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We show that one-body entanglement, which is a measure of the deviation of a pure fermionic
state from a Slater determinant (SD) and is determined by the mixedness of the single-particle
density matrix (SPDM), can be considered as a quantum resource. The associated theory has SDs
and their convex hull as free states, and number conserving fermion linear optics operations (FLO),
which include one-body unitary transformations and measurements of the occupancy of single-
particle modes, as the basic free operations. We first provide a bipartitelike formulation of one-body
entanglement, based on a Schmidt-like decomposition of a pure N -fermion state, from which the
SPDM [together with the (N −1)-body density matrix] can be derived. It is then proved that under
FLO operations, the initial and postmeasurement SPDMs always satisfy a majorization relation,
which ensures that these operations cannot increase, on average, the one-body entanglement. It is
finally shown that this resource is consistent with a model of fermionic quantum computation which
requires correlations beyond antisymmetrization. More general free measurements and the relation
with mode entanglement are also discussed.

I. INTRODUCTION

Quantum entanglement and identical particles are two
fundamental concepts in quantum mechanics. Entangle-
ment in systems of distinguishable components is par-
ticularly valuable in the field of quantum information
theory [1] because it can be considered as a resource
within the Local Operations and Classical Communica-
tion (LOCC) paradigm [1, 2]. Extending the notion of en-
tanglement to the realm of indistinguishable particles is,
however, not straightforward because the constituents of
the system cannot be individually accessed. Different ap-
proaches have been considered, like mode entanglement
[3–5], where subsystems correspond to a set of single-
particle (SP) states in a given basis, extensions based
on correlations between observables [6–10] and entangle-
ment beyond symmetrization [11–21], which is indepen-
dent of the choice of SP basis. Several studies on the re-
lation between these types of entanglement [5, 16, 20, 22–
28] and on whether exchange correlations can be associ-
ated with entanglement [29–33] have been recently made.
There is also a growing interest in quantum chemistry
simulations based on optical lattices [34, 35], which would
benefit from a detailed characterization of fermionic cor-
relations. In this paper we will focus on entanglement
beyond antisymmetrization in fermionic systems and an-
alyze its consideration as a quantum resource.

Quantum resource theories [36, 37] have recently be-
come a topic of great interest since they essentially de-
scribe quantum information processing under a restricted
set of operations. Standard entanglement theory in sys-
tems of distinguishable components is just one of these
theories, amongst which we may include others like quan-
tum thermodynamics [38, 39], coherence [40, 41], nonlo-
cality [42] and non-Gaussianity [43].

In the usual entanglement theory a multipartite quan-
tum system shared by distant parties is considered.
These parties can operate each on their own subsystem
and are allowed to communicate via classical channels

[2]. From these restrictions the LOCC set arises natu-
rally as the set of free operations of the resource theory,
and the set of free (separable) states is then derived. In
our case ignoring antisymmetrization correlations defines
Slater determinants (SDs) and their convex hull as the
set of “free” states S and we are looking for a set of free
operations O consistent with this set.

With this aim, we first define a partial order relation
on the Fock space F of the system, based on the mixed-
ness of the corresponding single-particle density matrix
(SPDM) ρ(1) [also denoted as the one-particle or one-
body density matrix (DM)], which determines whether
a given pure fermionic state can be considered more en-
tangled than another state. A bipartite like formulation
for this one-body entanglement, involving ρ(1) and the
(N − 1)-body density matrix (isospectral for pure states
of N fermions) is also provided. Next we define a class of
operations consistent with S and the previous partial or-
der, through a majorization relation to be fulfilled by the
initial and final SPDMs, which ensures that one-body en-
tanglement will not be increased by such operations. We
then show that number conserving Fermion linear optics
(FLO) operations [44–46], which include one-body uni-
tary transformations and measurement of the occupancy
of a SP state, are indeed within this class. One-body
entanglement then plays the role of a resource in a the-
ory where S is the convex hull of SDs and O is that of
FLO operations. Possible extensions of the set of free op-
erations and connection of this resource with a quantum
computation model and with mode entanglement are also
discussed.

II. FORMALISM

A. One-body entanglement

We consider a SP space H of finite dimension n and

a set of fermion creation and annihilation operators c†k
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and ck associated with an orthogonal basis of H, sat-

isfying the anticommutation relations {ck, c†k′} = δkk′ ,

{ck, ck′} = {c†k, c
†
k′} = 0. The elements of the SPDM ρ(1)

in a general fermionic state ρ are given by

ρ
(1)
kk′ = 〈c†k′ck〉 = Tr ρ c†k′ck. (1)

They form a Hermitian matrix with eigenvalues λν =

〈c†νcν〉 ∈ [0, 1], where c†ν =
∑
k Ukνc

†
k creates a fermion

in one of the “natural” SP orbitals diagonalizing ρ(1)

(〈c†ν′cν〉 = λνδνν′). For pure states ρ = |Ψ〉〈Ψ|, the

“mixedness” of ρ(1) then reflects the deviation of |Ψ〉 from
a SD [

∏
ν(c†ν)nν ]|0〉, since for the latter λν = nν = 0 or 1

∀ ν and hence (ρ(1))2 = ρ(1).
Such mixedness can be rigorously characterized

through majorization [47–50]. For states |Ψ〉 and |Φ〉
with the same fermion number N = Tr ρ

(1)
Ψ = Tr ρ

(1)
Φ , we

will say that |Ψ〉 is not less one-body entangled than |Φ〉
if ρ

(1)
Ψ is more (or equally) mixed than ρ

(1)
Φ , i.e. if their

eigenvalues λ = (λ1, . . . , λn), sorted in decreasing order,
satisfy the majorization relation

λ(ρ
(1)
Ψ ) ≺ λ(ρ

(1)
Φ ) , (2)

which means

m∑
ν=1

λν(ρ
(1)
Ψ ) ≤

m∑
ν=1

λν(ρ
(1)
Φ ) (3)

for m = 1, . . . , n− 1, with identity for m = n. Thus SDs
are the least one-body entangled states, as their SPDM
majorizes any other ρ(1) with the same trace. Relation
(2) is analogous to that imposed by LOCC operations
on reduced states of systems of distinguishable compo-
nents, which in the bipartite case lead to the celebrated
Nielsen’s theorem: |ΨAB〉 can be converted by LOCC to
|ΦAB〉 (and hence is not less entangled than |ΦAB〉) if and

only if their reduced states satisfy λ(ρ
A(B)
Ψ ) ≺ λ(ρ

A(B)
Φ )

[48, 51]. Local measurements reduce the ignorance about
the state of the measured subsystem, decreasing the
mixedness of reduced states and hence bipartite entan-
glement. Similarly, we will show that one-body entan-
glement will decrease under operations which reduce the
ignorance about the SPDM.

