

uses as livestock (Viglizzo and Frank, 2006; Vazquez and Zulaica, 2014). Currently, 143 

agriculture is based on a few rainfed crops, with similar management practices 144 

throughout the region, being wheat and soybean the most representative at regional 145 

scale (Ybran and Lacelli, 2016; MAGyP-Argentina, 2018). 146 
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Field measurements were conducted in a plot (“La Campana", Tandil, 37° 17'S, 58° 147 

56'W, 152 m.a.s.l, Fig. 1b) of 36 ha within the study area. In addition, 8 plots were 148 

used to perform in situ WFgreen estimates (Fig. 1a). In the 9 plots, the soil type 149 

corresponds to a Typic Argiudoll with clay loam soil texture (GeoINTA, 2020), covered 150 

with soybean crop. The sowing and harvest dates were similar to those recorded in 151 

"La Campana" (15/11/2014 and 02/04/2015, respectively), being such dates the 152 

characteristic period of soybean crop growth in the region (Bolsa de Comercio de 153 

Rosario, 2020). There was no application of fertilizers, due to the previous inoculation 154 

of the seed. These plots were chosen because of the field data availability, typical 155 

physical characteristics (e.g. soil type, rainfall) and agricultural practices (e.g. 156 

fertilization, crops rotation) representative of the study area. 157 

 158 

Figure 1. a. Location of Tandil county in Southeast of Argentine Pampas, (Landsat 8-Operational Land Imager, 159 

01/04/2015, RGB 543); b. Soybean plot located in "La Campana", where the energy balance station (EBS1) was 160 

installed for field measurements; c. Energy balance station located on reference cover (EBS2). 161 

 162 

2.2. Field measurement 163 

The calculation of WFgreen at plot scale was carried out considering the Y data reported 164 

in the plots by farmers. The data recorded by two energy balance stations (EBS) of the 165 

Instituto de Hidrología de Llanuras and additional data from Tandil Station (Servicio 166 

Meteorológico Nacional Argentino, 2018) were used. EBS1 is located in "La Campana" 167 

(Fig. 1b), from which only data of NDVI and EF were used. EF calculation in the 168 

remaining 8 plots was generated using precipitation data (Pp) recorded in the plots, 169 

air temperature (Ta), air relative humidity (RH), wind speed (u) measured by Servicio 170 
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Meteorológico Nacional Argentino, Tandil Station (37° 14´S, 59° 15´W, 175 m.a.s.l.) 171 

and texture, structure and soil water capacity data obtained from GeoINTA, (2020). 172 

EBS2 is located on a reference surface (Allen et al., 1998; 2006) in the campus of the 173 

Universidad Nacional del Centro de la Provincia de Buenos Aires (37° 19´S, 59° 05´W, 174 

211 m.a.s.l.) (Fig. 1c). In EBS2 the daily average values of net radiation (Rn), Ta, RH, u 175 

were selected for the estimation of reference evapotranspiration (ET0). Patm (kPa) 176 

data were obtained from Servicio Meteorológico Nacional Argentino, Tandil Station.  177 

The EBS record at 15-minute intervals data of Rn, wind speed, Ta and RH, soil heat flux 178 

(G), soil moisture and temperature, land surface temperature (Ts), Normalized 179 

Difference Vegetation Index (NDVI), among other variables. Rn was measured by a 180 

CNR-1net radiometer (Kipp and Zonen - Netherlands). It records separately the 181 

incident and outgoing radiation, both shortwave and longwave, by means of its four 182 

components: two CM3 pyranometers (0.305 - 2.800 μm) and two CG3 pyrgeometers 183 

(5-50 μm). The CM3 and CG3 sensors have a maximum error of 2.5%. Ta and HR were 184 

recorded by the sensor CS215-L16 (Campbell Scientific, Inc.-United States) which has 185 

a maximum error of 0.4 ºC and 2%, respectively, considering typical ranges of 186 

measurement. NDVI was measured by SRS sensors (Decagon Devices, Inc.-United 187 

States), positioned vertical to the ground, which have an error of 10% for spectral 188 

irradiance and radiance values.   189 

The instruments were mounted on an iron mast 2.60 m above the surface and data 190 

were stored in a CR10X datalogger (Campbell Scientific, Inc.-United States). The 191 

datalogger was connected to a 12 V battery with a 20 W solar panel for recharging 192 

