
F
a
p

R
D
I

a

A
R
R
A
A

K
F
S
U
R
P

1

o
t
i
a
i
m
o
s
d
p
o
e
o
h
o
s
f

a

0
d

Analytica Chimica Acta 677 (2010) 97–107

Contents lists available at ScienceDirect

Analytica Chimica Acta

journa l homepage: www.e lsev ier .com/ locate /aca

our-way kinetic-excitation-emission fluorescence data processed by multi-way
lgorithms. Determination of carbaryl and 1-naphthol in water samples in the
resence of fluorescent interferents

ubén M. Maggio, Patricia C. Damiani, Alejandro C. Olivieri ∗

epartamento de Química Analítica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario,
nstituto de Química de Rosario (IQUIR-CONICET), Suipacha 531, Rosario, S2002LRK, Argentina

r t i c l e i n f o

rticle history:
eceived 11 May 2010
eceived in revised form 28 July 2010
ccepted 28 July 2010
vailable online 5 August 2010

a b s t r a c t

Four-way data were obtained by recording the kinetic evolution of excitation-emission fluorescence
matrices for samples containing the analytes carbaryl and 1-naphthol, two widely employed pesticides,
in the concentration ranges 0–363 �g L−1 and 0–512 �g L−1, respectively. The reaction followed was the
alkaline hydrolysis of carbaryl to produce 1-naphthol, a fact which introduced strong linear dependencies
eywords:
our-way kinetic fluorescence data
econd-order advantage
nfolded partial least-squares
esidual trilinearization

and multi-linearity losses in the analyzed system. Data processing was performed with unfolded partial
least-squares combined with residual trilinearization (U-PLS/RTL) and also with a suitably initialized and
restricted parallel factor model (PARAFAC), combined with calibration based on multi-linear regression.
U-PLS/RTL is shown to be significantly simpler in its implementation and to provide similar figures of
merit. The applied chemometric strategy is able to successfully determine the analytes in water sam-
ples containing uncalibrated interferences, such as other commonly employed agrochemicals and also a

roun
arallel factor analysis naturally occurring backg

. Introduction

Analytical applications of multi-way calibration models based
n luminescence excitation-emission matrix (EEM) data are con-
inuously growing and applied to diverse research fields [1–3]. The
nclusion of an additional data dimension increases the selectivity
nd sensitivity of the analysis [4], as has been accomplished by reg-
stering time-dependent EEM information. In these cases, a reaction

ay produce a fluorescent species from a non-fluorescent analyte,
r a natively fluorescent analyte may generate a non-fluorescent
pecies. The time dependence may also arise from naturally time-
ecaying EEM data [5]. In any case, only a few reports exist on the
rocessing of kinetic-EEM data aimed at the determination of one
r several analytes embedded in a complex background. Pertinent
xamples include the oxidation of catecholamines [6], mixtures
f leucovorin or folic acid with methotrexate [7–10], the alkaline
ydrolysis of procaine [11] and carbaryl [12], the derivatization

f malondialdehyde [13], and the photochemical degradation of
everal pesticides [14], polycyclic aromatic hydrocarbons [15], and
olic acid and its two main metabolites [16].

∗ Corresponding author. Tel.: +54 341 4372704; fax: +54 341 4372704.
E-mail addresses: olivieri@iquir-conicet.gov.ar,

olivier@fbioyf.unr.edu.ar (A.C. Olivieri).

003-2670/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.aca.2010.07.045
d signal.
© 2010 Elsevier B.V. All rights reserved.

Several algorithms are available for the convenient processing
of four-way data. Quadrilinear models such as parallel factor anal-
ysis (PARAFAC) [5,6] and alternating quadrilinear decomposition
[12] are appealing because they provide useful physicochemical
information, in terms of kinetic and spectral profiles for the differ-
ent sample components. However, kinetic systems pose challenges
to these latter algorithms due to: (1) strong linear dependen-
cies among component profiles, typical of kinetic systems, and
(2) multi-linearity losses due to the fact that the reaction may
progress during the time required for registering a complete EEM. In
these cases, therefore, the analyst may prefer more flexible, latent-
structured multivariate methods, such as the multi-dimensional
version of partial least-squares (N-PLS) [6]. More importantly, the
recently introduced residual trilinearization (RTL) procedure [7,8],
when combined with trilinear least-squares (TLLS) [7,8], with both
unfolded-PLS (U-PLS) and N-PLS [8,10,11,16], and with an artificial
neural network model [13], enables the combined model to achieve
the second-order advantage (i.e., the quantitation of analytes in
the presence of uncalibrated interferences) [17]. It is important to
notice that quadrilinear models such as PARAFAC naturally achieve
the latter advantage, whereas the remaining algorithms require the

RTL procedure in order to obtain it [4]. As new kinetic-luminescent
analytical systems are studied, it is likely that the latter flexible
techniques will be more and more appreciated in order to develop
automatic, easily implementable methods based on four-way anal-
ysis of complex samples.

dx.doi.org/10.1016/j.aca.2010.07.045
http://www.sciencedirect.com/science/journal/00032670
http://www.elsevier.com/locate/aca
mailto:olivieri@iquir-conicet.gov.ar
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Table 1
Calibration concentrations for carbaryl and 1-naphthol.a.