1. The associated Schmidt decomposition

We first remark that one-body entanglement also ad-
mits a bipartite like formulation: A pure state |Ψ〉 of N

fermions (
∑
k c
†
kck|Ψ〉 = N |Ψ〉) can be expanded as

|Ψ〉 =
1

N

∑
k,l

Λklc
†
kC
†
l |0〉 (4)

where C†l = c†l1 . . . c
†
lN−1

, l = 1, . . . , ( n
N−1), are operators

creating N − 1 fermions in specific SP states labeled by

l, satisfying 〈0|ClC†l′ |0〉 = δll′ , while the coefficients Λkl
form an n×( n

N−1) matrix Λ satisfying Tr ΛΛ† = N . Thus,
each term in the sum (4) is a SD which is repeated N
times, such that

ck|Ψ〉 =
∑
l

ΛklC
†
l |0〉 (5)

is the (unnormalized) state of remaining fermions when
SP state k is occupied, while

Cl|Ψ〉 = (−1)N−1
∑
k

Λklc
†
k|0〉 (6)

is that of remaining fermion when the N − 1 SP states
l are occupied. In this way, 〈Ψ|Ψ〉 = 1

NTr ΛΛ† = 1.
Moreover, Eqs. (5)–(6) allow us to express the elements
of both the SPDM ρ(1) and the (N − 1)-body DM ρ(N−1)

in terms of Λ as

ρ
(1)
kk′ = 〈Ψ|c†k′ck|Ψ〉 = (ΛΛ†)kk′ , (7)

ρ
(N−1)
ll′ = 〈Ψ|C†l′Cl|Ψ〉 = (ΛTΛ∗)ll′ . (8)

Eqs. (7)–(8) are analogous to those for the reduced states
ρA(B) of distinguishable subsystems in a standard pure
bipartite state |ΨAB〉 =

∑
i,j Cij |iA, jB〉, where ρAii′ =

〈|i′A〉〈iA|〉 = (CC†)ii′ , ρ
B
jj′ = 〈|j′B〉〈jB |〉 = (CTC∗)jj′

[1]. The only difference is that Tr ρA(B) = TrCC† = 1

whereas Tr ρ(1) = Tr ρ(N−1) = N .
Eqs. (7)–(8) imply that ρ(1) and ρ(N−1) have the same

nonzero eigenvalues λν , which are just the square of the
singular values of Λ. Moreover, by means of the singular
value decomposition Λ = UDV †, with Dνν′ =

√
λνδνν′

and U and V unitary matrices (of n×n and ( n
N−1)×( n

N−1)
respectively), we may now obtain from (4) the 1–(N −1)
Schmidt-like decomposition of the N -fermion state:

|Ψ〉 =
1

N

∑
ν

√
λνc
†
νC
†
ν |0〉 , (9)

where

c†ν =
∑
k

Ukνc
†
k , C†ν =

∑
l

V ∗lνC
†
l (10)

are the “natural” one- and N − 1- fermion creation op-
erators satisfying

〈0|cνc†ν′ |0〉 = δνν′ = 〈0|CνC†ν′ |0〉 . (11)

〈Ψ|c†νcν′ |Ψ〉 = λνδνν′ = 〈Ψ|C†νCν′ |Ψ〉 . (12)

Thus,

cν |Ψ〉 =
√
λνC

†
ν |0〉 , Cν |Ψ〉 = (−1)N−1

√
λνc
†
ν |0〉 ,

(13)
i.e. the orthogonal natural N−1-fermion states C†ν |0〉 are
those of remaining fermions when the natural SP orbital
ν is occupied, while c†ν |0〉 are the orthogonal states of the
remaining fermion when the natural N − 1-fermion state
C†ν |0〉 (which in general is no longer a SD) is occupied.
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Therefore, in an N -fermion state one-body entanglement
is actually the 1–(N −1) -body entanglement, associated
with the correlations between one- and N − 1-body ob-
servables.

In the case of a SD |Ψ〉 = (
∏N
ν=1 c

†
ν)|0〉, λν = 1 (0) for

ν ≤ N (> N), with C†ν ∝
∏N
ν′ 6=ν c

†
ν′ such that c†νC

†
ν |0〉 =

|Ψ〉 for ν ≤ N . On the other hand, for N = 2 Eq. (9)
becomes the Slater decomposition of a two-fermion state
[11–13],

|Ψ〉 =
∑
ν

√
λνc
†
νc
†
ν̄ |0〉 =

1

2

∑
ν

√
λν(cνC

†
ν + cν̄C

†
ν̄)|0〉

(14)

where C†ν = c†ν̄ , C†ν̄ = −c†ν . In this case one-body entan-
glement is directly related to that between the set of nor-
mal ν and ν̄ modes, which contain each just one-fermion
(see sec. II C).

2. One-body entanglement entropies

We may now define a general one-body entanglement
entropy E(|Ψ〉) ≡ E(1)(|Ψ〉) as

E(|Ψ〉) = S(ρ
(1)
Ψ ) = S(ρ

(N−1)
Ψ ) , (15)

where S(ρ(1)) is a Schur-concave function [49, 50] of ρ(1).
These entropies will all satisfy

E(|Ψ〉) ≥ E(|Φ〉) , (16)

whenever the majorization relation of Eq. (2) is fulfilled.
For instance, trace-form entropies

S(ρ(1)) = Trf(ρ(1)) =
∑
ν

f(λν) (17)

where f : [0, 1] → R is concave and satisfies f(0) =
f(1) = 0 [52], will fulfill (16), with E(|Ψ〉) ≥ 0 ∀ |Ψ〉
and E(|Ψ〉) = 0 if and only if |Ψ〉 is a SD. Such E(|Ψ〉)
will then be one-body entanglement monotones. Exam-
ples are the von Neumann entropy of ρ(1), S(ρ(1)) =
−
∑
ν λν log2 λν , a quantity of interest in various fields

[53–57], and the one-body entropy [20, 25]

S1(ρ(1)) = −
∑
ν

λν log2 λν + (1−λν) log2(1−λν), (18)

which represents, for |Ψ〉 of definite fermion number N ,
the minimum relative entropy (in the grand canonical en-
semble) between ρ = |Ψ〉〈Ψ| and any fermionic Gaussian

state ρg: S1(ρ
(1)
Ψ ) = Minρg S(ρ||ρg) [25], for S(ρ||ρ′) =

−Trρ(log2 ρ
′ − log2 ρ) and ρg ∝ exp[−

∑
k,k′ αkk′c

†
kck′ ]

(pair creation and annihilation terms in ρg are not re-
quired for such |Ψ〉 [25]). It is also the minimum over
all SP bases of the sum of all single mode entropies [20]

−pk log2 pk−(1−pk) log2(1−pk), where pk = 〈c†kck〉. We
remark that the SPDM and hence any measure (15) are

in principle experimentally accessible. Measurement of
the fermionic SPDM in optical lattices has been recently
reported [58].

All measures (15) can be extended to mixed states

ρ =
∑
α

pα|Ψα〉〈Ψα| (19)

of definite N through their convex roof extension E(ρ) =
Min

∑
α pαE(|Ψα〉), where the minimum is over all repre-

sentations {pα ≥ 0, |Ψα〉} of ρ [20]. Such E(ρ) represents
a one-body entanglement of formation, vanishing if and
only if ρ is a convex mixture of SDs.

B. One-body entanglement nongenerating
operations

1. Definition and basic properties

We now define a class of operations which do not gen-
erate one-body entanglement, i.e., which do not increase,
on average, the mixedness of the SPDM.

Definition 1. Let ε(ρ) =
∑
j KjρK

†
j be a quantum

operation on a fermion state ρ, with {Kj ,
∑
j K
†
jKj = 1}

a set of Kraus operators, assumed number conserving.