(Carmona, 2013; Carmona et al., 2011). Besides, the EBS1 has a cylindrical weighing 193 

lysimeter with a surface of 0.27 m² and 0.85 m depth for EF estimation (Ocampo et al., 194 
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2012). This is connected to an electronic balance that measures continuously the 195 

difference of weight according to the water content in the soil, allowing the calculation 196 

of water availability for crop use. 197 

2.3. Methods 198 

According to the methodology proposed by the Water Footprint Manual (Hoekstra et 199 

al., 2011), the WFgreen during the growing period of a crop (m3 t-1) is calculated as the 200 

green component of crop water use (CWUgreen, m3 ha-1) divided by the crop yield (Y, t 201 

ha-1) (Eq. (1)). 202 

                                                               
        

 
                                                      (1) 203 

where CWUgreen is calculated by accumulating daily green evapotranspiration (ETgreen, 204 

mm day-1) over the complete crop growing period (Eq. (2)). 205 

                                                             ∑        
 
                                              (2) 206 

where ETgreen is the daily green water evapotranspiration and 10 is a conversion factor 207 

from mm to m3 ha-1. The summation is done over the period from the day of planting 208 

(d=1) to the day of harvest (d=h). 209 

In this study, daily values of ETgreen were obtained by quantifying the adjusted crop 210 

evapotranspiration (ETa, mm day-1), that is, the crop evapotranspiration under non-211 

optimal conditions of soil water availability for rainfed soybean (Eq. (3)). 212 

                                                                                                             (3)  213 

where ETc (mm day-1) is the crop evapotranspiration, ET0 (mm day-1) represents the 214 

reference evapotranspiration, Kc (dimensionless) is the crop coefficients and Ks 215 
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(dimensionless) is the water stress coefficient (Allen et al., 1998; 2006). The soil water 216 

availability has temporal and spatial variability, which frequently limits crop growth 217 

and its subsequent Y. Thus, the use of Ks suggested in (Hoekstra et al., 2011) was 218 

considered. We assumed that water involved in ETgreen does not come from 219 

groundwater, given that in the study area groundwater level sporadically reaches 1.2 220 

m depth mainly in livestock zones and during autumn and winter, with deeper level 221 

during spring and summer (Verselli et al., 2019). Croplands in the study area are 222 

associated to higher zones suitable for cropping. 223 

2.3.1. Green crop water use and green water evapotranspiration 224 

2.3.1.1. Reference crop evapotranspiration 225 

Reference crop evapotranspiration (ET0, mm day-1) was calculated according to the 226 

FAO-Penman Monteith method (Allen et al., 1998; 2006) (Eq. (4)): 227 

                                                 
        (    )  

   

       
  (     )

   (        )
                                   (4)   228 

where Δ is the slope of the saturation vapour pressure curve as a function of air 229 

temperature (kPa ºC-1), Rn is net radiation (MJ m-2 day-1), G is soil heat flux (MJ m-2 230 

day-1), which was considered zero, given that at daily scale and high vegetation cover 231 

it is negligible (Allen et al., 1998; Sánchez et al., 2008). γ is the psychrometric constant 232 

(kPa °C-1), Ta is the mean daily air temperature at 2-m height (°C), u2 is wind speed at 233 

2-m height [m s-1], (es-ea) is vapour pressure deficit. 0.408 is a conversion factor to 234 

mm day-1, 900 is a coefficient for the reference crop (kJ-1 Kg K day-1), 273 is a 235 

conversion factor to express the temperature in K and 0.34 is a coefficient resulting 236 
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from assuming a crop resistance of 70 s m-1 and an aerodynamic drag of 208 u-2 for 237 

the reference crop (s m-1).  238 

ET0 (Eq. (4)) was calculated daily, using data of Rn, Ta, RH, and wind speed recorded 239 

from EBS2 (Fig. 1c). The obtained ET0 was considered as representative of the ET0 at 240 

county level, since the atmospheric parameters determining ET0 do not vary 241 

significantly within a radius of around 150 km in a large plain as the study area (Rivas 242 

and Caselles, 2004).      243 

2.3.1.2. Crop coefficient 244 

The crop coefficient (Kc) was obtained based on the Normalized Difference Vegetation 245 

Index (NDVI) applying the equation suggested by Kamble et al. (2013) for soybean and 246 

corn, with expected errors about 19%. (Eq. (5)):    247 

                                                                                                                       (5) 248 

where, NDVI is the NDVI for the considered pixel and was calculated according to 249 

