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Microplastics (MPs) are considered emerging pollutants and often enter aquatic ecosystems carried by currents and tides until they accumulate on
the shorelines. In many cases they may be colonized by diverse microorganisms forming a community called plastisphere, which can even act as a
reservoir for pathogenic microorganisms. This study carried out in the Río de la Plata estuary (southern coastal fringe, Argentina) focused on two
main objectives, the analysis of the biofilm colonizing MPs under laboratory conditions, and the detection of bacteria indicating faecal contamination
(Escherichia coli and Enterococci), in MPs from the intertidal sediment at coastal sites with different land uses, in the freshwater sector of the Río de
la Plata estuary. The colonization experiment was carried out in the laboratory with water from the estuary for a period of 35 days (residence time of
the water in the freshwater sector of the estuary). The results revealed a remarkable development and diversity of biofilm organisms from the second
week of colonization on, covering the surface of the microplastic and thus masking this pollutant. On the other hand, the presence of faecal indicator
bacteria in the MPs of the intertidal sediment was confirmed in all the studied sites, being proportionally higher on MPs found in areas influenced by
sewage discharges
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Pazos, R.S., Suárez, J.C., Gómez, N. 2020. Estudio de la plastisfera: desarrollo del biofilm y presencia de bacterias indicadoras fecales en
microplásticos del estuario del Río de la Plata. Ecosistemas 29(2): 2069. https://doi.org/10.7818/ECOS.2069
Los microplásticos (MPs) son considerados contaminantes emergentes y suelen ingresar en los ecosistemas acuáticos donde son transportados
por las corrientes y mareas hasta acumularse en las costas. En muchos casos éstos pueden ser colonizados por diversos microorganismos confor-
mando una comunidad denominada plastisfera y hasta pueden actuar como reservorio de microorganismos patógenos. En el estuario del Río de la
Plata (Franja Costera Sur, Argentina), se realizó un estudio cuyo objetivo fue analizar el biofilm que se desarrolla sobre MPs en condiciones de la-
boratorio y analizar la presencia de bacterias indicadoras de contaminación fecal (Escherichia coli y Enterococos) en MPs hallados en el sedimento
intermareal en sitios costeros con diferentes usos del suelo, en el sector de agua dulce del estuario del Río de la Plata. La experiencia de colonización
se realizó en laboratorio con agua procedente del estuario durante un período de 35 días (tiempo de residencia del agua en el sector de agua dulce
del estuario). Los resultados revelaron un notable desarrollo y diversidad de organismos del biofilm a partir de la segunda semana de colonización,
recubriendo la superficie del microplástico y enmascarando así a este contaminante. Por otra parte, se confirmó la presencia de bacterias indicadoras
fecales en los MPs del sedimento intermareal en todos los sitios estudiados, siendo proporcionalmente mayor en los MPs hallados en áreas influen-
ciadas por descargas cloacales. 
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Introduction

Currently, plastic contamination is a matter of great concern
since they have reached a volume of approximately 8 million tons
per year in the oceans (Rodrigues, Duarte, et al. 2019). A particular
type of contaminant within plastic litter is microplastics (MPs), which
are pieces smaller than 5 mm (Arthur et al. 2009), defined as a het-
erogeneous mixture of differently shaped materials (EFSA 2016),
and considered by the United Nations Environment Program as one
of the 10 emerging problems, because they are widely distributed
in many ecosystems around the world (Lithner 2011).

Once inside ecosystems, organisms interact with MPs, being
able to ingest them or colonize their surfaces. In the latter case,
MPs in aquatic environments can serve as substrates for various
microorganisms, that is, in addition to accumulating organic pollu-

tants, microplastic surfaces can be colonized by microbial commu-
nities, that form a biofilm (Zettler et al. 2013; McCormick et al. 2014;
Oberbeckmann et al. 2014; De Tender et al. 2015; Hoellein et al.
2017; Dussud et al. 2018). The biofilm developed on plastic is called
“plastisphere” (Zettler et al. 2013) and that surface represent a dif-
ferent habitat for the development of the microbial community.