Let ρ(1) and ρ
(1)
j be the SPDMs determined by ρ and ρj =

KjρK†j/pj, with pj = Tr[ρK†jKj ]. We say that ε is one-

body entanglement nongenerating (ONG) if it admits a
set of Kraus operators {Kj} satisfying ∀ ρ the relation

λ(ρ(1)) ≺
∑
j

pj λ(ρ
(1)
j ) , (20)

where eigenvalues λ(ρ
(1)
j ) are sorted in decreasing order.

This majorization relation is analogous to that satis-
fied by reduced local states under local operations in the
standard entanglement theory [48] and implies

S(ρ(1)) ≥ S

∑
j

pjλ(ρ
(1)
j )

 ≥∑
j

pjS(ρ
(1)
j ) , (21)

for any concave entropy S(ρ(1)), such as those of Eq. (17).
For pure states ρ = |Ψ〉〈Ψ|, ρj = |Φj〉〈Φj | is also pure
∀j, with |Φj〉 ∝ Kj |Ψ〉, and Eqs. (15), (21) imply

E(|Ψ〉) ≥
∑
j

pjE(|Φj〉) ≥ E(ε(|Ψ〉〈Ψ|)) , (22)

showing that any one-body entanglement monotone (15)
will not increase, on average, after ONG operations. In
particular, if |Ψ〉 is a SD, E(|Ψ〉) = 0 and Eq. (22) implies
that all states |Φj〉 ∝ Kj |Ψ〉 must be SDs or zero, i.e.
all Kraus operators fulfilling (20) should map free states
onto free states. And for the one-body entanglement of
formation of general mixed states ρ, Eq. (22) implies

E(ρ) ≥ E(ε(ρ)) (23)
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since by using the minimizing representation, E(ρ) =∑
α pαE(|Ψα〉) ≥

∑
α,j pαpαjE(|Φαj〉) ≥ E(ε(ρ)).

It also follows from (20) that the set of ONG operations
is convex and closed under composition, i.e., λ(ρ(1)) ≺∑
i,j pijλ(ρ

(1)
ij ) for Kij = KbiKaj and ε(ρ) = εb[εa(ρ)].

This property ensures that ONG operations can be ap-
plied any number of times in any order.

Proposition 1. The conversion of a pure state |Ψ〉 ∈
F into another pure state |Φ〉 ∈ F by means of ONG
operations is possible only if the majorization relation (2)
is satisfied by the corresponding SPDMs.

Proof. The state conversion will consist in some sequence
of ONG operations, which can be resumed in just one
ONG operation due to the closedness under composition.
Let {Kj} be a set of associated Kraus operators satisfying
(20). After this operation is performed, we should have

Kj |Ψ〉 =
√
pj |Φ〉 ∀j, with pj = 〈Ψ|K†jKj |Ψ〉, implying

ρ
(1)
j = ρ

(1)
Φ ∀j and hence Eq. (2) when (20) is fulfilled.

Then, maximally one-body entangled states are those
pure states whose SPDM is majorized by that of any
other state. Due to Eq. (16) they will also maximize
E(|Ψ〉) for any choice of S. At fixed fermion number
N ≥ 2 and n = mN they are states leading to

ρ(1) = 1n/m , (24)

for which any SP basis is natural. For m integer such ρ(1)

emerges, for instance, from Greenberger-Horne-Zeilinger
(GHZ)-like states involving superpositions of SDs in or-
thogonal subspaces:

|Ψ〉 =
1√
m

m−1∑
l=0

c†Nl+1 . . . c
†
Nl+N |0〉 =

1

N
√
m

n∑
ν=1

c†νC
†
ν |0〉 ,

(25)
which lead to 〈c†νcν′〉 = δνν′/m.

2. Fermion linear optics operations as ONG

We now show that number conserving FLO operations
[44–46], which include one-body unitary transformations
and measurement of the occupancy of a SP mode, are
included in the ONG set. First, any number conserving
one-body unitary transformation

U = exp[−i
∑
k,k′

Hk′kc
†
k′ck] , (26)

with U†U = 1 (H† = H) is obviously ONG: Since

Uc†kU† =
∑
k′ Uk′kc

†
k′ , with U = e−iH , it will map the

SPDM as ρ(1) → U†ρ(1)U , leaving its eigenvalues un-
changed (and hence transforming SDs into SDs). It can
be implemented through composition of phaseshifting

and beamsplitters unitaries [44–46] Up(φ) = e−iϕ c
†
kck ,

Ub(θ) = e−iθ (c†kck′+c
†
k′ck), which are the basic unitary el-

ements of the FLO set.
FLO operations also include measurements of the oc-

cupancy of single-particle modes, described by projectors

Pk = c†kck , Pk̄ = ckc
†
k , (27)

which satisfy Pk + Pk̄ = 1. We now show explicitly the
following fundamental result.

Theorem 1. The measurement of the occupancy of a

single-particle state |k〉 = c†k|0〉 ∈ H, described by the
operators (27), is a ONG operation.

Proof. Consider a general pure fermionic state |Ψ〉 with

SPDM ρ(1). Let ρ
(1)
k and ρ

(1)

k̄
be the SPDMs after SP

mode |k〉 is found to be occupied or empty, respectively,
determined by the states

|Ψk〉 = Pk|Ψ〉/
√
pk , |Ψk̄〉 = Pk̄|Ψ〉/

√
pk̄ , (28)

with pk = 〈Ψ|Pk|Ψ〉 = 1− pk̄. Then

|Ψ〉 =
√
pk|Ψk〉+

√
pk̄|Ψk̄〉 . (29)

We will prove relation (20), i.e. (Fig 1),

λ(ρ(1)) ≺ pkλ(ρ
(1)
k ) + pk̄λ(ρ

(1)

k̄
) . (30)

If the measured state |k〉 is a natural orbital, such that

〈c†kck′〉 = pkδkk′ with pk = λk an eigenvalue of ρ(1), Eq.
(30) is straightforward: In this case (29) leads to

ρ(1) = pkρ
(1)
k + pk̄ρ

(1)

k̄
, (31)

FIG. 1. Measurement of the occupancy of a single fermion
mode k. It reduces (or does not increase), on average, the

mixedness of the SP density matrix ρ(1) (λ denotes its spec-
trum) and hence the one-body entanglement.

as 〈Ψk|c†k′′ck′ |Ψk̄〉 = δk′′k(1− δk′k)〈c†kck′〉 = 0 ∀ k′, k′′.
Eq. (31) implies (30) since λ(A+B) ≺ λ(A) + λ(B) for
any two Hermitian n×n matrices A and B [48] (this case
includes the trivial situation pk = 1 or 0, where |Ψ〉 =
|Ψk〉 or |Ψk̄〉; in the following we consider pk ∈ (0, 1)).