Rouse et al., (1974) (Eq. (6)): 250 

                                                               
(     )

(     )
                                                          (6)                                                      251 

where, NIR represents the surface reflectance in the near-infrared and R the surface 252 

reflectance in the red wavebands. 253 

Changes in morphological and physiological characteristics of crop modify Kc values 254 

during the growth period. Therefore, Kc was calculated for the typical 4 stages of 255 

soybean growth reported in literature (Allen et al., 2006; Andriani, 2017): initial 256 

growth stage (25 days), development growth stage (30 days), mid-season growth 257 
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stage (60 days), end of the late season growth stage (24 days). In the evaluated 258 

soybean plot in "La Campana", the daily NDVI values were measured by the SRS 259 

sensor in EBS1. Then, NDVI values (measured at the time of maximum radiation and 260 

cloud free) were obtained for each stage and Kc was calculated using the Eq. (5). These 261 

Kc values were considered for all the analysed plots, since they have the same crop, 262 

similar sowing and harvest dates, and are located within the same climatic and 263 

edaphic area. At county scale, NDVI was obtained from the MODIS vegetation indices 264 

product MYD13Q1 (see more details in 2.3.1.3). Subsequently, a linear regression was 265 

carried out to verify the correlation between the NDVI values recorded by the SRS 266 

sensor in the soybean plot and those obtained with the MODIS MYD13Q1 product. 267 

2.3.1.3. Water stress coefficient  268 

The water stress coefficient (Ks) describes the effect of water stress on crop 269 

transpiration and was calculated as function of evaporative fraction (EF), considering 270 

EF=Ks. From the surface energy balance point of view, EF is defined as the relationship 271 

between latent heat flux (evapotranspiration) and the available energy at the land 272 

surface (latent heat flux+sensible heat flux), being an indicator of the soil moisture 273 

availability for vegetation use. Under conditions of high soil moisture, EF tends to 1 274 

and the available energy is used mainly for ET. With scarce or no soil moisture, most 275 

of the available energy is allocated to the sensible heat flux and EF approaches zero 276 

(Kurc and Small, 2004; Mallick et al., 2009).           277 

In the case of “La Campana”, daily EF at soybean plot level was estimated according to 278 

Ocampo et al. (2012). This method is based on Eq. (7) using the weighing lysimeter of 279 

ESB1: 280 
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                                            Fwl = (         ) (         )                                   (7) 281 

where,  Fwl (dimensionless) is the lysimeter evaporative fraction,     is the weight of 282 

the weighing lysimeter of a certain day,      is the minimum weight (264 kg) 283 

representing minimum water content in the soil profile (54 mm) and Wmax is the 284 

maximum weight recorded in the lysimeter (312 kg) equivalent to the soil field 285 

capacity (227 mm). 286 

The other considered plots do not have a weighing lysimeter. Therefore, the EF was 287 

obtained through a soil water balance, using the CROPWAT model. 288 

EF varies according to soil moisture, showing high spatial heterogeneity due to 289 

different factors (soil types, texture and structure of soils, among others), resulting in 290 

fluctuations of ETgreen. Therefore, EF at county scale was calculated using 291 

optical/thermal data from satellite that allow considering such spatial variability 292 

(Nutini et al., 2014) (Eq. (8)): 293 

                                                                                                                             (8) 294 

where TVDI is the Temperature Vegetation Dryness Index, based on the inverse 295 

relationship between Ts and vegetation index (Sandholt et al., 2002). Several authors 296 

(e.g. Nutini et al., 2014; Carlson and Petropoulos, 2019) have estimated EF from the 297 

triangular scatterplot of Ts in function of NDVI from medium resolution satellite data, 298 

with expected errors about 25%. Holzman et al. (2014a, 2014b) have shown this index 299 

has high correlation (R2>0.7) with soil water availability for crops in the root zone, 300 

which was measured in the study area with the same sensors mentioned in this study. 301 

Hence, TVDI was considered as an indicator of soil water availability in ET. This index 302 

was calculated as (Sandholt et al., 2002) (Eq. (9)): 303 

             TVDI = ( s−     ) / (𝑎 + b NDVI−     )                                 (9) 304 
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where, Ts is the observed surface temperature (K) at a given pixel, Tsmin is the 305 

minimum surface temperature for a region/image representing maximum soil 306 

moisture and evapotranspiration, 𝑎+bNDVI represents Tsmax (minimum soil moisture 307 

and evapotranspiration) while 𝑎 and b are surface parameters of the study area 308 

calculated from the inverse linear relationship between Ts and vegetation index 309 