The biofilms that colonize plastic exposed to the marine environ-
ment are mainly modulated by biogeographic and environmental fac-
tors, such as salinity and the concentration of nutrients in the water
(Amaral-Zettler et al. 2015; Oberbeckmann et al. 2018). Microplastic
surfaces themselves also influence colonization processes, since
some organisms in the plastisphere could use plastic as an energy
source due to their ability to degrade highly complex biopolymers
such as lignin and petroleum derivatives (Zettler et al. 2013; Ober-
beckmann et al. 2016; Ogonowski et al. 2018).
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Recently, the potential danger of microbial communities asso-
ciated with MPs has begun to be studied, since the role of MPs as
carriers of antibiotic resistance genes has been discussed (Arias-
Andres et al. 2018). These authors analysed the permissiveness
of aquatic bacteria towards a model antibiotic resistance plasmid,
comparing the organisms of biofilms on MPs vs. those that are
free-living. They observed that a horizontal gene transfer in this
habitat could distinctly affect the ecology of aquatic microbial com-
munities on a global scale. In addition to the role of MPs as carriers
of antibiotic resistance genes, they could act as vectors that favour
the distribution of possible pathogen agents from areas of waste-
water discharge to aquatic ecosystems not affected by such con-
tamination (Oberbeckmann et al. 2015). Pathogens such as
members of the genus Vibrio, have been reported as abundant on
MPs (Zettler et al. 2013; Frère et al. 2018). Likewise, the biofilm
that colonizes the surface of the MPs could act as a reservoir for
indicators of faecal contamination, such as Escherichia coli. There-
fore, it is essential to better understand the potential of MPs to fa-
cilitate the survival of these organisms and, therefore, to increase
exposure routes in humans by providing a vehicle for dispersal in
coastal waters (Rodrigues, Oliver, et al. 2019). 

Most papers on plastisphere are focused on marine environ-
ments, but it is important to study them in estuarine ecosystems
due to the services provided by these environments as well as to
the large load of contaminants that reach their coasts. Specifically,
in South America, most of them suffer the consequences of urban
and industrial centres settled on their margins, the expansion of
agriculture and aquaculture, water extraction, wastewater dis-
charge, and the entry of various contaminants, among which are
the MPs (Barletta et al. 2019). In Argentina, the Río de la Plata es-
tuary is part of Del Plata basin, which is the second largest in South
America (Mianzan et al. 2001), and is an important water resource
that provides different ecosystem services for the region. This re-
source is the main source of drinking water and provides services
such as fishing, recreational and navigation activities, but it also re-
ceives agricultural runoff, industrial discharges and sewage (Gómez
et al. 2012; Gómez and Cochero 2013).

Microplastics have been recorded in the water column of the
Río de la Plata estuary integrating the plankton community, in fish
assemblages and in mussels of the species Limnoperna fortunei
(Pazos et al. 2017, 2018, 2020). However, the colonization dynam-
ics of the biofilm on MPs is still unknown, as well as whether they
can act as a substrate for organisms that indicate faecal contami-
nation. In this sense, the goals of this study are to analyse the col-
onization dynamics of the microbial biofilm that develops on the
surface of the MPs under laboratory conditions, and to analyse the
presence of bacteria indicating faecal contamination (Escherichia
coli and Enterococci) on MPs found in the intertidal sediment at
coastal sites with different land uses in the freshwater sector of the
Río de la Plata estuary.

Materials and methods
Study area

The Río de la Plata receives the discharge from the Paraná and
Uruguay rivers, which with an average annual flow of 22 000 m3 s-1

provide more than 97% of the inland water intake. Its circulation pat-
tern is modulated by ocean, river and atmosphere forcings (Fossati
and Piedra Cueva 2013). According to its geomorphology and dy-
namics, the estuary is divided into two regions: interior (freshwater)
and exterior (mixohaline). These regions are separated by a geomor-
phological barrier named Barra del Indio (which extends along a line
from Punta Piedras (Argentina) to Montevideo (Uruguay), 6.5-7 m
deep (FREPLATA 2005). This barrier, together with the isohaline of
0.5 UPS (1000 µS cm-1) form the boundary between freshwater (37%
of the surface of the estuary) and the brackish zone (Urien 1972). 