Otherwise Eq. (31) no longer holds. Nevertheless, since

〈Ψk|c†k′′ck′ |Ψk̄〉 = 0 for any two SP states |k′〉 and |k′′〉
orthogonal to |k〉, Eq. (29) implies, for any SP subspace
S⊥ ⊂ H orthogonal to the measured state |k〉,

ρ
(1)
S⊥ = pkρ

(1)
kS⊥ + pk̄ρ

(1)

k̄S⊥
, (32)
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where ρ
(1)
S⊥ = PS⊥ρ

(1)PS⊥ and ρ
(1)

k(k̄)S⊥
are the restrictions

of ρ(1) and ρ
(1)

k(k̄)
to S⊥, and PS⊥ is the associated pro-

jector. This result is expected since the measurement
is “external” to S⊥ (if [Kj , O] = 0 ∀ j ⇒ Tr [ρO] =

Tr
∑
j KjρK

†
jO =

∑
j pjTr[ρjO]; for Kj = Pk(k̄) and

O = c†k′′ck′ with k′ and k′′ orthogonal to k, this result
implies Eq. (32)). And for any S ⊂ H containing the

state |k〉, we have, as 〈Ψk|c†k′ck′ |Ψk̄〉 = 0 for k′ = k or k′

orthogonal to k,

Tr ρ
(1)
S = Tr [pkρ

(1)
kS + pk̄ρ

(1)

k̄S ] . (33)

We can now prove the mth inequality in (30),

m∑
ν=1

λν(ρ(1)) ≤
m∑
ν=1

(
pkλν(ρ

(1)
k ) + pk̄λν(ρ

(1)

k̄
)
)
. (34)

Let Sm ⊂ H be the subspace spanned by the first m

eigenstates of ρ(1), such that λν(ρ
(1)
Sm) = λν(ρ(1)) for ν ≤

m and hence Tr ρ
(1)
Sm =

∑m
ν=1 λν(ρ(1)). If Sm is either

orthogonal to |k〉 or fully contains |k〉, Eq. (32) or Eq.

(33) holds for S = Sm, implying (34) since Tr ρ
(1)

k(k̄)Sm
≤∑m

ν=1 λν(ρ
(1)

k(k̄)
) by the Ky Fan maximum principle [48]

(the m largest eigenvalues λν of a Hermitian matrix O
satisfy

∑m
ν=1 λν ≥ TrP ′mO =

∑m
ν=1 λ

′
ν for any rank m

orthogonal projector P ′m, with λ′ν the sorted eigenvalues
of P ′mOP

′
m).

Otherwise we add to Sm the component |k⊥〉 of |k〉
orthogonal to Sm, obtaining an m + 1 dimensional SP

subspace S ′m where Eq. (33) holds and still λν(ρ
(1)
S′m

) =

λν(ρ(1)) for ν ≤ m. It is proved in the Appendix A that
the remaining smallest eigenvalue satisfies

λm+1(ρ
(1)
S′m

) ≥ pkλm+1(ρ
(1)
kS′m

) + pk̄λm+1(ρ
(1)

k̄S′m
) . (35)

Hence
∑m
ν=1 λν(ρ(1)) ≤

∑m
ν=1 pkλν(ρ

(1)
kS′m

) + pk̄λν(ρ
(1)

k̄S′m
)

due to the trace conservation (33) for S = S ′m, which
implies Eq. (34) due to previous Ky Fan inequality. This
completes the proof for pure states. It is easily verified
(see Appendix B) that these measurements map SDs onto
SDs, as implied by Eq. (30).

The previous proof actually shows the general relation

λ(ρ
(1)
S ) ≺ pkλ(ρ

(1)
kS ) + pk̄λ(ρ

(1)

k̄S ) , (36)

valid for the restriction of ρ(1) to any subspace S ⊂ H
either containing or orthogonal to the measured state

|k〉 ([PS , |k〉〈k|] = 0). Moreover ρ
(1)
S will be determined

by a mixed reduced state ρS = TrS⊥ |Ψ〉〈Ψ| satisfying
〈Ψ|OS |Ψ〉 = Tr ρS OS for any operator OS involving just
creation and annihilation of SP states ∈ S (see Appendix
A). Eq. (36) then shows that (30) holds for general mixed
fermionic states ρ (assumed to commute with the fermion

number N̂ =
∑
k c
†
kck or the number parity eiπN̂ ) since

they can be purified and seen as a reduced state ρS of
a pure fermionic state |Ψ〉 in an enlarged SP space (Eq.
(A5) in Appendix A).

3. More general ONG measurements and operations

By composing the basic measurements (27), more com-
plex operations satisfying (20) are obtained. In particu-
lar, a measurement in a basis of SDs, which is obviously
ONG, results from the composition of all measurements
{Pk, Pk̄} in a given SP basis. Extension of the set of free
operations beyond the standard FLO set can also be con-
sidered. The proof of theorem 1 can be extended to more
general single-mode measurements:

Corollary 1. A general measurement on single-particle
mode k described by the operators

Mk = αPk + β Pk̄ , Mk̄ = γ Pk + δPk̄ , (37)

whereM†kMk+M†
k̄
Mk̄ = 1 (|α|2+|γ|2 = |β|2+|δ|2 = 1)

is also a ONG operation.

The proof is given in Appendix A and implies that Eq.

(30) will be satisfied for ρ
(1)

k(k̄)
the SPDMs obtained from

|Ψ′
k(k̄)
〉 ∝ Mk(k̄)|Ψ〉 and pk → p′k = 〈Ψ|M†kMk|Ψ〉 =

1−p′
k̄
. This result entails that any pair of Kraus operators

Mk and Mk̄ for the occupation measurement operation

ε(ρ) = PkρPk + Pk̄ρPk̄ =MkρM†k +Mk̄ρM
†
k̄

(38)

will also be ONG operations, since they are a special case

of (37) [αβ∗ + γδ∗ = 0, i.e. (α βγ δ ) unitary].
It is also possible to consider in the present context

operations which do not conserve the fermion number
N but still generate states with definite particle number
when applied to such states. In this case it becomes
necessary to extend the partial order (2) to states with
different particle number. We then notice that Eq. (2)
implies a similar majorization relation (see Appendix C)

λ(D
(1)
Ψ ) ≺ λ(D

(1)
Φ ) (39)

for the sorted eigenvalues of the extended 2n×2n SPDM

D(1) = ρ(1) ⊕ (1− ρ(1)T ) =

(
ρ(1) 0
0 1− ρ(1)T

)
, (40)

with spectrum (λ(ρ(1)), 1−λ(ρ(1))) and elements 〈c†k′ck〉
and 〈ck′c†k〉, the trace TrD(1) = n of which is fixed by the
SP space dimension and is N -independent. For general
states we then say that |Ψ〉 is not less one-body entangled
than |Φ〉 if Eq. (39) holds. Note that all SDs lead to
the same sorted spectrum λ(D(1)) regardless of N , all
being then least entangled states, with (D(1))2 = D(1) if
and only if |Ψ〉 is a SD. Similarly, Eq. (20) for number
conserving ONG operations implies

λ(D(1)) ≺
∑
j

pjλ(D
(1)
j ) (41)

for the extended densities. We then say that an opera-
tion not conserving fermion number is ONG if it admits
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a set of Kraus operators Kj such that (41) is satisfied.
Prop. 1 remains then valid for general ONG operations
replacing (2) by (39). All previous properties satisfied by
the entropies (15) extend to entropies

E(|Ψ〉) = S(D(1)) , (42)

with Trf(D(1)) = Trf(ρ(1)) + Trf(1 − ρ(1)). In partic-
ular, Eq. (18) becomes just the von Neumann entropy
of D(1). Maximally one-body entangled states are now
those leading to

D(1) = 12n/2 , (43)

which will maximize all entropies (42). Examples are pre-
vious GHZ-like states (25) in half-filled SP spaces (m = 2,
N = n/2 ≥ 1).