(Holzman et al., 2014b). 310 

TVDI was obtained from MODIS/AQUA data products with a spatial resolution of 250 311 

m: a) MYD11A2: 8-day composite Ts, level-3, version-5, 1 km spatial resolution, using 312 

a total of 18 images for the study period, b) MYD13Q1: 16-day composite vegetation 313 

index, level-3, version-5, 250 m (9 images). The MYD11A2 product was resampled at 314 

250 m using the nearest neighbour algorithm, to equate spatial resolutions. The 315 

images of Ts and NDVI obtained in each month were averaged to generate a monthly 316 

TVDI image (Eq. (9)), except in the case of November, where the TVDI product 317 

corresponds to the last 16 days of the month. Subsequently, 5 images of EF were 318 

generated according to the Eq. (8). 319 

2.3.1.4. Maps of crop plots and green crop water use 320 

A land use classification from multispectral Landsat 8 Operational Land Imager (OLI) 321 

was conducted, covering the period of maximum vegetative growth of soybean 322 

(04/01/2015). The atmospheric and angular reflectance correction (BDRF) function 323 

was applied to the image. Then, the visible, near-infrared (NIR), shortwave-infrared 324 

(SWIR) surface reflectance (BOA) was used to perform a supervised classification 325 

using 6 different classes, based on the information provided by farmers, which 326 

allowed training and evaluating the algorithm accuracy. A land use classification using 327 

Spectral Information Divergence method to extract the soybean plots was carried out 328 
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(Du et al. 2004). The classification was evaluated statistically with a confusion matrix-329 

based approach, which compared the mapped class with the ground truth data at 330 

specific locations. Conventional accuracy statistics (Kappa coefficient, commission, 331 

omission and overall accuracies) were then derived from the confusion matrix 332 

(Egorov et al., 2015; Foody, 2002). Then a mask of soybean plots was generated and 333 

applied to the EF and Y maps. To obtain the maps at the plot level, the mask was 334 

upscaled to 250 m using the nearest neighbourhood method (Bayala and Rivas, 2014; 335 

Richards, 1999).  336 

Using the ground ET0, and satellite estimations of Kc and Ks (i.e. EF), Eq. (3) was 337 

applied in ENVI software to estimate ETgreen. Due to the changes of the Kc and EF data 338 

during the crop growth period, the ETgreen maps were generated for each stage. 339 

Finally, a map of CWUgreen for the entire crop cycle was generated from the sum of 340 

ETgreen for each stage.  341 

2.3.2. Yield estimation  342 

For plot-scale calculation of WFgreen, the Y obtained in the plot was used (Eq. (1)). On 343 

the other hand, previous studies have shown that TVDI is appropriate to estimate 344 

spatially Y (Holzman et al., 2014b; Holzman and Rivas, 2016; Holzman et al., 2018). 345 

These studies have analysed Y series from 2000 to 2011, considering dry, normal and 346 

humid campaigns in AP. They showed a high correlation (R2=0.6-0.83) between this 347 

index (during critical growth stage of crops) and ground measurements of yield of 348 

maize, soybean and wheat at county and plot level. Linear and quadratic adjustments 349 

were found depending on crop type and agroclimatic conditions. Therefore, Y at 350 

county scale was estimated from TVDI images using the equation proposed by 351 

Holzman et al. (2014b) with expected errors about 20%:  352 
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                   𝑌 =    (    ) +      +                                               (10)    353 

where TVDI is the monthly index for the critical period of the crop (when crop shows 354 

the highest sensitivity to water deficit, coinciding with the flowering period and seed 355 

pod development). This period includes January and February for soybean in the 356 

study area (MAGyP-Argentina, 2018).  1,  2 and  3 are coefficients that depend on the 357 

agro-ecological region derived from the adjustment between observed data of Y and 358 

TVDI (Holzman et al., 2014b; Holzman and Rivas, 2016). 359 

Finally, with CWUgreen and Y data, the WFgreen was obtained at plot and county scale. 360 