To analyse the presence of bacteria indicating faecal contami-
nation, seven sampling sites were selected in the freshwater sector
of the estuary covering 120 km of the Argentine coast (34° 42’ 24”

S, 58° 13’ 48” W and 35° 16´ 37” S, 57° 13´ 26” W), exposed to dif-
ferent land uses (Gómez and Cochero 2013). In Quilmes site (QUI),
recreational and fishing activities are carried out. It is exposed to
the impact of the city of Buenos Aires, and downstream the dis-
charge from a highly polluted basin such as the Matanza-Riachuelo
River. Berazategui site (BE) is located near the sewage effluent of
the city of Buenos Aires, and Punta Colorada site (PC) is located
downstream. In Punta Lara site (PL) mostly recreational and fishing
activities are carried out. Bagliardi site (BAG) is located in the area
surrounding the sewage effluent of the city of La Plata, and Balan-
dra site (BAL) is located downstream. The southernmost site of the
study area is Punta Indio (PI), which is the closest to the Maximum
Turbidity Front of the estuary with salinity close to 10 PSU (Licursi
et al. 2010).

Laboratory experiment

To analyse the colonization of the biofilm on MPs under labora-
tory conditions, water was extracted from the PL site, and refriger-
ated during its transport to the laboratory. Before starting the
bioassay, all the materials were autoclaved. Eighteen glass jars with
60 ml of water from the sampling site were used, adding 20 spherical
MPs (size: 3 mm, polymer: PE (polyethylene), color: pink and white)
to each of them. The jars were placed in a shaker with a rotary
movement at 150 mot min-1 under laboratory conditions (mean tem-
perature 20º C, average light intensity of 790 µM m2s-1). The water
was partially renewed once a week and the duration of the bioassay
was 35 days, considering the residence time of the water in the
freshwater sector of the estuary (FREPLATA 2005). For biofilm
analysis, samples were extracted in triplicate on days 2, 7, 14, 21,
28 and 35 after the start of the test. The MPs were collected with
entomological tweezers and placed in glass jars containing 5 ml of
distilled water, which were sonicated in an ultrasound bath (Clean-
son), for three periods of 30 seconds in order to release the biofilm. 

Microorganisms analysis

In order to analyse the viable and non-viable bacteria contained
in the biofilm, 0.5 ml of the sonication of MPs was used (in triplicate).
For the analysis of bacterial viability, the kit LIVE/DEAD® BacLightTM

was used, which stains the nucleic acids of bacteria in fluorescent
green (SYTO®9), both those with complete membranes and those
with damaged membranes. In addition, the kit has another stain
called propidium iodide (fluoresces in red) that penetrates only bac-
teria with damaged membranes, generating a reduction in the fluo-
rescence of SYTO®9 when both stains are present. As a
consequence, bacteria with intact membranes fluoresce in green
(considered live) and bacteria with damaged membranes fluoresce
in red (considered dead) (Sathicq and Gómez 2018). 

The stain was prepared by dissolving in equal parts each of the
mentioned stains in 5 ml of sterile milliQ water. Then the sample
(0.5 ml) and the prepared staining (0.5 ml) were combined. Sub-
sequently, the samples were incubated in the dark and at room
temperature for a period of 15 minutes, before being filtered
through black polycarbonate Gamafil filters (25 mm diameter and
0.2 µm pore). Filters were placed on slides with BacLight mounting
oil, and viewed under a direct microscope (Olympus BX50) at
1000x with eplifluorescence and an Olympus filter U-MWB2 (exci-
tation filter BP 460-490; emission filter BA 520 IF; dichromatic filter
DM 500) (Boulos et al. 1999). The count of bacteria in each filter
was made from photos captured in 20 random fields, with an Olym-
pus camera Q-Color 5 (Romaní and Sabater 2001). The count was
carried out using the Image J program and the results are ex-
pressed in ind mm-2.

The sample (in triplicate) for the count of microalgae, protozoans,
and invertebrates was fixed with formalin (final concentration 4%
[v/v]). For the count we used 1 ml obtained from the sonication of
the MPs, which was analysed under an inverted microscope (Olym-
pus IX51) with magnifications of 400x and 600x, in a 5 ml Utermöl
sedimentation chamber. Lugol was added to the sample, once it was
placed in the chamber and allowed to settle for twelve hours. 
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The individuals were counted by cells. In the case of the filamen-
tous algae, the cells were measured, and the number of total cells
was calculated according to the length of the filament. Taxonomic
identification was carried out at the level of large groups: diatoms,
chlorophytes, cyanobacteria, euglenophytes, chrysophyceaes, cili-
ates, rotifers and nematodes (Desikachary 1959; Olivier 1965; Bour-
relly 1972; Streble and Krauter 1987; Tell and Conforti 1986;
Krammer and Lange-Bertalot 1986, 1988, 1991a, 1991b; Komárek
and Anagnostidis 1999, 2005; Coelho-Botelho 2003). Results were
expressed as ind mm-2.