Sample Carbaryl 1-Naphthol

1 53 75
2 310 75
3 53 437
4 310 437
5 0 256
6 364 256
7 182 0
8 182 512
9 182 256

10 182 256
11 182 256
8 R.M. Maggio et al. / Analytica

In this report, we discuss the four-way kinetic-EEM analysis of
inary mixtures of carbaryl (1-naphthyl methylcarbamate) and its
egradation product 1-naphthol in the presence of interferences.
ixtures of carbaryl and 1-naphthol were previously determined

sing second-order EEM data [18]. However, carbaryl is signifi-
antly less fluorescent than 1-naphthol, and thus its conversion
o 1-naphthol leads to a considerable sensitivity improvement. On
he other hand, carbaryl alone has been quantified by kinetic-EEM
our-way data using a quadrilinear decomposition algorithm [12].
owever, this single-analyte system does not present the com-
lex challenges of the one herein reported, where one analyte
1-naphthol) is also the reaction product of the second analyte
carbaryl), introducing strong dependencies in the analyte pro-
les. The situation becomes even more complex in the presence
f interferents. We show a new way to apply PARAFAC in the pres-
nce of linear dependencies and correlations, and the advantages of
mploying the U-PLS/RTL model for studying the present mixtures.

. Experimental

.1. Apparatus

All fluorescence measurements were performed on a fast-
canning Varian Cary Eclipse spectrofluorometer equipped with
wo Czerny-Turner monochromators, a xenon flash lamp, a quartz
ell, and connected to a PC microcomputer via an IEEE 488 (GPIB)
erial interface.

Excitation-emission fluorescence matrices were recorded in the
ollowing ranges: excitation, 244–310 nm each 3 nm, emission,
21–481 nm each 2 nm, time, 16 min (from 2 to 18 min from the
eginning of the reaction) each 0.8 min. The third-order array was
hus of size 23 × 81 × 21, making a total of 39,123 data points.
he slit band widths for the excitation and emission monochro-
ators were fixed at 5 nm, and the detector voltage at 600 V.

he cell was thermostated at 35 C. A wavelength scanning speed
f 9600 nm/min was employed, so that a complete excitation-
mission fluorescence matrix was obtained in ca. 30 s. Notice that
his latter time is close to the time within successive EEM recording
48 s), and this is a potential source of multi-linearity loss.

.2. Reagents

Analytical reagents grade chemicals, pure solvents and dou-
ly distilled water were used in all experiments. Carbaryl,
-naphthol, fuberidazole, thiabendazole, imacloprid, imazalil,
,4-dichlorophenoxyacetic acid, carbendazim, neburon, lin-
ron, diuron, chlorsulfuron, isopropturon, mercaptodimethopur,
etomil and propoxur were purchased from Sigma–Aldrich Co.

St. Louis, MO).

.3. Stock standard and working standard solutions

Stock standard solutions of carbaryl (1.23 g L−1) and 1-naphthol
1.12 g L−1) were prepared in 10.00 mL volumetric flasks by dissolv-
ng accurately weighed amounts of the drugs in acetonitrile and
ompleting to the mark with the same solvent.

Working solutions of carbaryl (1.23 mg L−1) and 1-naphthol
1.12 mg L−1) were prepared by appropriate dilution of the corre-
ponding stock standard solutions in water, employing 10.00 mL
olumetric flasks.
.4. Calibration samples

A set of 13 calibration solutions (in the form of a central
omposite design with five replicates of the central point) con-
aining the analytes in the ranges 0.0–363 �g L−1 for carbaryl and
12 182 256
13 182 256

a All concentrations in �g L−1.

0.0–512 mg L−1 for 1-naphthol were prepared adding 1 mL of phos-
phate buffer (0.1 M, pH 10.2) to the corresponding mixtures of
working standard solutions, and completing to the mark with water
in 10.00 mL volumetric flasks. Each sample was measured 2 min
after its preparation. The concentrations are collected in Table 1.

2.5. Validation and test samples

A validation sample set V was prepared containing the ana-
lytes in concentrations within the corresponding calibration ranges
but different than the specific calibration values. This was done
by appropriate dilution of mixtures of the corresponding work-
ing standard solutions with 1 mL of phosphate buffer (0.1 M, pH
10.2) and water in 10.00 mL volumetric flasks. Each sample was
measured 2 min after its preparation.

An additional spiked sample set S was prepared, containing
the analytes in concentration within the calibration ranges, and
also fuberidazole and/or thiabendazole as potential interferents.
The preparation details were analogous to those described above
for the validation set. These interfering test samples are intended
to mimic truly unknown samples composed of uncalibrated sub-
stances, where an unknown background may occur. The inclusion
of known chemical components in these test samples had the pur-
pose of checking whether the multivariate algorithm was able to
successfully retrieve their corresponding spectral and time profiles.

Finally, a four-sample set T was prepared from a natural water
sample containing unknown fluorescent components. Two of them
were spiked one of the analytes, and two with both analytes. The
concentrations were different than those employed for the remain-
ing sets. This final set T served to explore the achievement of the
second-order advantage by the second-order multivariate proce-
dures under a real situation where unknown sample components
may be present in the unknown specimens.

3. Theory

3.1. PARAFAC

The theory of PARAFAC is well known and thus only a brief
account is presented here. Four-way data are created by joining
the third-order data arrays for the calibration samples and for each
of the analyzed test samples. Application of the PARAFAC model
to the latter four-way data arrays requires fitting the following
expression:
Xijkl =
N∑

n=1

ain bjn ckn dln + Eijkl (1)
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here Xijkl is an element of the four-way array of kinetic-excitation-
mission fluorescence signals, ain is the score of component n in
ample i, N is the total number of responsive components, bjn, ckn
nd dln are the loading elements in the excitation, emission and
ime dimensions, respectively, and Eijkl is an element of the array
f errors not fitted by the model. The scores are collected in matrix
, of size (Ical + 1) × N, where Ical is the number of calibration sam-
les. The loadings are normalized to unit length, and collected into
he profile matrices B, C and D, of size J × N, K × N and L × N, respec-
ively, where J, K and L are the number of excitation, emission and
ime channels, respectively. The structure of the model Eq. (1) is
alled quadrilinear, and the decomposition is usually accomplished
hrough alternating least-squares [19,20].