Theorem 1 then implies the following result for the

basic measurement having ck and c†k as operators:

Corollary 2. A measurement on single-particle mode k

described by the operators ck and c†k, which satisfy c†kck+

ckc
†
k = 1, is a ONG operation:

λ(D(1)) ≺ pkλ(D
(1)
k ) + pk̄λ(D

(1)

k̄
) . (44)

Here pk = 〈c†kck〉 = 1 − pk̄, and D(1) and D
(1)

k(k̄)
are

the extended SPDMs determined by ρ, ρk = ckρc
†
k/pk

and ρk̄ = c†kρck/pk̄. Since these extended densities D
(1)

k(k̄)

have clearly the same spectrum as those obtained from
PkρPk/pk and Pk̄ρPk̄/pk̄, Eq. (44) directly follows from
Theorem 1 and Eq. (C1). On the other hand, previous
basic occupation measurement (27) is just the composi-
tion of this measurement with itself (see Appendix C).

This extension then enables us to consider the addition
of free ancillas (SDs of arbitrary N) as a free operation,
as it will not alter the spectrum of the extended SPDM
D(1) in the full SP space. We remark, however, that
general “active” FLO operations which do not conserve
the fermion number (for instance, a Bogoliubov trans-
formation) may increase the one-body entanglement de-
termined by ρ(1). While we will not discuss these oper-
ations here, we mention that if they are also regarded
as free one should consider instead the generalized one-
body entanglement, determined by the mixedness of the
full quasiparticle DM [20], as the associated resource (see
also Appendix C).

C. One-body entanglement as a resource

The identification of number conserving FLO opera-
tions as ONG implies that they map SDs onto SDs, as
verified in App. B. It has been noted [59, 60] that this fact
ultimately explains why the pure state FLO computation
model can be efficiently simulated classically, as matrix
elements of free unitaries and outcome probabilities of

free measurements can be reduced to overlaps 〈Ψ|Φ〉 be-
tween SDs, which can be computed in polynomial time
through a determinant [44].

In contrast, the simultaneous measurement of the oc-
cupancy of two SP modes k and k′, described by opera-
tors {M0 = Pk̄Pk̄′ ,M1 = Pk̄Pk′+PkPk̄′ ,M2 = PkPk′},
is not free since M1 can map a SD onto a state with
Slater number 2 [59], i.e. a one-body entangled state. A
similar measurement with m such outcomes may return
a state with an exponentially large (2m) Slater number
[59], the expectation values of which would be hard to
evaluate classically. In [61] this operation is identified
with a charge detection measurement in a system of free
electrons, showing that it is possible to build a controlled-
NOT gate with just beamsplitters, spin rotations and
charge detectors. The extended set of FLO plus charge
detection operations then enables quantum computation.
If the computational power of this model is to be linked
to the presence of a quantum resource, the ensuing free
states and operations would be S and O, respectively,
and the results derived here entail that one-body entan-
glement would be an associated resource.

One-body entanglement can also be considered as a
resource for mode entanglement. In particular, mode en-
tanglement with definite particle number N or definite
number parity eiπN at each component requires one-body
entanglement. A first example was seen with the nor-
mal form (14) for a general two-fermion state [11–13],
where the entanglement between the modes k (A) and
k̄ (B), containing each one fermion, is directly linked
to one-body entanglement: The entanglement entropy
E(A,B) = S(ρA) = S(ρB) of this partition is just

E(A,B) =
∑
ν

f(λν) = 1
2E(|Ψ〉) (45)

for any entropy S(ρ) = Tr f(ρ), where E(|Ψ〉) = S(ρ(1))
is the corresponding one-body entanglement entropy (15)

(as 〈c†νcν′〉 = 〈c†ν̄cν̄′〉 = λνδνν′ , 〈c†νcν̄′〉 = 0). In particular
any one-body entangled state of two fermions in a SP
space of dimension 4 can be seen as an entangled state of
two distinguishable qubits, allowing then the realization
of tasks like quantum teleportation [23]. In this case
the one-body entanglement entropy also provides a lower
bound to any bipartite mode entanglement entropy [23].

For a general pure fermionic state |Ψ〉 (with definite
particle number or number parity) we now show that one-
body entanglement is always required in order to have
bipartite mode entanglement entropy E(A,B) > 0 with
definite particle number, or in general definite number
parity, at each side A and B: In such a case, and assum-
ing sides A and B correspond to orthogonal subspaces
HA and HB of the SP space H = HA ⊕HB , the ensuing

SPDM takes the block-diagonal form ρ(1) = ρ
(1)
A ⊕ ρ

(1)
B ,

i.e.,

ρ(1) =

(
ρ

(1)
A 0

0 ρ
(1)
B

)
(46)
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since for any kA ∈ HA, kB ∈ HB , c†kAckB connects
states with different number parity at each side and hence

〈c†kAckB 〉 = 0 in such a state. Then, if |Ψ〉 is a SD,

(ρ(1))2 = ρ(1), implying (ρ
(1)
A(B))

2 = ρ
(1)
A(B), i.e. the state

at each side must be a SD (a pure state) and no A–B
entanglement is directly present. For instance, a single

fermion state 1√
2
(c†kA + c†kB )|0〉 implies entanglement be-

tween A and B but at the expense of involving zero and
one fermion at each side, i.e., no definite local number

parity. In contrast, |Ψ〉 = 1√
2
(c†kAc

†
kB

+ c†k′A
c†k′B

)|0〉 leads

to entanglement between A and B with definite fermion
number (and hence number parity) at each side, but it is
not a SD, i.e., it has nonzero one-body entanglement.

Expanding the state in a SD basis as |Ψ〉 =∑
µ,ν CµνA

†
µB
†
ν |0〉, where A†µ =

∏
k(c†kA)nkµ and B†ν =∏

k(c†kB )nkν involve creation operators just on HA and

HB respectively (with nkµ(ν)
= 0, 1 and µ and ν la-

beling all possible sets of occupation numbers, such

that 〈0|AµA†µ′ |0〉 = δµµ′ , 〈0|BνB†ν′ |0〉 = δνν′), states
with definite number parity at each side correspond
to (−1)

∑
k nkµ and (−1)

∑
k nkν fixed for all µ and ν

with Cµν 6= 0. The reduced DM of side A is ρA =∑
µ,µ′(CC

†)µµ′A
†
µ|0〉〈0|Aµ′ (and similarly for ρB ; see Ap-

pendix A), and there is entanglement between A and B
whenever ρA has rank ≥ 2, i.e., rank(C) ≥ 2. In such a
case, previous argument shows that such |Ψ〉 cannot be
a SD if the fermion number or number parity is fixed at
each side, i.e. NA or eiπNA fixed.

Due to the fermionic number parity superselection rule
[5, 62], fixed number parity at each side is required in
order to be able to form arbitrary superpositions, i.e.,
arbitrary unitary transformations of the local states, and
hence to have entanglement fully equivalent to the dis-
tinguishable case. Fixed particle number at each side
may be also required if the particle number or charge
superselection rule applies for the fermions considered.