Analysis of bacteria indicating faecal contamination on MPs

The sampling was carried out between November and Decem-
ber 2018. In each sampling site, 32 MPs were collected from the
sediment along a transect parallel to the coastline, located in the
area of maximum accumulation caused by high tide in the intertidal
zone. All samplings were performed at low tide.

Materials and solutions were previously autoclaved. Each MP
was collected with tweezers, gently washed with distilled water in
order to remove the adhering sediment and placed in an Eppendorf
tube with 500 µl of sodium pyrophosphate (dispersing solution).
Tweezers were sterilized with alcohol 70% between each sample.
MPs were refrigerated until their analysis which was carried out
within 24 hours. The Eppendorf tubes containing the MPs as
brought from the field were placed in a mechanical rotator for half
an hour to detach the bacteria from the MPs. Each tube was then
vorterized to homogenize the sample, prior to pouring it into the mi-
crotubes of the microtiter plates. Later, 200 µl of each the sample
was pipetted into a well with differential culture medium for the de-
tection of E. coli and another 200 µl of the same sample in a well
with specific culture to detect Enterococci. This procedure was per-
formed with each of the MPs extracted in the field, so 32 well were
incubated for each sampling site. After incubation of the plates at
44° C for 48 to 72 hours, the plates were read under UV light of 266
nm wavelength. In this way, it was recorded which well showed flu-
orescence, meaning a positive result with bacterial growth (pres-
ence) and which ones did not fluoresce, being a negative result,
without bacterial growth (absence). Results were calculated as
number of MPs with bacteria (positive well) / number of total MPs
(total well = 32) for each site, expressed as percentages. Regarding
the characteristics of the MPs found, colour, size and shape were
recorded in order to classify them following the categories most
commonly used: fragment, film, pellet and foam (Rezania et al.
2018).

Statistical analysis

The statistical analysis was performed in R version 3.5.1. One-
way ANOVA analysis were performed to explore the differences in
the density of microalgae, protozoans, invertebrates and bacteria be-
tween the different dates during the colonization experience in labo-
ratory. The differences (significance level p ≤ 0.05) were analysed
post-hoc using the Fisher test.

Results
Laboratory experiment

The results revealed a remarkable development and diversity
of biofilm organisms on the MPs throughout the 35 days of the test.
By the second week, the density of organisms had increased one
order of magnitude. In a first stage, bacteria, cyanobacteria and cil-
iates dominated, and towards the end, diatoms and rotifers together
with a higher proportion of viable bacteria. 

Within the heterotrophic component, the bacteria colonization at
the beginning of the test (Fig. 1.c), was only 25% viable, but in-
creased to 70% by day 35 (Fig. 2.a, 2.b and 2.c). No significant dif-
ferences were observed in bacteria density (p= 0.23; F= 1.59; df= 5).

However, significant differences in the density of the autotrophic
component were observed between the start and end of the exper-

iment (p<0.001; F= 12.01; df= 5) (Fig.1.a), attributable to the greater
development of diatoms (Fig. 1.b). In a more detailed analysis, di-
atoms, chlorophytes, euglenophytes and cyanobacteria were ob-
served from day 2, the latter being dominant, while on day 7 the
chrysophyceae were also observed and diatoms were the dominant
group (represented mainly by Cyclotella meneghiniana, Gom-
phonema parvulum, Nitzschia frustulum, Nitzschia levidensis and
Nitzschia palea) which continued to predominate until the end of
the experiment. Towards the end of the test, the number of chloro-
phytes increased.

3

Pazos et al. 2020Ecosistemas 29(3): 2069

Fig. 1 (a) Total density (and standard deviation) of the autotrophic compo-
nent observed in the colonization experiment. (b) Percentage of the groups
forming the autotrophic component (Chrysophyceae, Euglenophyta,
Cyanobacteria, Chlorophyta and Bacillariophyceae) observed in the colo-
nization experiment. (c) Density of total heterotrophic bacteria (and standard
deviation) during the colonization experiment.
Fig. 1 (a) Densidad total (y desviación estándar) del componente autotrófico
observado en la experiencia de colonización. (b) Porcentaje de los diferen-
tes grupos del componente autotrófico (Chrysophyceae, Euglenophyta,
Cyanobacteria, Chlorophyta and Bacillariophyceae) observado en la expe-
riencia de colonización. (c) Densidad de bacterias heterotróficas totales (y
desviación estándar) durante la experiencia de colonización.