There are several relevant issues regarding the application of the
ARAFAC model for the calibration of four-way data: (1) initializ-
ng the algorithm, (2) applying restrictions to the least-squares fit,
3) establishing the number of responsive components, (4) iden-
ifying specific components from the information provided by the

odel and (5) calibrating the model in order to obtain absolute
oncentrations for a particular component in an unknown sample.

Initializing PARAFAC for the study of four-way arrays can be
one using several options implemented in the PARAFAC package
19]: (1) singular value decomposition (SVD) vectors, (2) random
rthogonalized values and (3) the best-fitting model of several
odels fitted using a few iterations. The best initialization option

or the present system will be described below in the appropri-
te section. Notice that during the fit non-negativity restrictions
ere applied in order to recover physically recognizable profiles,

s required by linearly dependent systems such as the kinetic ones.
The number of responsive components (N) can be estimated by

everal methods. A useful technique is CORCONDIA, a diagnostic
ool considering the PARAFAC internal parameter known as core
onsistency [21]. However, in linearly dependent systems requir-
ng restrictions, a more useful technique is the consideration of
he PARAFAC sum of squared errors (SSE), i.e., the sum of squared
lements of the array E in Eq. (1) [22]:

SE =
Ical+1∑

i=1

J∑
j=1

K∑
k=1

L∑
l=1

(Eijkl)
2 (2)

Usually this parameter decreases with increasing N, until it
tabilizes at a value corresponding to the optimum number of com-
onents.

Identification of the chemical constituents under investigation
s done with the aid of the estimated profiles, mainly the emis-
ion and excitation spectra, and comparing them with those for a
tandard solution of the analyte of interest. This is required since
he components obtained by decomposition of X are sorted accord-
ng to their contribution to the overall spectral variance, and this
rder is not necessarily maintained when the unknown sample is
hanged.

Absolute analyte concentrations are obtained after calibration,
ecause the four-way array decomposition only provides relative
alues (the scores contained in matrix A). Calibration is usually
one by means of the set of standards with known analyte concen-
rations, a procedure which is repeated for each new test sample
nalyzed. Notice, however, that in the presence of linear dependen-
ies, this simple pseudo-univariate calibration methodology may
ot be employed and should be replaced by a multiple linear regres-

ion (MLR) approach correlating elements of several columns of
he A matrix with the analyte concentrations. These elements are
ontained in a sub-matrix A* corresponding only to the calibration
cores, and to the columns related to the analytes. Fig. 1 explains
n detail the applied procedure.
ica Acta 677 (2010) 97–107 99

Once built the sub-matrix A*, the following MLR expression is
considered for calibration of analyte n:

yn = bMLR,n A∗ + e (3)

where yn is a column vector containing the calibration concentra-
tions for the analyte, bMLR,n is a vector of parameters to be fitted by
the MLR model and e collects the model errors. Eq. (3) provides the
coefficients by least-squares:

bMLR,n = (A∗)+ yn (4)

where ‘+’ stands for the generalized inverse. Finally, the analyte
concentration in the test sample is estimated by applying the model
to the test sample scores contained in the vector a∗

u, extracted from
the A* matrix corresponding to the same columns employed for
calibration (see Fig. 1):

yn = (bMLR,n)T a∗
u (5)

In the specific case of the analyte carbaryl, the MLR approach
correlates a sub-matrix A* containing scores which are related to
the reaction product 1-naphthol. In this way, the sensitivity of the
carbaryl determination considerably increases, because scores for a
strongly fluorescent reaction product (1-naphthol), which are also
related to carbaryl through the hydrolysis reaction, are included in
the quantitative analysis.

3.2. U-PLS/RTL

In the U-PLS method, the original third-order data are unfolded
into vectors before PLS is applied [8,23]. In this algorithm, concen-
tration information is employed in the calibration step, without
including data for the unknown sample. The Ical calibration data
matrices are first vectorized into JKL × 1 vectors, and then a usual
PLS model is built using these data together with the vector of
calibration concentrations y (size Ical × 1). This provides a set of
loadings P and weight loadings W (both of size JKL × A, where A is
the number of latent factors), as well as regression coefficients v
(size A × 1). The parameter A can be selected by techniques such as
leave-one-out cross-validation, as described in Ref. [24].