The methodological diagram of the study is included in Fig. 2. 361 

2.3.3. Comparison between green water footprint from traditional grid method 362 

and the proposed approach 363 

WFgreen was calculated applying the traditional grid method to later compare results 364 

obtained with field measurements and the proposed method (Fig. 2). It was estimated 365 

at 10000 m spatial resolution (Siebert y Doll, 2010; Mekonnen and Hoekstra, 2010) 366 

applying a soil water balance in the grid cells where each of the 9 plots of study area 367 

are located. 368 

ETgreen was calculated for the entire crop growth period following the method 369 

proposed by Allen et al. (1998) for crops under non-optimal conditions of water 370 

availability (Eq. (3)). The FAO CROPWAT (Allen et al., 1998) was used with monthly 371 

rainfall, minimum and maximum Ta and HR as input data at 10000 m spatial 372 

resolution. These data were taken from the CRU TS, version 4 (Harris et al., 2020). The 373 

Kc, standard crop depletion fraction, rooting depth and the other crop and soil 374 

parameters were taken from the Table 2 of Siebert and Doll (2008). The used value of 375 
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soil water capacity was consistent with the ISRICWISE grid database, which is at 376 

10000 m spatial resolution (Batjes, 2012). The Ks was obtained as result of the 377 

simulation from FAO CROPWAT. Y data of soybean crop was taken from official 378 

statistics for Tandil County (MAGyP-Argentina, 2020). 379 

Finally, to verify the robustness of the grid and the satellite methods, both datasets 380 

were compared with the WFgreen values derived from in situ measurements. The 381 

performance of each method was evaluated using the root mean square error (RMSE) 382 

and Bias.  383 

 384 

Figure 2. Methodological diagram, which includes the three WFgreen estimates: local data (orange), the proposed 385 

approach based on remote sensing data (blue), and grid method (purple). ET0 (grey) was obtained from local 386 

measurements recorded in ESB2 and was used as input data for WFgreen estimates in the soybean plot and at county 387 

scale. 388 

 389 

3. Results and discussion  390 

3.1. Green water footprint in soybean plot 391 

Fig. 4 shows the evolution of ET0, Kc, EF and ETgreen (the last three calculated in “La 392 

Campana”) during the soybean growth period. In the initial growth stage, there was is 393 

scarce vegetation cover (Kc = 0.60), with the evaporation predominating over the 394 

transpiration process, therefore the daily values of ETgreen were are low. In the 395 

development crop stage, an increase in ETgreen was is observed, but the decrease in 396 

water availability for the crop at the end of this stage caused a decrease in the  ETgreen 397 

values. In the middle growth stage, the plant completed its vegetative and 398 

reproductive development (Kc = 1.09) and ETgreen reached maximum values. The soil 399 
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water availability was is close to the optimum (EF = 0.93), hence ET0 approached 400 

ETgreen. During the end growth stage, ETgreen decreased considerably as a consequence 401 

of plant senescence (Kc = 0.64), increasing the difference between ET0 and ETgreen 402 

despite the availability of water in the soil. The obtained Kc values were consistent 403 

with those reported for soybean by Andriani (2017), Chapagain and Hoekstra (2004) 404 

and Allen et al. (2006) for soybean in sub-humid regions. Also, the NDVI measured in 405 

the plot showed high correlation with the MODIS MYD13Q1 data (R2=0.78), with 406 

minimum and maximum between 0.13-0.81 and 0.11-0.79, respectively. 407 

 408 

Figure 3. ET0, Kc, EF and ETgreen values calculated from the planting date to the harvest date of soybean. 409 

 410 

The total ET0 was 602 mm and the total ETgreen value was 411 mm, resulting in a 411 

CWUgreen of 4110 m3 ha-1 for the entire growth period (Eq. (2)). Considering that the Y 412 

measured in “La Campana” plot was equal to 2.5 t ha-1, a value of WFgreen≈1645 m³ t-1 413 

was obtained. This result is similar to values obtained in other plots analysed in 414 

Tandil county (Table 2). Also, these are close to WFgreen values estimated by other 415 

authors as Ercin et al. (2012), who obtained soybean WFgreen ≈2000 m³ t-1 in two 416 

different environments of Canada and France, with Y=2.5 t ha-1 and 1.9 t ha-1, 417 

respectively. On the other hand, Costa et al. (2018) in Western Pará, Amazon, 418 

determined a WFgreen≈1600 m³ t-1 with Y average of 1.9 t ha-1 in eight soybean plots. 419 