The extension to multipartite mode entanglement is
straightforward: For a decomposition H =

⊕
iHi of the

SP space into orthogonal subspaces Hi, and for compo-
nent i associated to subspace Hi, all elements of ρ(1) con-
necting different components i and j will vanish if each
component is to have definite fermion number or number

parity in a state |Ψ〉: 〈c†kickj 〉 = 0 ∀ ki, kj if i 6= j. Thus,

ρ(1) =
⊕
i

ρ
(1)
i . (47)

If |Ψ〉 were a SD, each ρ
(1)
i should then satisfy (ρ

(1)
i )2 =

ρ
(1)
i and hence each subsystem would be in a pure SD

state, implying no entanglement between them. A one-
body entangled state is then required.

And when all previous subsystems contain just one
fermion, one-body entanglement is directly linked to
standard multipartite entanglement. Consider an N -

partite system with Hilbert space L =
⊗N

i=1 Li, where
Li is the Hilbert space of the i-th (distinguishable) con-

stituent. Consider also an N -fermion system with SP

space H =
⊕N

i=1Hi, such that dimHi = dimLi. This
enables the definition of an isomorphism Θi : Li → Hi
between these two spaces: Any pure separable state in

L, |S〉L =
⊗N

i=1 |φi〉, with |φi〉 ∈ Li, can be mapped to
a SD

|Ψ〉 = [

N∏
i=1

c†i,φ]|0〉,= Θ(|S〉L), (48)

where c†i,φ creates a fermion in the state Θi(|φi〉) ∈ Hi.
The map Θ : L → F is an isomorphism between L

and the subspace of F determined by the fermion states
having occupation number Ni = 1 in Hi ⊂ H. Hence any
pure state |Φ〉L of the multipartite system is mapped
to a state |Ψ〉 = Θ(|Φ〉L) in F . Since there is a fixed
fermion number (1) in each constituent, the SPDM ρ(1)

determined by |Ψ〉 will satisfy Eq. (47), implying here

ρ(1) =
⊕
i

ρi, (49)

where the elements of the matrix ρi are those of
the reduced state of the i-th subsystem associated to
|Φ〉L. Thus, one-body entanglement monotones become
E(|Ψ〉) = Tr f(ρ(1)) =

∑
i Tr f(ρi), being then equiva-

lent to the multipartite version of the linear entropy of
entanglement [6, 63–65] and constituting monotones for
the multipartite entanglement of the tensor product rep-
resentation.

This link between one-body entanglement and multi-
partite entanglement is not a surprise if we recall that
performing local operations on the multipartite system
cannot increase, on average, the mixedness of the local
eigenvalues. Relation (49) then implies that these opera-
tions cannot increase the mixedness of the SPDM associ-
ated to the fermionic representation, in agreement with
Eq. (2). And any local unitary in the tensor product rep-
resentation can be implemented as a one-body unitary
in the fermion system, while local projective measure-
ments can be performed as occupation measurements,
both FLO operations which are one-body entanglement
nongenerating. The overlap between one-body entangle-
ment and multipartite entanglement described here rein-
forces the idea that the first could be the resource be-
hind the computational power of the quantum computa-
tion model described in [61], since it consists of a map-
ping from qubits to fermions just like the map Θ defined
above.

III. CONCLUSIONS

We have shown that one-body entanglement, a mea-
sure of the deviation of a pure fermionic state from a
SD determined by the mixedness of the SPDM ρ(1), can
be considered as a quantum resource. We have first
provided a basis-independent bipartite like formulation
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of one-body entanglement in general N -fermion states,
which relates it with the correlation between one and
(N − 1)-body observables and is analogous to that of
systems of distinguishable components. Such formula-
tion leads to a Schmidt-like decomposition of the state,
which contains the common eigenvalues of the one and
(N − 1)-body DMs.

We have then identified the class of one-body entan-
glement nongenerating operations through the rigorous
majorization relation (20). And we have shown in Theo-
rem 1 that single mode occupation measurements satisfy
indeed this relation, implying they will not increase, on
average, the one-body entanglement here defined. The
ensuing theory then has SDs as free states and num-
ber conserving FLO operations as free operations. We
have also considered in corollary 1 and 2 more general
occupation measurements, showing they are also ONG.
Connections with mode entanglement and multipartite
entanglement have also been discussed, showing in par-
ticular that one-body entanglement is required for entan-
glement with fixed fermion number or number parity at
each subsystem. Present results provide the basis for a
consistent resource theory associated to quantum corre-
lations beyond antisymmetrization in fermionic systems,
which should play a fundamental role in fermionic proto-
cols beyond the FLO model.
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Appendix A: Proof of inequality (35) and Corollary 1

Proof. We first prove Eq. (35) for the lowest eigenvalue

of ρ
(1)
S′m

, where S ′m is the subspace containing the mea-

sured SP state |k〉 and the first m eigenstates of ρ(1). We

write the lowest eigenstate of ρ
(1)
S′m

as α|k〉 + β|k′〉, with

|k′〉 ∈ S ′m orthogonal to |k〉, such that λm+1(ρ
(1)
S′m

) is the

smallest eigenvalue λ− of the 2× 2 matrix

ρ
(1)
kk′ =

(
〈c†kck〉 〈c†k′ck〉
〈c†kck′〉 〈c†k′ck′〉

)
. (A1)

Setting 〈c†kck〉 = pk, its eigenvalues are

λ± = pk+pk′
2 ±

√
(pk−pk′ )2

4 + |〈c†k′ck〉|2 . (A2)

Writing again Pk = c†kck, Pk̄ = ckc
†
k = 1− Pk, a general

state |Ψ〉 can be expanded as

|Ψ〉 =
∑
µ,µ′ PµPµ′ |Ψ〉 =

∑
µ,µ′
√
pµµ′ |Ψµµ′〉 , (A3)

where µ = k, k̄; µ′ = k′, k̄′ (so that
∑
µ,µ′ PµPµ′ = 1) and

|Ψµµ′〉 = PµPµ′ |Ψ〉/
√
pµµ′ , with pµµ′ = 〈Ψ|PµPµ′ |Ψ〉,

are states with definite occupation of SP states |k〉 and
|k′〉. We then have pk = pkk′+pkk̄′ , pk′ = pkk′+pk̄k′ and

〈c†k′ck〉 = r
√
pk̄k′pkk̄′ , with |r| ≤ 1. Thus, |〈c†k′ck〉|2 ≤

pk̄k′pkk̄′ , and (A2) implies λ− ≥ pk+pk′
2 − pkk̄′+pk̄k′

2 , i.e.,

λ− ≥ pkk′ ≥ pkλm+1(ρ
(1)
kS′m

) + pk̄λm+1(ρ
(1)

k̄S′m
) , (A4)

since pkλm+1(ρ
(1)
kS′m

) ≤ pkk′ and λm+1(ρ
(1)

k̄S′m
) = 0 (as the

state k is empty in ρ
(1)

k̄S′m
). This implies Eq. (35) since

λm+1(ρ
(1)
S′m

) = λ−.