If no unexpected components occurred in the test sample, v
could be employed to estimate the analyte concentration according
to:

yu = tT
uv (6)

where tu is the test sample score, obtained by projecting the vector-
ized data for the test sample vec(Xu) onto the space of the A latent
factors:

tu = (WT P)
−1

WT vec(Xu) (7)

where vec(·) implies the vectorization operator.
When unexpected constituents occur in Xu, then the sample

scores given by Eq. (7) are unsuitable for analyte prediction through
Eq. (6). In this case, the residuals of the U-PLS prediction step [sp,
see Eq. (8) below] will be abnormally large in comparison with the
typical instrumental noise level:

sp = ||ep||
(JKL − A)1/2

= ||vec(Xu) − Ptu||
(JKL − A)1/2

(8)

where || · || indicates the Euclidean norm.
This situation can be handled by a separate procedure called

residual trilinearization, based on the Tucker3 model of the unex-

pected effects [8]. RTL aims at minimizing the residuals computed
while fitting the sample data to the sum of the relevant contribu-
tions:

vec(Xu) = Ptu + vec[Tucker3(Ep)] + eu (9)
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Fig. 1. Scheme illustrating the obtainment of data from the PARAFAC A matrix in order to calibrate an MLR model for the quantitation of a specific analyte. From the original
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matrix provided by PARAFAC decomposition, the calibration scores correspondin
mployed to build a calibration sub-matrix A*. Those unrelated to the analytes (re
oncentrations, providing the regression vector bMLR,n associated to analyte n. Likew
ector au

*, which furnishes the predicted concentration yu upon multiplication by
eferred to the web version of the article.)

p = reshape(ep) (10)

here reshape(·) indicates transforming a JKL × 1 vector into a
× K × L three-way array and ep is from Eq. (8). During this RTL pro-
edure, the loadings P are kept constant at the calibration values,
nd tu is varied until the final RTL residual error su is minimized
sing a Gauss–Newton procedure, with su given by:

u = ||eu||/(JKL)1/2 (11)

here eu is from Eq. (9). Once this is done, the analyte concen-
rations are provided by Eq. (6), by introducing the final tu vector
ound by the RTL procedure.

To analyze the presently discussed data, the Tucker3 model in
q. (9) is constructed by restricting the loadings to be orthogonal,
nd with no special constraints on the core elements. For a single
nexpected component, the Tucker3 model is built with a single
omponent in all dimensions, which is straightforward and pro-
ides the three corresponding interferent profiles. For additional
nexpected constituents, however, the retrieved profiles no longer
esemble true spectra (or time profiles). Moreover, in this latter
ase, several different Tucker3 models could in principle be con-
tructed, because the number of loadings may be different in each
imension. We notice that the aim which guides the RTL proce-
ure is the minimization of the residual error term su of Eq. (11) to
level compatible with the degree of noise present in the measured
ignals. Therefore, if two unexpected components are considered,
or example, one should explore the possible Tucker3 models hav-
ng one or two loadings in each dimension, and select the simplest

odel giving a residual value of su which is not statistically different
han the minimum one. For more unexpected components a sim-
lar procedure is recommended. The final Tucker3 model selected
o model the unexpected effects is the simplest one which provides
value of su which is not statistically different than the noise level.
.3. Figures of merit

Concerning the figures of merit which can be achieved by the
pplied algorithms, adequate expressions are known for estimating
he sensitivity in the case of U-PLS and classical PARAFAC analysis
he columns related to the correlated analytes are extracted (white elements) and
ents) are discarded. An MLR model is built with A* and the vector y of calibration
e test scores corresponding to the unknown sample (gray elements) form the score

n . (For interpretation of the references to color in this figure legend, the reader is

[25,26]. However, in the latter case they have not been extended to
the presently applied MLR calibration approach. For U-PLS regres-
sion analysis, the sensitivity for the calibrated analyte SUPLS,n is
directly given by the length of the corresponding regression vec-
tor, which depends on the calibration parameters (loadings and
regression coefficients in score space), i.e.:

SUPLS,n = ||bUPLS,n|| (12)

where

||bUPLS,n|| = W(PT W)
−1

v (13)

In the case of PARAFAC, when pseudo-univariate calibration is
possible for analyte n, the sensitivity has been shown to be provided
by the following expression:

SPARAFAC,n = sn

{[(
BT B

)
∗
(

CT C
)

∗
(

DT D
)]−1

}−1/2

nn
(14)

where B, C and D are the loading matrices provided by PARAFAC
in the three data dimensions, sn is the total analyte signal at unit
concentration, ‘*’ is the element-wise Hadamard matrix product,
and ‘nn’ implies selection of the (n,n) element corresponding to the
nth. analyte of interest. For MLR calibration, a reasonably adapted
expression can be deduced employing error propagation argu-
ments:

SPARAFAC,n =

⎡
⎣ 1

∑M
m=1b2

MLR,m

[(
BT B

)
∗
(

CT C
)

∗
(

DT D
)]−1

mm

⎤
⎦

1/2

(15)

where the m index runs over the M components which are corre-
lated by the MLR approach in order to quantitate the analyte, and
bMLR,m is the corresponding element of the regression bMLR,n vector.
When M = 1, Eq. (15) reduces to Eq. (14), as expected.

The error propagation Eqs. (12) and (15) can be tested by a com-
plementary methodology, based on Monte Carlo noise addition,

as has been discussed previously [26]. In this latter approach, an
operational definition of the sensitivity is employed:

SMonte Carlo,n = sX

sy
(16)
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Fig. 2. Excitation-emission fluorescence contour plots (excitation, 244–310 nm
R.M. Maggio et al. / Analytica

here sX is the uncertainty in the signal for the test sample, and sy

s the standard error in the predicted concentration. This approach
as been found to be fruitful in uncovering the relation between the
rror propagation formulas and several different calibration sce-
arios [26]. Briefly, it involves adding Gaussian distributed noise
ith a certain standard deviation (in our case 1% of the maximum

alibration signal) to a given test sample data, predicting the analyte
oncentration using a certain algorithm, repeating the calculations
large number of times (usually 1000) and estimating the stan-

ard deviation of the distribution of predicted concentrations [26].
pplication of Eq. (16) then furnishes an estimate of the compo-
ent sensitivity, which can be compared with the corresponding
xpressions (12) or (15).