With regard to the protozoans and invertebrates observed, the
density was lower than bacteria and the autotrophic component.
The colonization was alternately by ciliates and rotifers, and from
day 28 on, nematodes were observed. (Fig. 3.a and 3.b). There
were no significant differences in their densities during the experi-
ment (p= 0.24; F= 1.57; df= 5).

Analysis of bacteria indicating faecal contamination on MPs

The analysis of bacteria indicative of faecal contamination re-
vealed their presence in the MPs of the intertidal sediment of the
seven sites. E. coli was recorded in all the sites, whereas Entero-
cocci were found only in three of them (QUI, BE and BAG). The
highest proportion of bacteria recorded in the MPs was found in site
BAG, followed by QUI and BE. The frequency of E. coli on the MPs
varied between 3.1% (PC and PL) and 50% (BAG). Whereas the
frequency of Enterococci was much lower, varying from 6.2% (BE)
to 15.6% (BAG) (Fig. 4). In addition, in those sites where the pro-
portion of E. coli was lower than 6% (PC, PL, BAL and PI), the En-
terococci were not recorded.

The MPs on which faecal indicators were analysed corre-
sponded to four categories (Fig. 5.a): fragment (69.6%), film
(20.5%), pellet (9.4%) and foam (0.4%). The size of the MPs was
greater than 1000 µm, being the most frequent category
>2500 ≤ 3000 µm (Fig. 5.b). Also, blue-coloured MPs were domi-
nant (29%) followed by red (22%), followed by other colours in a
smaller proportion (Fig. 5.c). Of the 224 MPs analysed, E. coli was
recorded on 48 (21.4%) and Enterococci on 10 (4.5%). Considering
only the MPs in which bacteria was found, E. coli was present on
fragments, pellets and films, while Enterococci were observed on
fragments and film. Neither of the two faecal contamination indica-
tors were observed in foam. E. coli was present on MPs of different
colours, unlike Enterococci were recorded only on blue, red and
green MPs. Regarding the size of the MPs, both faecal indicators
were present in various size categories (Table 1).
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Fig. 2 (a) Relative abundance of viable and inviable bacteria
during the colonization experiment. Bacteria on day 2 (b) and
day 35 (c) of the colonization experiment, observed with
epifluorescence (1000X). Viable bacteria fluoresce in green and
inviable bacteria fluoresce in red.
Fig. 2 (a) Abundancia relativa de bacterias viables e inviables
durante la experiencia de colonización. Bacterias en el día 2 (b)
y en el día 35 (c) de la experiencia de colonización observadas
con eplifluorescencia (1000X). Las bacterias viables fluorescen
en verde y las inviables en rojo. Fig. 3 (a) Total density of ciliates, rotifers and nematodes (and standard

deviation) during the colonization experiment. (b) Relative abundance
of ciliates, rotifers and nematodes of the colonization experiment.
Fig. 3 (a) Densidad total de ciliados, rotíferos y nematodes (y desviación
estándar) durante la experiencia de colonización. (b) Abundancia rela-
tiva de ciliados, rotíferos y nematodes de la experiencia de colonización.
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Fig. 4 Percentage of MPs bearing Escherichia coli and Enterococci in the
studied sites (QUI: Quilmes; BE: Berazategui; PC: Punta Colorada; PL:
Punta Lara; BAG: Bagliardi; BAL: Balandra; PI: Punta Indio).
Fig. 4 Porcentaje de MPs con presencia de Escherichia coli y Enterococos
en los sitios analizados (QUI: Quilmes; BE: Berazategui; PC: Punta
Colorada; PL: Punta Lara; BAG: Bagliardi; BAL: Balandra; PI: Punta Indio). 

Fig. 5 (a) Amounts of microplastics (MPs) types (fragments, film, pellets and
foam) found in the intertidal sediments of the seven sites analysed. (b)
Percentage of microplastics sizes found in the study area. (c) Percentage of
microplastics colours found in the study area.
Fig. 5 (a) Cantidad de tipos de microplásticos (MPs) (fragmentos, film, pellets
y foam) hallados en el sedimento intermareal de los siete sitios analizados.
(b) Porcentaje de tamaños de microplásticos hallados en el área de estudio.
(c) Porcentaje de colores de microplásticos hallados en el área de estudio.