We also mention that by considering the largest eigen-
value λ+ in (A2) of a similar 2×2 block, such that the first
eigenstate (largest eigenvalue) of ρ(1) is spanned by |k〉
and |k′〉, it is verified, using again |〈c†k′ck〉|2 ≤ pk̄k′pkk̄′ ,

that λ1(ρ(1)) = λ+ ≤ pk+pk̄k′ ≤ pkλ1(ρ
(1)
k )+pk̄λ1(ρ

(1)

k̄
),

since λ1(ρ
(1)
k ) = 1 and pk̄k′ ≤ pk̄λ1(ρ

(1)

k̄
), which is the

first (m = 1) inequality in Eq. (34).
The present proof of Theorem 1 also holds for general

mixed fermionic states ρ (assumed to commute with the

fermion number N̂ =
∑
k c
†
kck or in general the num-

ber parity eiπN̂ ) since they can always be purified, i.e.
considered as reduced states ρS of a pure fermionic state

|Ψ〉 =
∑
µ,ν

CµνA
†
µB
†
ν |0〉 , (A5)

of definite number parity. Here A†µ and B†ν contain cre-
ation operators in S and in an orthogonal SP space S⊥ re-
spectively, satisfying 〈0|Aµ′A†µ|0〉 = δµµ′ , 〈0|Bν′B†ν |0〉 =

δνν′ , 〈0|Bν′A†ν |0〉 = 0. We may assume, for instance,
that {A†µB†ν |0〉} is a complete set of orthogonal SDs.

Then ρS = TrS⊥ |Ψ〉〈Ψ| =
∑
µ,µ′(CC

†)µµ′ |µ〉〈µ′|, with

|µ〉 = A†µ|0〉 a SD in S, satisfies 〈Ψ|OS |Ψ〉 = TrρSOS ∀
operators OS containing creation and annihilation oper-
ators of SP states ∈ S. Given then an arbitrary mixed
fermionic state ρS Eq. (A5) is a purification of ρS for
any matrix C satisfying (CC†)µµ′ = 〈µ|ρS |µ′〉 (requires
dimS⊥ ≥dimS).

Let us now prove Corollary 1, i.e. the extension of The-
orem 1 to the more general occupancy measurement oper-
ators of Eq. (37). In terms of the states (28), the ensuing
postmeasurement states |Ψ′

k(k̄)
〉 ∝Mk(k̄)|Ψ〉 are

|Ψ′k〉 =
(
α
√
pk |Ψk〉+ β

√
pk̄ |Ψk̄〉

)
/
√
p′k, (A6)

|Ψ′k̄〉 =
(
γ
√
pk |Ψk〉+ δ

√
pk̄ |Ψk̄〉

)
/
√
p′
k̄
, (A7)

where |α|2 + |γ|2 = 1, |β|2 + |δ|2 = 1 and

p′k = pk|α|2 + pk̄|β|2 , p′k̄ = pk|γ|2 + pk̄|δ|2 , (A8)

with p′k + p′
k̄

= 1. We have to prove

λ(ρ(1)) ≺ p′kλ(ρ′
(1)
k ) + p′k̄λ(ρ′

(1)

k̄
) , (A9)
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where ρ′
(1)

k(k̄)
are now the SPDM’s determined by the

states (A6)–(A7). The generalization of Eq. (33),

Tr ρ
(1)
S = Tr [p′kρ

′(1)
kS + p′k̄ρ

′(1)

k̄S ] , (A10)

still holds for any subspace S either orthogonal to or

containing the SP state |k〉, as [Mk(k̄), c
†
k′ck′ ] = 0 for

both k′ = k or k′ orthogonal to k [see comment below
Eq. (32)]. Proceeding in the same way and using previous

notation, we see that p′kλm+1(ρ′
(1)
kS′m

) is less than or equal

to the smallest eigenvalue λk− of the 2× 2 matrix(
|α|2pk αβ∗〈c†k′ck〉

α∗β〈c†kck′〉 |α|2pkk′ + |β|2pk̄k′

)
, (A11)

while p′
k̄
λm+1(ρ′

(1)

k̄S′m
) is less than or equal to the smallest

eigenvalue λk̄− of a similar matrix with α→ γ, β → δ. It
is then straightforward to prove, using Eq. (A2) for λ−,

that λm+1(ρ
(1)
S′m

) = λ− ≥ λk− + λk̄−, since

λ− − λk− − λk̄− =

√
(|α|2p

kk̄′−|β|2pk̄k′ )2

4 + |αβ〈c†k′ck〉|2

+

√
(|γ|2p

kk̄′−|δ|2pk̄k′ )2

4 + |γδ〈c†k′ck〉|2

−
√

(p
kk̄′−pk̄k′ )2

4 + |〈c†k′ck〉|2

≥ 0 , (A12)

with equality for |r| = 1 (|〈c†k′ck〉| =
√
pk̄k′pkk̄′) or |α| =

|β|. Then the mth inequality in (A9),

m∑
ν=1

λν(ρ(1)) ≤
m∑
ν=1

p′kλν(ρ′
(1)
k ) + p′k̄λν(ρ′

(1)

k̄
) , (A13)

follows due to (A10) and the previously used Ky Fan
inequality. Eq. (A9) also holds within any subspace S
containing (or orthogonal to) the SP state |k〉.

Appendix B: Occupation measurements on free
states

For a one-body entanglement nongenerating operation,
Eq. (20) implies that the Kraus operators Kj satisfying
it should convert free states onto free states, i.e. SDs
onto SDs. For the occupation measurements of Eq. (27)
(Theorem 1), Eq. (37) (Corollary 1), and Corollary 2,
this property can be easily verified. Let

|Ψ〉 = (

N∏
ν=1

c†ν)|0〉 , (B1)

be a general SD for N fermions, with {cν , c†ν′} = δνν′ .

A general fermion creation operator c†k =
∑n
ν=1 ανc

†
ν ,

with αν = {cν , c†k} and {ck, c†k} =
∑
ν |αν |2 = 1, can be

written as

c†k =
√
pkc
†
k‖

+
√
pk̄c
†
k⊥
, (B2)

where
√
p
k
c†k‖ =

∑
ν≤N ανc

†
ν is the component in the

subspace occupied in |Ψ〉, with pk =
∑
ν≤N |αν |2 =

〈Ψ|c†kck|Ψ〉 the occupation probability of SP state k and

c†k‖ |Ψ〉 = 0, while
√
p
k̄
c†k⊥ =

∑
ν>N ανc

†
ν is the orthog-

onal complement, with pk̄ =
∑
ν>N |αν |2 = 1 − pk and

ck⊥ |Ψ〉 = 0. If pk > 0, through a unitary transforma-
tion of the c†ν for ν ≤ N , they can be chosen such that

c†k‖ = c†ν=N . Hence, for the measurement operators of

corollary 2, we see that

ck|Ψ〉 =
√
pkck‖ |Ψ〉, c†k|Ψ〉 =

√
pk̄c
†
k⊥
|Ψ〉 , (B3)

are clearly orthogonal SDs. For the measurement opera-
tors of Theorem 1, Eq. (B3) implies

c†kck|Ψ〉 =
√
pkc
†
kck‖ |Ψ〉 , (B4)

ckc
†
k|Ψ〉 =

√
pk̄ckc

†
k⊥
|Ψ〉 =

√
pk̄c
†
k′ck‖ |Ψ〉 , (B5)

where c†k′ =
√
pk̄c
†
k‖
−√pkc†k⊥ , which are also orthogonal

SD’s ({ck, c†k′} = 0). And in the case of the generalized
measurement based on the operators (37), we see from
(B4)–(B5) that

Mk|Ψ〉 = (α
√
pkc
†
k + β

√
pk̄c
†
k′)ck‖ |Ψ〉 (B6)

Mk̄|Ψ〉 = (γ
√
pkc
†
k + δ

√
pk̄c
†
k′)ck‖ |Ψ〉 (B7)

are as well SDs, not necessarily orthogonal.