.4. Comparison of prediction results

Prediction results concerning analyte concentrations were
ade using paired t-statistics [27]. Specifically, the differences

�) between nominal and predicted concentrations (or between
oncentrations predicted by two methods) for both analytes were
omputed, followed by comparison of the experimental texp with
he critical tcrit, where texp =

∣∣�̄∣∣√
n − 1/s (�̄ and s are the mean

nd standard deviation of the different � values, n is the number
f pairs and | | indicates modulus). If texp < tcrit then no significant
ifferences exist between two concentration sets.

.5. Software

PARAFAC was implemented with the routine provided by Bro
t http://www.models.kvl.dk/source/ which is written in MATLAB
28]. The latter routine and the ones for performing U-PLS/RTL
alculations were incorporated into a graphical interface, of the
ype already published for second-order multivariate calibration
29]. The PARAFAC calibration variant applying MLR to the score-
oncentration data was developed in MATLAB as an in-house
outine.

. Results and discussion

.1. Carbaryl hydrolysis

Before conducting the analytical protocol, a series of exploratory
xperiments was performed in order to select an appropriate work-
ng pH. This is due to the fact that the kinetics of the carbaryl
ydrolysis is strongly pH-dependent. In a previous four-way analy-
is of this analyte, the selected pH was 9.3, because under the latter
onditions the reaction was slow enough to permit the recording of
sufficient number of EMMs [12]. However, using a fast-scanning

pectrofluorimeter, the speed of EEM recording is considerably
ncreased, and thus a faster kinetics is allowed, significantly reduc-
ng the time required for analysis. In our case, after checking the
ollowing pH values: 9.1, 10.2, 11.0 and 12.1, the final working
H was selected as 10.2, which provided a reasonable compromise
etween hydrolysis time and EEM registering speed.

Fig. 2 shows the excitation-emission fluorescence contour plots
hich can be recorded in the working wavelength ranges as a func-

ion of time, when carbaryl is hydrolyzed to produce 1-naphthol at
H 10.2. As can be seen, the fluorescence intensity developed with
ime is significantly larger than that for carbaryl alone, prompting

o the application of a kinetic-spectroscopic analysis for increasing
he sensitivity of its determination. However, spectral overlapping
ith the hydrolysis product and also to other test sample com-
onents (see below) makes it necessary to resort to multivariate
alibration techniques.
each 3 nm, emission, 321–481 nm each 2 nm) recorded during carbaryl hydrolysis
to produce 1-naphthol at pH 10.2 and 35 C after the following reaction times: (A)
120, (B) 210, (C) 300, (D) 390, (E) 470 and (F) 930 s. The insert in plot (A) shows the
fluorescence intensities in arbitrary units.

In the same wavelength regions and under the same experimen-
tal conditions, only two other agrochemicals evidence fluorescence
emission: fuberidazole and thiabendazole. A contour plot of a typi-
cal mixture of these foreign compounds is shown in Fig. 3A. The EEM
surfaces for these potential interferents remain almost constant in
time during the carbaryl reaction. Fig. 3B, on the other hand, shows
the contour plot for the fluorescence signal of a naturally occurring
water samples having a responsive background. This water sample
was employed to generate the sample set T.

4.2. Determination of analytes in the validation sample set V:
PARAFAC

The validation set of samples V contain both analytes, at
concentrations different than those employed for calibrating the
multivariate models. In order to simultaneously quantitate the
analytes, four-way arrays were created from the third-order data
(kinetic-excitation-emission third-order arrays) for each validation
sample and all calibration samples. In order to obtain physically
reasonable profiles using PARAFAC, two simultaneous strategies
were applied: (1) initialization was made by the best results of a

series of small runs involving singular value decomposition (SVD)
vectors and several sets of orthogonal random loadings, and (2)
scores and loadings were restricted to be non-negative during the
alternating least-squares fitting phase. The number of fluorescent
components in the four-way arrays was estimated by analyzing the

http://www.models.kvl.dk/source/
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Fig. 3. Excitation-emission fluorescence contour plot (excitation, 244–310 nm
each 3 nm, emission, 321–481 nm each 2 nm) for (A) a mixture of thiabendazole
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Table 2
Prediction results for validation samples of set V.a.

Sample Carbaryl 1-Naphthol

Nominal PARAFAC U-PLS Nominal PARAFAC U-PLS

1 60 44 55 78 86 71
2 214 203 226 415 384 387
3 96 83 91 275 252 239
4 230 223 245 500 465 481
5 251 229 231 40 57 45
6 270 245 250 225 233 213
7 51 44 47 173 158 155
8 30 26 49 6 27 18
9 83 66 71 390 378 386

When PARAFAC results were processed in this latter way, analyte
212 �g L−1) and fuberidazole (8 �g L−1) at pH 10.2 and 35 C, and (B) a natural water
ample with a fluorescent background under identical conditions. The inserts show
he intensities in arbitrary units.

SE value for increasing number of components. Three PARAFAC
omponents were required to describe the variability in these data
rrays, providing reasonable emission and excitation profiles. The
inetic profiles, however, deserve some attention.

The need of three PARAFAC components to describe the con-
ribution of the presently studied analytes can be explained on the
ollowing basis. Since both carbaryl and 1-naphthol are fluorescent,
nd hydrolysis of carbaryl produces 1-naphthol, the excitation-
mission matrix for a given sample will vary as a function of time
s:

(t) = SNAPcNAP + SNAPcCARf (t) + SCARcCAR[1 − f (t)] (17)

here X(t) is the excitation-emission matrix data matrix at time
for a given sample, SCAR and SNAP are the excitation-emission
ata matrices for pure carbaryl and 1-naphthol respectively at
nit concentration, cCAR and cNAP are the corresponding nominal
oncentrations in this particular sample, and f(t) is a function of

ime describing the kinetics of the conversion of carbaryl into 1-
aphthol.