Table 1. Characteristics (types, colours and sizes) and amount of microplas-
tics (MPs) with Escherichia coli and Enterococci.
Tabla 1. Características (tipos, colores y tamaños) y cantidad de los micro-
plásticos (MPs) en los que se registró presencia de Escherichia coli y En-
terococos.

Characteristics of MPs MPs with E. coli MPs with Enterococci

Types

fragments 38 8

pellets 3 0

film 7 2

Colours

blue 14 3

red 12 4

transparent 1

green 11 3

white 2

multicolor 1

others 7

Sizes

>1000≤1500µm 2

>1500≤2000µm 6 2

>2000≤2500µm 1 1

>2500≤3000µm 16 3

>3000≤3500µm 2

>3500≤4000µm 11 3

>4000≤4500µm 4

>4500≤5000µm 6 1

Discussion
Most published studies on plastisphere have examined commu-

nity composition through colonization experiments (Amaral Zettler
et al. 2020). The experimental designs in the literature have in-
cluded suspension within the natural water column, in sediments,
static laboratory systems in containers of various sizes with water
collected once from the aquatic system of interest; different MPs
types, sizes and polymers and various exposition times. The differ-
ences in laboratory conditions make it difficult to compare studies,
but some specific examples provide evidence of common members
of the plastisphere (Amaral Zettler et al. 2020). Despite the fact that
experiments under laboratory conditions can only provide an ab-
straction of the complex ecology of a natural environmental system
(Harrison et al. 2014), they provide an opportunity to explore the
characteristics of the biofilm coating the MPs. In this sense, this
study showed that the surface of the MPs was favourable for the
attachment of biofilm organisms from the water from Río de la Plata
estuary, in a short period of time. According to Amaral Zettler et al.
(2020) the coverage increased rapidly for the first weeks and then
stabilized (15–25% of the plastic surface for live cells).

The results demonstrated the fast colonization of microorgan-
isms on MPs, as two days after the beginning of the experience a
diversified community of organisms, belonging to different taxo-
nomic groups of autotrophs and heterotrophs, was observed. More-
over, 35 days later the MPs had changed its original appearance by
being covered by biofilm, similar to what is observed in natural sub-
strates of the coast of the Río de la Plata estuary (Gómez et al.
2003; Bauer et al. 2007).



The heterotrophic bacteria were early colonizers, and the most
abundant group of the plastisphere during the experiment. Bacterial
adhesion is a highly controlled and regulated process by which ad-
hering cells produce extracellular polymers to form structured and
complex matrices (Costerton et al. 1995). Microbial biofilms can
subsequently trigger the attachment of specific invertebrates and
algae, which increases the degree of biofouling (Zardus et al. 2008).

According to studies by Foulon et al. (2016) and Harrison et al.
(2014) microorganisms colonize plastic substrates within hours of
their immersion in water, and after a week the biofilm is dominated
by individual pennate and filamentous diatoms. In our study, di-
atoms were observed from the second day of the experiment on,
and during the first week this taxonomic group came to represent
more than 60% of the autotrophs of the plastisphere community,
particularly pennate species tolerant to contamination and eutroph-
ication in freshwater ecosystems (Licursi and Gómez 2004; Licursi
et al. 2010). The diatoms are early and sometimes dominant colo-
nizers in plastic debris (Costerton et al.1995; Kettner et al. 2019)
and most studies have shown that are common and omnipresent
residents of the plastisphere (Amaral Zettler et al. 2020). Cyanobac-
teria often join diatoms among the autotrophs that contribute to
making net primary production positive on plastic substrates (Bryant
et al. 2016). In our study, colonization and subsequent predomi-
nance of cyanobacteria was observed from day two. They were also
present during the whole experiment, but in lower abundances.

Colonization by protozoans and invertebrates it was alternated
between ciliates and rotifers, being the ciliates the early and domi-
nant colonizers. These are also common taxa in the plastisphere,
since ciliates are observed on MPs from marine and freshwater
and/or brackish samples (Amaral Zettler et al. 2020).