Appendix C: Comparing one-body entanglement of
states with different particle number

Given two pure fermionic states |Ψ〉 and |Φ〉 with
the same fermion number N , such that their associated

SPDMs have the same trace Tr ρ
(1)
Ψ = Tr ρ

(1)
Φ = N ,

|Ψ〉 is considered not less entangled than |Φ〉 if Eq. (2)

(λ(ρ
(1)
Ψ ) ≺ λ(ρ

(1)
Φ )) is satisfied. Here λ(ρ(1)) denotes the

spectrum of ρ(1) sorted in decreasing order. It can be
shown that

λ(ρ
(1)
Ψ ) ≺ λ(ρ

(1)
Φ ) =⇒ λ(D

(1)
Ψ ) ≺ λ(D

(1)
Φ ) , (C1)

for the extended DM defined in Eq. (40), the spectrum
of which is (λ, 1−λ). Eq. (C1) follows from the straight-
forward properties (see for instance [49, 50])
i) λ ≺ λ′ =⇒ 1− λ ≺ 1− λ′,
ii) λ ≺ λ′ and µ ≺ µ′ =⇒ (λ,µ) ≺ (λ′,µ′),
where λ,λ′,µ,µ′ ∈ Rn are sorted in decreasing order and
(λ,µ) ∈ R2n denotes the sorted vector resulting from the
union of λ and µ. The converse relation in (C1) does not
hold. These properties also entail that the majorization
relation (20) implies

λ(D(1)) ≺
∑
j

pjλ(D
(1)
j ), (C2)

for the corresponding extended densities.
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The advantage of Eqs. (C1)–(C2) is that within a fixed
SP space the extended vectors can always be compared
through majorization, regardless of the particle number
N , since TrD(1) = n = dimH is fixed by the SP space
dimension. For two states |Ψ〉 and |Φ〉 with definite but
not necessarily coincident fermion number, we then say
that |Ψ〉 is not less entangled than |Φ〉 if Eq. (C1) holds.
In particular, it is clear that —up to a permutation—
the same eigenvalue vector λ(D(1)) is assigned to all SD
states in the Fock space of the system, irrespective of N ,
so that they are all least entangled states.

The extension of Definition 1 to general ONG oper-
ations, not necessarily conserving the particle number,
is now straightforward: a quantum operation is ONG if
it admits a set of Kraus operators {Kj} satisfying Eq.

(C2) ∀ ρ, with D(1) and D
(1)
j the extended SPDMs de-

termined by ρ and ρj respectively. This extension allows
us to consider operations such as that of Corollary 2, with

Kraus operators ck and c†k. The extended SPDMs D(1)

of the postmeasurement states 1√
pk
ck|Ψ〉 and 1√

pk̄
c†k|Ψ〉

have clearly the same spectrum as those obtained from
1√
pk
c†kck|Ψ〉 and 1√

pk̄
ckc
†
k|Ψ〉 —up to a permutation—,

with the same probabilities, such that theorem 1 directly
implies corollary 2. In fact, the number conserving occu-
pation measurement is just a composition of the former

with itself, as (ck, c
†
k) ◦ (ck, c

†
k) = (ckc

†
k, c
†
kck).

We can therefore embed the fermion number preserv-
ing resource theory within a more general theory in which

the set of free states is the convex hull of SD states —of
all possible particle number— and where the free opera-
tions are one-body unitaries and operations based on the

{ck, c†k} measurement mapping SDs onto SDs. Any SD
and hence any free state can be prepared from an arbi-
trary state ρ by means of free operations only, i.e., by

applying one-body unitaries and successive {ck, c†k} mea-
surements with postselection. Since the starting state is
arbitrary, any free state in this theory can be converted
into any other free state by free operations. Allowing
the particle number to vary implies that appending free
states is also a free operation, since this will not alter the
spectrum of the associated D(1) in the full SP space.

We have here considered pure states |Ψ〉 with definite
fermion number and operators Kj which produce states
Kj |Ψ〉 with definite fermion number when applied to such
states, suitable for systems where a particle number su-
perselection rule applies. The extension to the case where
general fermionic Gaussian states (with no fixed particle
number but definite number parity) and active FLO op-
erations are also considered free is straightforward. It
requires the consideration of the full extended 2n × 2n
quasiparticle density matrix containing in addition the

pair creation and annihilation contractions 〈c†kc
†
k′〉 and

〈ck′ck〉, the eigenvalues of which remain invariant under
general Bogoliubov transformations. Its mixedness de-
termines a generalized one-body entanglement [20] which
vanishes if and only if the state is a SD or a quasiparticle
vacuum, i.e., a general pure fermionic Gaussian state.
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dorf, and M. Taut, J. Chem. Phys. 110, 6135 (1999).
[57] S. Bera, H. Schomerus, F. Heidrich-Meisner, and J. H.

Bardarson, Phys. Rev. Lett. 115, 046603 (2015).
[58] L. A. Pena Ardila, M. Heyl, and A. Eckardt, Phys. Rev.

Lett. 121, 260401 (2018).
[59] D. P. DiVincenzo and B. M. Terhal, Found. Phys. 35,

1967 (2005).

[60] F. de Melo, P. Ćwikliński, B. M. Terhal, New J. Phys.
15 013015 (2013).

[61] C.W.J. Beenakker, D.P. DiVincenzo, C. Emary, and
M. Kindermann, Phys. Rev. Lett. 93, 020501 (2004) .

[62] N. Friis, New J. Phys. 18, 033014 (2016).
[63] D.A. Meyer and N.R. Wallach, J. Math. Phys. 43, 4273

(2002); G.K. Brennen, Quant, Inf. Comp. 3, 619 (2003).
[64] M. Walter, B. Doran, D. Gross, and M. Christandl, Sci-

ence 340, 1205 (2013).
[65] S. Boixo and A. Monras, Phys. Rev. Lett. 100, 100503

(2008); R.Radgohar and A.Montakhab, Phys. Rev. B 97,
024434 (2018).

http://dx.doi.org/10.1103/PhysRevX.8.031005
http://dx.doi.org/10.1103/PhysRevLett.113.140401
http://dx.doi.org/10.1103/PhysRevLett.113.140401
http://dx.doi.org/10.1103/PhysRevA.63.022114
http://dx.doi.org/10.1103/PhysRevLett.83.436

	One-body entanglement as a quantum resource in fermionic systems
	Abstract
	I Introduction
	II Formalism
	A One-body entanglement
	1 The associated Schmidt decomposition
	2 One-body entanglement entropies

	B One-body entanglement nongenerating operations
	1 Definition and basic properties
	2 Fermion linear optics operations as ONG
	3 More general ONG measurements and operations

	C One-body entanglement as a resource

	III Conclusions
	 Acknowledgments
	A Proof of inequality (35) and Corollary 1
	B Occupation measurements on free states
	C Comparing one-body entanglement of states with different particle number
	 References