If cNAP and cCAR were constant in a series of experiments, then
nly two components will suffice to model Eq. (12), which could be
RMSE 15 14 RMSE 21 19
REP% 8.3 7.6 REP% 8.2 7.3

a All concentrations in �g L−1.

written as the sum of two bilinear components:

X(t) = SNAP[cNAP + cCARf (t)] + SCARcCAR[1 − f (t)] (18)

However, in the present case carbaryl and 1-naphthol are
independent analytes, and a designed calibration set has been
employed, where cNAP and cCAR are different for each sample. Con-
sequently, there is no single function of time which can describe
the time evolution of the first two terms of Eq. (17), and hence
three PARAFAC components are required. This implies the need of
a B loading matrix having three columns, two of them equal to
the (normalized) emission spectrum of 1-naphthol. Likewise, the C
matrix will contain three columns, two of them with the excitation
1-nahthol spectrum. The loading matrix D, in turn, would be given
by:

D = [N1cNAP1|N2cCARf (t)|N3cCAR[1 − f (t)]] (19)

where 1 is a K × 1 vector having all elements equal to 1, t is a vector
having the K time values, f(t) is the function of time of Eq. (17), and
N1, N2 and N3 are normalization constants. However, a D matrix
composed of linear combinations of the columns of Eq. (18) will also
describe the time variation of the instrumental data. This means
that the PARAFAC least-squares fit may give linear combinations
of the expected ideal kinetic profiles, which may depend on the
starting values for the least-squares PARAFAC minimization.

Analysis of a typical validation sample rendered the profiles
in the three dimensions which are shown in Fig. 4. The emission
and excitation profiles matched the expected spectral properties
of carbaryl and 1-naphthol. However, in the case of the time
profiles, it is apparent that they are not correct for 1-naphthol,
since they consist of: (1) a time-decreasing profile for one of
the spectrally active components and (2) a time-increasing pro-
file for the other component (Fig. 4). In principle, one of them
would be expected to be constant, due to the 1-naphthol origi-
nally present in the solution (see above). This suggests the presence
of linear combinations in the time mode, which are expressed
into corresponding correlations in the PARAFAC score matrix
A.

One alternative to cope with the above problem is to correlate
all relevant columns of A with the analyte concentrations using the
MLR approach described in Section 3.1, as has been previously done
in the modelling of four-way fluorescence data for other kinetic
systems [6,11]. In this case, the scheme outlined in Fig. 1 is applied,
except that all columns of A may in principle be useful for quantita-
tion, because no unexpected components occur in these V samples.
concentrations could be reasonably predicted in the validation set
of samples. The statistical summary of this analysis is presented in
Table 2. As can be seen, acceptable figures of merit are obtained,
in terms of root-mean square error (RMSE) and relative error of
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Fig. 4. Emission (A), excitation (B) and kinetic (C) profiles provided by a three-
component PARAFAC model (B, C and D matrices, respectively), after processing the
array formed by the time evolution of the excitation-emission matrices recorded
during carbaryl hydrolysis to produce 1-naphthol at pH 10.2 and 35 C for a sample
of set V. The dotted lines in plots (A) and (B) can be ascribed to carbaryl, while the
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Table 3
Comparison of sensitivities (Sn) of U-PLS and PARAFAC for second- and third-order
calibrations.a.

Method/data Error propagation Sn Monte Carlo Sn

Carbaryl 1-Naphthol Carbaryl 1-Naphthol

U-PLS/Second-order 2.9 5.9 3.0 6.0
U-PLS/Third-order 6.8 10.1 6.5 9.4
PARAFAC/Second-order 2.9 6.6 3.3 5.9
olid and dashed lines correspond to 1-naphthol. The kinetic profiles in plot (C), on
he other hand correspond to carbaryl (dotted line), while the solid and dashed lines
re linear combinations of the profiles expected for 1-naphthol. The intensities of
ndividual profiles are normalized to unit length.

rediction (REP%), computed with respect to the mean calibration
oncentration of each analyte.

.3. Determination of analytes in the validation sample set V:
-PLS

For applying this model to the set of validation samples, it

s first required to assess the number of U-PLS latent variables.
his can be done by resorting to the well-known leave-one-out
ross-validation procedure [24]. In the present case, the number of
actors was two for both carbaryl and 1-naphthol, even when the
umber of PARAFAC components was three, because of the above-
PARAFAC/Third-order 4.9 5.2 4.9 5.3

a Values in AFU L �g−1. AFU = arbitrary fluorescence units.

mentioned correlations in the 1-naphthol time profiles. Notice that
the validation set does not require the RTL procedure for analyte
quantitation, because no interferences were added to these sam-
ples of set V.

The analytical results are shown in Table 2. As can be seen,
the recovery for carbaryl and 1-naphtol were reasonable, and
acceptable figures of merit were obtained (RMSE = 14 �g L−1 and
REP = 7.6% for carbaryl and RMSE = 19 �g L−1 and REP = 7.3% for 1-
naphthol). They are comparable to those achieved using PARAFAC.
However, it should be apparent from the previous section that, in
comparison with the quantitation based on PARAFAC analysis of
the presently studied four-way kinetic-spectral data, the use of
U-PLS/RTL is considerably simpler. No special algorithmic modi-
fications, initialization or restrictions are required for successful
analyte quantitation, in comparison with other analytical systems
not presenting the phenomenon of linear dependency.