The differences of WFgreen values may be explained by diverse variables: crop genetics 420 

(which affects the water use efficiency), meteorological characteristics of each region, 421 

soil type and agricultural management. These variables can influence both Y and 422 
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ETgreen. However, in plots studied in the county the difference would be due to rainfall 423 

variability and the geomorphology of the land, which affects the soil water availability, 424 

influencing water consumption of plant, as explained in Section 5.2.4.  425 

3.2. Estimation of green water footprint from remotely sensed data  426 

3.2.1. Soybean crop map  427 

In order to calculate ETgreen at county-scale, plots with soybean crop were classified. 428 

Fig. 4 shows the result of the supervised classification obtained through Spectral 429 

Information Divergence. Table 1 includes omission or commission errors of the 430 

classification, showing a precision or overall accuracy of 78.35%, and a Kappa 431 

coefficient of 0.72. Such mask was used to consider only soybean plot for WFgreen 432 

calculation. 433 

 434 

Figure 4. a. Land use classification. In green, the plot of soybean for campaign 2014-2015; b. Ground truth map 435 

used for classification and number of samples for each class. 436 

Table 1.  Confusion matrix of the supervised classification. 437 

 438 

3.2.2. Green crop water use map 439 

A noticeable spatial variation of CWUgreen in Tandil county is shown in Fig. 5.a. It varies 440 

approximately between 1800 m3 ha-1 and 3600 m3 ha-1 in most plots, although there 441 

are areas where CWUgreen values are close to 5400 m3 ha-1. These areas coincide with 442 

the presence of two types of soils whose characteristics could favour higher ETgreen 443 

(GeoINTA, 2020): 444 
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- In the South and Centre of the county, the soils are productive but shallow, thus the 445 

evapotranspiration process prevails upon the infiltration process. 446 

- In the Northwest and East area, soils are deep and developed, suitable for 447 

agricultural production. The permeability and slow runoff facilitate the rainfall 448 

retention and water storage (EF with values close to 1). 449 

5.2.3. Spatial calculation of yield 450 

As a previous step to WFgreen calculation, Y was estimated spatially for the analysed 451 

campaign (Fig. 5.b). Eq. (10) was applied considering the following coefficients for the 452 

study area: C1=0 (due to a lineal relationship between Y and TVDI),  2= -1990.1 and 453 

 3=4260.5 (Holzman et al. 2014b). These parameters vary for different large regions. 454 

However, once the model is calibrated with ground data of Y that include the 455 

maximum expected variability, it can be used for spatial estimation of Y. Fig. 5.b shows 456 

that Y was between 1.5 t ha-1 and 3 t ha-1 in most of cases. A group of plots with high Y 457 

(3 t ha-1) is observed in areas where the maximum values of CWUgreen were obtained, 458 

which corresponds to high soil water availability and more productive soils with the 459 

consequent positive impact on Y (e.g. high organic matter content, strong vertical 460 

development).  461 

 462 

Figure 5. a. Green crop water use (CWUgreen) in soybean plots; b. Map of soybean crop yield estimated from MODIS 463 

data in Tandil county during the campaign 2014/2015. 464 

 465 

5.2.4. Green water footprint map 466 
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As shown in Fig. 6, the proposed method can reflect the spatial heterogeneity of 467 

factors determining the WFgreen, with most values varying between 900 m³ t-1 and 468 

1800 m³ t-1. The distribution of plots with low WFgreen volume coincides with the sites 469 

where Y is high. Therefore, low WFgreen volume would be related to the existence of 470 

more productive soils (GeoINTA, 2020). 471 

 472 

Figure 6. Spatial distribution of green water footprint (WFgreen) values in Tandil county obtained from MODIS data 473 

at 250 m spatial resolution. 474 

 475 

In the Northeast and East of the county, plots with high WFgreen values are 476 

concentrated, as a result of low Y. However, plots with high WFgreen values were found 477 

all over the county. The inability to translate CWUgreen into higher productivity could 478 

be due to the existence of limiting factors, such as the presence of limestone material 479 

or rock, clayey horizons, poor soil drainage and topography relief that modify the 480 

water storage capacity of rainfall water in the soil, as well the root development. 481 

Hence, they can affect the availability of water for crop use, producing different 482 

CWUgreen and Y in each plot. 483 

In the South and Northwest of the county, the WFgreen values were also close to the 484 

maximum, in spite of high Y, which is related to high values of CWUgreen (Fig. 5.a) 485 