Bacteria indicative of faecal contamination was found in MPs
of the intertidal sediment, being their frequency higher in the sites
where the sewage discharges were located or in the sites influ-
enced by an intense urban activity, which demonstrates the sani-
tary risk of this contaminant. According to the data reported by
Suárez and Mariñelarena (2019), the superficial sediments of the
intertidal zone of the estuary retain and concentrate bacteria indi-
cators of faecal contamination, particularly in areas affected by
sewage discharges. Therefore, the results of the current study are
in concordance with the ones provided by such authors, who
warned that the BAG site presented the highest counts of bacteria
indicating faecal contamination. As stated by Rodrigues, Oliver, et
al. 2019, MPs deposited in the intertidal sediment can be easily
colonized by E. coli during their time in the water column or by di-
rect contact on the beach, either by bird or dog faeces. Further-
more, it is also recognized that plastic waste can be quickly
colonized by biofilm in water (Amaral-Zettler et al. 2015). In the Río
de la Plata estuary, with a semi-day tidal regime, the MPs de-
posited on the coast are submerged twice a day. Rodrigues, Oliver,
et al. (2019) reported that in marine environments, the effect of the
tide would favour the E. coli biofilm formation on the MPs, as these
bacteria can remain on the beach or be dragged into the water with
the ebb of tide. 

Microbial colonization is proved to be influenced by the time that
plastic has been in the environment, being those MPs that have re-
mained for a longer time more likely to be in contact with microorgan-
isms (Kirstein et al. 2018). In addition, older and more degraded
plastics generally have grooves and tears in the surface, increasing
the surface area for microbial colonization (Fotopoulou and Kara-
panagioti 2012). The types of MPs that usually have these charac-
teristics in particular are fragments, since they frequently acquire
irregular shapes as they weather in the environment. According to
Puglisi et al. (2019) because of their higher level of wear, fragments
favour colonization by bacteria. In our study, fragments were the most
abundant among all the MPs, and this was the type of MPs in which
the presence of E. coli and Enterococci was frequently recorded.

Regarding the potential of MPs to act as a substrate for various
microorganisms, it is known that bacteria form biofilms on different
substrates as a survival strategy against environmental stressors.
This is because in biofilms they can use nutrients that have been
trapped, resist antibiotics and establish associations with other bac-
teria (Thompson et al. 2004), being also a favourable habitat for
pathogenic organisms (Kirstein et al. 2016; Rodrigues, Oliver, et al.
2019).

In relation to the size of the MPs, the most frequently colonized
by both indicators of faecal contamination were between
>2500 ≤ 3000 µm, and regarding colours, blue, red and green MPs.
Among the latter, the blue colour has been reported as most abun-
dant in water, the intestinal content of fish and the soft tissue of mus-
sels in the coastal sector of the Río de la Plata estuary (Pazos et
al. 2017, 2018, 2020). Although in this study it was not explored
whether colour affects the degree of adherence of bacteria, there
is evidence in the literature that dyes influence the type of bacterial
assemblages found in MPs (Puglisi et al. 2019).

Recent studies by Miao et al. (2019) recognize that MPs act as
a particular habitat for biofilm, since they can change the structure
of this community by modifying its functionality and consequently,
the ecological functions that microbial communities fulfil in aquatic
ecosystems. In turn, it is recognized that biofilms developed on the
MPs can produce significant changes in the physicochemical prop-
erties of the plastic (e.g. surface hydrophobia and buoyancy),
which in turn are influenced by environmental characteristics (Lo-
belle and Cunliffe 2011). 

Colonization on plastic polymers has advantages, such as an
increased access to limited nutrients (Zobell 1943), but also chal-
lenges, like more susceptibility to grazing pressure. But still ac-
cording to Amaral Zettler et al. (2020), some questions remain,
like if the succession of species presence and dominance on a
polymer is predictable, and if it can help us determine how long a
microplastic has been in the environment. Therefore, deepening
the knowledge of the relationship between the plastisphere and
the MPs (results obtained under laboratory conditions in this
study) along the environmental gradient generated by salinity in
an estuary, such as the Río de la Plata, is a challenge to better
understand the implications of the interaction of the biofilms with
the pollutants of this ecosystem, as well as of the capacity to har-
bour pathogens.

Conclusions
The results revealed a remarkable development and diversity

of biofilm organisms from the second week of colonization on, cov-
ering the surface of the microplastic and thus masking this pollutant.
On the other hand, the presence of faecal indicator bacteria in the
MPs of the intertidal sediment was confirmed in all the studied sites,
being proportionally higher on MPs found in areas influenced by
sewage discharges, positioning them as potential dispersal vectors.
These results highlight the risks of plastic waste on the coast of the
Río de la Plata estuary and the need of implementing management
measures that regulate this contaminant.
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