4.4. Figures of merit

We now compare the relative sensitivities of U-PLS and
PARAFAC regarding the present determination using third-order
excitation-emission-kinetic data, and also with those which would
be obtained by employing second-order excitation-emission data
without the time evolution. For U-PLS, Eq. (12) applies to both of
these latter cases, except that calibration using second-order data is
restricted to using the matrix data for the first reaction time, with-
out resorting to the kinetic evolution of the system. For PARAFAC, an
equation analogous to (14) can be employed for second-order data,
with the contribution of the D matrix removed, and sn replaced by
the corresponding integrated second-order signal at unit concen-
tration. Eq. (15) is used for third-order data.

The obtained results are collected in Table 3. The first issue to
be noticed in this table is the satisfactory agreement between error
propagation equations and noise addition simulations, which lends
support to the present approach, particularly to the novel expres-
sion (15). Moreover, U-PLS is seen to provide increased sensitivity
for both analytes in going from second- to third-order data, as
expected from the measurement of additional matrix data during
the kinetic evolution of the system. The relative increase in sensi-
tivity is larger for carbaryl than for naphthol, since the former is
converted into the latter by the hydrolysis reaction, and the fluo-
rescence intensity of the reaction product is higher than that of the
reagent. Part of the sensitivity for carbaryl is thus gathered from its
correlation to the generated naphthol during the reaction.

In the case of PARAFAC, the sensitivities using second-order data
are similar to those attained with U-PLS, as expected. An increase in
sensitivity is noticed in going to third-order data processing, again
as expected. Interestingly enough, however, the relative increase
in this case is significantly lower than for U-PLS. It is likely that the

MLR calibration required by the strong correlation observed in the
component scores after four-way PARAFAC decomposition causes
a corresponding decrease in component sensitivity.
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Fig. 5. Emission (A), excitation (B) and kinetic (C) profiles provided by a five-component PARAFAC model (B, C and D matrices, respectively), after processing the array formed
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y the time evolution of the excitation-emission matrices recorded during carbary
uberidazole as potential interferents. The solid, dashed and dotted lines have the s
he interferents. Plots (D), (E) and (F) show the corresponding profiles provided for
ample. Solid line, first RTL component, dashed line, second RTL component. The in

.5. Determination of analytes in samples of sets S and T:
ARAFAC

All samples of set S contain interfering components which
roduce fluorescence in the working spectral ranges. These sam-
les intend to mimic a real situation, where unknown responsive
omponents may occur, making it necessary to resort to the second-
rder advantage in order to quantitate the analytes. The samples
f set S were prepared from a natural water sample, by spiking
hem with the analytes and also with mixtures of other two pesti-
ides: fuberidazole and thiabendazole. These latter compounds are
uorescent in the working spectral ranges, and therefore strongly

nterfere by overlapping with the analyte signals. Several other

esticides such as imacloprid, imazalil, 2,4-dichlorophenoxyacetic
cid, carbendazim, neburon, linuron, diuron, chlorsulfuron, iso-
ropturon, mercaptodimethopur, metomil and propoxur were
ssayed as potential interferents, but they were not fluorescent
nder the present experimental conditions. The fact that we know
olysis at pH 10.2 and 35 C for a sample of test S containing both thiabendazole and
eaning as in Fig. 4, while the dash-dotted and dash-dot-dotted lines correspond to
o interfering components by the U-PLS/RTL model, after processing the same test

ies of individual profiles are normalized to unit length.

the chemical identity and spectral properties of the interferents in
the set of samples S allow us to check the success of the second-
order advantage in retrieving correct profiles in the several data
dimensions.

PARAFAC decomposition of the four-way arrays formed by each
of the samples of set S with the three third-order arrays corre-
sponding to the set of calibration samples proceeded as described
above for set V. Similar initialization and restrictions were applied
during the fitting phase, and the number of components was estab-
lished using the same philosophy based on SSE considerations. As
expected, five components were required in set S in order to reach
stabilization of the SSE parameter for samples containing both
interferents, and four components for those containing a single

interfering constituent, in agreement with the known composition
of these samples (three components were required by the cali-
brated components, as discussed above for set V). After PARAFAC
analysis of a typical sample of set S containing both interferents, the
retrieved profiles are shown in Fig. 5A–C in the three dimensions.
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Table 4
Prediction results for the spiked test samples of sets S and T.a.

Sample set Sb

Carbaryl 1-Naphthol Potential interferents

Nominal PARAFAC U-PLS/RTL Nominal PARAFAC U-PLS/RTL THI FUB

59 50 31 394 507 394 212 0
246 233 244 39 88 44 0 4
60 55 52 263 330 259 212 4
207 177 185 78 62 88 106 4
96 84 85 423 401 381 0 5
236 201 211 286 253 266 212 8
RMSE 21 19 RMSE 60 19
REP% 11.3 10.3 REP% 23.4 7.6
Sample set T
Carbaryl 1-Naphthol Potential interferents
Nominal PARAFAC U-PLS/RTL Nominal PARAFAC U-PLS/RTL
0 –c –c 400 383 365 Unknown
150 152 146 300 289 299 Unknown
225 210 200 200 191 194 Unknown
301 332 327 0 –c –c Unknown

a All concentrations in �g L−1.
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b THI = thiabendazole, FUB = fuberidazole.
c Not detected (small negative concentrations were predicted).

hree of them match those shown in Fig. 4, while the remaining
nes correspond to the interferences. Notice in Fig. 5C that the time
rofiles for the interferents are constant, as expected from the fact
hat they do not react in alkaline media. Finally, the time profiles
or 1-naphthol show the same linear correlations discussed above
n connection with the sample set V.