In recent years, the demand for soybean and the grain market has encouraged the 486 

expansion of the land used for crop production. Livestock, which plays a key role in 487 

some areas of the county with poorer soils, has been displaced (Ghersa et al., 2002; 488 

Viglizzo and Frank, 2006; Vazquez and Zulaica, 2014). Consequently, plots with 489 
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limitations for agricultural activity were cultivated, which currently can generate 490 

these high WFgreen values and low water productivity. Also, the spatial heterogeneity 491 

of WFgreen is associated with the distribution of rainfall and the topographic and 492 

morphological characteristics of the study area. Although in this study the agricultural 493 

practices in the county have not been evaluated, they could explain certain spatial 494 

changes in WFgreen. Management practices related to the preservation of soil moisture 495 

content can influence the Y. 496 

A WFgreen mean value of 1350 m³ t-1 for Tandil county was obtained, which was close 497 

to the 1290 m³ t-1 average value obtained by Aldaya et al. (2010) for soybean crops in 498 

Argentina. However, the difference is markedly greater if we consider the volume of 499 

WFgreen calculated by Mekonnen and Hoekstra (2011) for rainfed soybean crops in 500 

Argentina (2079 m³ t-1), using the grid method. This difference can be related to the 501 

plot area and the low spatial resolution (10000 m) of the grid method. The sub-pixel 502 

heterogeneity con influence the estimation of WFgreen. Such difference also could be 503 

related to the multi-source data of Y.  It seems that the implementation of a higher 504 

spatial resolution could increase the precision of the method, being a contribution for 505 

estimation of water involved in agricultural production. In this study we consider that 506 

a spatial resolution of 250 m is suitable for the study area, with extensive agriculture 507 

and most of the plots with a surface of 100 ha. 508 

The use of the Mapping Evapotranspiration at High Resolution Internalized 509 

Calibration (METRIC) model has also been previously considered for the spatial 510 

estimation of ETgreen at a scale of 30 m, from LANDSAT data (Allen et al., 2007). This 511 

model has shown a good performance estimating the ET of various crops (Choi et al., 512 

2009; Singh et al., 2012; Paço, et al., 2014; de Oliveira Costa et al., 2020). It is 513 
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methodologically similar to our proposed method to obtain ETgreen, but the analysis 514 

scale is different. LANDSAT data offer a higher spatial resolution, justifying its use at 515 

the plot level, but they have a lower temporal resolution. The existence of cloudiness 516 

and the narrow swaths make it difficult to apply in large areas.  Medium resolution 517 

satellites like MODIS provide a suitable temporal coverage to monitor crop changes 518 

during the growth stage with appropriate spatial resolution at regional or landscape 519 

scales. Therefore, the size of the AP plots justifies the use of MODIS, with a spatial 520 

resolution of 250 m. Also, the expectable low sub-pixel heterogeneity due to the 521 

existence of few crops as in the study area would produce reliable results.  522 

Finally, a preliminary comparison of the results obtained from the proposed satellite 523 

method and the grid method with field measurements was carried out (Table 2). The 524 

RMSE values suggested a better performance of the satellite method than the grid 525 

method. A significant trend to overestimate WFgreen was observed in the grid method, 526 

with a Bias=575 m3 t-1. On the other hand, the proposed method underestimate the 527 

WFgreen. It should be noted that the grid method uses mean data of Y and parameters 528 

of CWU for a wide area (e.g. county), which are useful for studies at regional or 529 

country scale, but can affect the precision of the method at plot scale (Romaguera et al. 530 

2010). As mentioned, there are several factors affecting soil water availability and 531 

consequently crop yield. In this sense, the proposed method considers the spatial and 532 

temporal heterogeneity od CWU and Y, which can contribute to the estimation of 533 

WFgreen.  534 

 535 

Table 2.  Comparison between the traditional grid method, field measurements and the proposed approach based 536 

on satellite data. 537 

 538 
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Conclusions  539 

This study proposes a remote sensing technique for the spatial estimation of WFgreen 540 

at 250 m spatial resolution. The variables required for the WFgreen calculation (i.e. 541 

CWU, Y) were estimated from MODIS/Aqua data, with minimum field measurements 542 

requirements. EF and Y are the main input variables of the method. 543 

The maps of WFgreen for soybean crop estimated by the proposed technique in Tandil 544 

county of Argentine Pampas varied from 900 m³ t-1 to 1800 m³ t-1. These values are 545 

consistent with studies carried out in Argentina and other regions of the world such as 546 

Canada, USA, France and Brazil (Aldaya et al., 2010; Ercin et al., 2012; Costa et al., 547 

2018). In order to evaluate the obtained results, the WFgreen was also estimated on 548 

soybean plots using local data and using the grid method. This preliminary 549 

comparison suggested a better performance of the proposed method (RMSE=494 m³ 550 

t-1) in comparison with the grid method (RMSE= 597 m³ t-1), with a trend to 551 

overestimate WFgreen.  552 

The study identifies sites where the high volumes of soil-water involved in the 553 

evapotranspiration process produce high Y and sites where WFgreen increases, in 554 

which improvements of water use efficiency would be necessary. 555 

The complexity of method for spatial calculation of WFgreen resides mainly in the 556 

calibration of Y equation and evaporative fraction estimation, whose coefficients are 557 

the results of a simple regional parameterization. Despite this, essential data such as 558 

ET0 or NDVI, are easily accessible and can be considered from multiple databases, 559 

facilitating the applicability of this technique in other regions of the world. The 560 

proposed approach can contribute to the efficient crop production and could be 561 
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applied on other crops and highly productive regions with limited ground data as Sub-562 

Saharan Africa and Chinese Great Plains. 563 
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Table 1.  Confusion matrix of the supervised classification. 905 

  
Ground Truth 

Commis

sion 

Omiss

ion 

Class Soybea

n 

Bar

e 

Hill 

soil 

Water Wo

ods 

Urba

n 

Total 

  (Pix

els) 

(Pixe

ls) 

(Pixels

) 

(Pi

xels

) 

(Pixe

ls) 

(Pixe

ls) 

(Pixels) (Pixel

s) 

Unclassi

fied 

0 0 0 139 0 25 164   

Soybea

n 

526 0 0 0 27 0 553 27/553 92/61

8 

Bare 0 368 0 0 1 19 387 19/387               0/368               

Hill soil 0 0 59 15 32 132 206 147/206                 0/59 

Water 0 0 0 45 0 0 45 0/45               155/2

00 

Woods 92 0 0 1 64 6 163 99/163               27/91   

Urban 0 0 0 0 0 589 589 0/589               182/7

71 

Total 618 368 59 200 91 771 2107   

Overall Accuracy = (1651/2107) 78.35%   906 

Kappa Coefficient = 0.72   907 

 908 
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Table 2.  Comparison between the traditional grid method, field measurements and 910 

the proposed approach based on satellite data. 911 

Plots 

 

Method Analys

is  

period 

Field 

measurements 

Grid method Satellite data 

method 

WFgre

en a 

Spatial 

Resoluti

on 

WFgre

en b 

Spatial  

Resoluti

on 

WFgre

en c 

Spatial 

Resoluti
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(m³ t-

1) 

 (m³ t-

1) 

(m) (m³ t-

1) 

(m) (day) 

Plot 1 ("La 

Campana") 

1645 Soybean 

 plot d 

2376 10000 1762 250 138  

(Soybe

an 

 growth  

period) 

Plot 2  1855 2230 1081 

Plot 3 1877 2230 1124 

Plot 4 1893 2250 1297 

Plot 5 1562 2250 1069 

Plot 6 1541 2250 1055 

Plot 7 1500 2250 1219 

Plot 8 1523 2171 1315 

Plot 9 1653 2200 1420 

Average 1670  2245   1260     

RMSE (m³ t-1)     597   494     
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Bias (m³ t-1)     575   -410     

CWU was estimated by applying the following ETgreen calculation equations: 912 

a            (        ) (              )    .    In plot 1, EF is calculated with a 913 

weighing lysimeter. In the other plots, a soil water balance was conducted using the 914 

CROPWAT model. 915 

b                     916 

c          (      ) (              )     917 

d Average plot area 80 ha 918 
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Graphical abstract 931 

 932 

HIGHLIGHTS 933 

 The estimation of the Green Water Footprint can be optimized using satellite 934 

data 935 

 Spatial variability was obtained using evaporative fraction and yield data 936 

 The technique allows the calculation of Green Water Footprint at regional scale 937 

 It can be a contribution to previous methods for agricultural water use 938 

estimation  939 
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