Quantitation with PARAFAC is possible in all samples of this set
y employing an analogous MLR calibration approach to that dis-
ussed above for the validation samples. The scheme of Fig. 1 was
mployed, in this case by removing from matrix A the columns
orresponding to the unexpected components. The results for both
nalytes are shown in Table 4. While acceptable results were
btained for the recovery of carbaryl, the corresponding figures for
-naphthol appear to be rather disappointing.

The sample set T, on the other hand, was prepared from a natu-
al water carrying an unknown fluorescent background, generated
y an unspecified number of uncalibrated sample components. In
his set the real limits of the second-order advantage can be tested.
he analysis of these samples followed similar guidelines to those
etailed above concerning the set S. The total number of com-
onents was estimated as four, with retrieved spectral and time
rofile which are shown in Fig. 6A–C. The additional component
hich is different than the analytes accounts for the contributing

ignal from the uncalibrated sample background. Specific predic-
ion results are shown in Table 4, which can be studied by paired
-statistics. Since texp = 0.8, lower than tcrit = 2.58 (95% confidence
evel and 5 degrees of freedom), the results provided by PARAFAC
re statistically comparable to the nominal ones.

.6. Determination of analytes in samples of sets S and T:
-PLS/RTL

The sample set S containing potential interferents was studied
sing the U-PLS/RTL model. In the present case it is necessary to
xploit the second-order advantage of the four-way data which is
rovided by the RTL procedure. Hence, for each of these test sam-

les, the number of RTL components should be tuned, in addition
o the number of calibration latent variables, which is the same
s that employed during analysis of the validation samples of set
. The required number of RTL components was established as

wo in all samples of set S containing both interferents and one in
those containing a single interferent. This conclusion was reached
by monitoring the changes in the residual parameter su [Eq. (11)]
as a function of increasing RTL components. The quantitation of the
analytes proceeded as with the V samples, i.e., with no special con-
ditions imposed during the calculations. Fig. 5D–F shows the RTL
profiles obtained when studying with U-PLS/RTL the same sample
of set S discussed above. As can be seen, the profiles for one of
the RTL components resembles those corresponding to one of the
interferents (Fig. 5), but the remaining profile is an abstract linear
combination of pure spectra with no physical interpretation.

The prediction results for these S samples are shown in Table 4.
The recovery of 1-naphthol concentrations shows better predic-
tive ability than the PARAFAC model, probably due to: (1) better
analyte resolution by using latent variables, and (2) handling multi-
linearity losses due to the finite time during which EEM acquisition
takes place.

As regards the sample set T, analysis proceeded as described
above for set S. A single interfering RBL component was estimated
for these samples, allowing to achieve the second-order advantage.
This led to retrieved RTL profiles which are shown in Fig. 6D–F,
and are seen to be in agreement with the PARAFAC findings for
these samples. Quantitative results are collected in Table 4. Paired
t-statistics was also applied: the experimental texp was 0.4, lower
than the critical tcrit = 2.58 (95% confidence level and 5 degrees of
freedom), confirming that the results provided by U-PLS/RTL are
statistically comparable to the nominal values. As can be seen, the
recoveries are of a similar quality to those obtained for the set S,
confirming the predictive ability of U-PLS/RTL towards these com-
plex samples having a responsive background signal of unknown
origin.

4.7. Comparison of PARAFAC and U-PLS/RTL

A comparison of the predictive abilities of PARAFAC and U-
PLS/RTL regarding the most challenging set of samples (set T) was
finally made, using similar arguments to those employed above in

connection with the comparison of predicted vs. nominal concen-
tration values. The results suggest that no significant difference
exists between both sets of predictions: paired t-statistics gives
texp = 1.0, lower than the critical tcrit = 2.58 (95% confidence level
and 5 degrees of freedom).
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Fig. 6. Emission (A), excitation (B) and kinetic (C) profiles provided by a four-component PARAFAC model (B, C and D matrices, respectively), after processing the array
formed by the time evolution of the excitation-emission matrices recorded during carbaryl hydrolysis at pH 10.2 and 35 C for a sample of test T containing an unknown
sample background as potential interferent. The solid, dashed and dotted lines have the same meaning as in Fig. 4, while the dash-dotted lines correspond to the interferents.
Plots (D), (E) and (F) show the corresponding profiles provided for the interfering component by the U-PLS/RTL model, after processing the same test sample. The intensities
o

5

k
t
a
p
v
t
w
m
a
m
s
a
t

f individual profiles are normalized to unit length.

. Conclusions

The present study reports on a new application of four-way
inetic-excitation-emission fluorescence data, aimed at the quanti-
ative determination of two interconverting analytes embedded in
the complex sample background. The approach based on unfolded
artial least-squares combined with residual trilinearization pro-
ides simple, accurate and reproducible quantitative analysis for
he determination of carbaryl and 1-naphthol as binary mixtures
ithout interference from other assayed pesticides. The proposed
ethod is simple as there is no need for solvent extraction,
nd has the advantages of being low cost, rapid and environ-
entally friendly. In addition, the applied algorithm presents

imilar figures of merit in comparison to classical parallel factor
nalysis, but is considerably simpler in its computer implementa-
ion.
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