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Abstract. We develop the homology theory of CW(A)-complexes, generalizing the clas-
sical cellular homology theory for CW-complexes. A CW(A)-complex is a topological
space which is built up out of cells of a certain core A.

1. Introduction

This is the second article of a series of three papers in which we introduce and develop
the theory of CW(A)-complexes. A CW(A)-complex is a topological space built up out of
simple building blocks or cells of a certain type A (called the core of the complex). The
theory of CW(A)-complexes generalizes the classical theory of CW-complexes, keeping the
geometric intuition of J.H.C. Whitehead’s original theory.

The main properties of standard CW-complexes arise from the following two basic
facts: (1) the n-ball Dn is the topological (reduced) cone of the (n − 1)-sphere Sn−1

and (2) the n-sphere is the (reduced) nth-suspension of the 0-sphere S0. For example, the
homotopy extension properties of CW-complexes are deduced from (1), since the inclusion
Sn−1 → Dn is a closed cofibration. Item (2) is closely related to the definition of the
homotopy groups and is used to prove results such as Whitehead Theorem or Homotopy
excision. These two basic facts suggest also that one might replace the original core S0

by any other space A and construct spaces built up out of cells of different shapes or types
using suspensions and cones of the base space A.

In the first article of this series [8] we developed the homotopy theory of such spaces. We
proved various results, such as a generalized Whitehead Theorem, which allow a deeper
insight into their homotopy properties. Some of these results, together with the basic def-
initions and ideas of this theory, are summarized in section 2. In this paper we investigate
the homology theory of CW(A)-complexes. Our main goal is to develop tools and tech-
niques which allow us to compute their singular homology out of the homology of the core
A and their CW(A)-structure. These new tools appear as generalizations of the classical
cellular homology theory. The general case is of course much more complicated to analyze
than the standard case (i.e. when the core A is S0), even if A itself is a CW-complex.

Note that the (reduced) homology of S0 (with coefficients in Z) has two key properties:
it is concentrated in one degree (degree zero) and it is free (as an abelian group). Keeping
this in mind, we begin our generalization of cellular homology by studying the case when
the reduced homology of A is concentrated in a certain degree. In this case, the A-cellular
chain complex (C∗, d) of a CW(A)-complex X is defined as follows. If the homology of A
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is concentrated in degree r, we take Cn =
⊕

A-(n− r)-cells

Hr(A) for every n, and we define

dn : Cn → Cn−1 in a similar way to in the classical setting (see Section 3). The first
significant result is the following.

Theorem. Let A be a CW-complex with homology concentrated in degree r and let X be
a CW(A)-complex. Then, the homology of the A-cellular chain complex defined as above
coincides with the singular homology of X.

The second case that we study is when the homology of A is free. We obtain the
following result.

Theorem. Let A be a CW-complex with free homology groups and let X be a finite di-
mensional CW(A)-complex. Then there exists a chain complex of Z-modules (C∗, d) whose
homology is the singular homology of X, with Cn =

⊕
r
Hn−r(A)#r−cells.

When the homology of the core A is neither concentrated nor free, the homology of
X is more difficult to compute. Example 3.10 of Section 3 shows that, in that case, the
homology of X cannot be computed from an A-cellular complex as in the theorems above.
This case is analyzed in the third paper of this series [9]. As one might expect, there are
spectral sequences which allow us to compute the singular homology of X in terms of the
homology of the core and the CW(A)-structure.

In section 4 we investigate the A-Euler characteristic χA of CW(A)-complexes. We
show that the A-Euler characteristic gives useful information on the space, although in
some cases it might not be a topological invariant. More specifically, we prove below the
following result.

Proposition. Let A be a finite CW-complex and let X be a finite CW(A)-complex. Then
χ(X) = χA(X)χ(A).

We also define and investigate the multiplicative Euler characteristic when the core A
has finite homology (see Theorem 4.7 below). The paper ends with some results which
relate this theory with Moore spaces.

Throughout this paper, all spaces are assumed to be pointed spaces, all maps are pointed
maps and homotopies are base-point preserving. Also homology will mean reduced ho-
mology with coefficients in Z.

2. Preliminaries

In this section we recall briefly the main definitions and results on CW(A)-complexes.
For a comprehensive exposition on the homotopy theory of CW(A)-complexes the inter-
ested reader might consult [8].

We denote by CX the reduced cone of X and by ΣX its reduced suspension. Also, Sn

denotes the n-sphere and Dn the n-disk.
Let A be a fixed pointed topological space.

Definition 2.1. Let n ∈ N. We say that a (pointed) space X is obtained from a (pointed)
space B by attaching an n-cell of type A (or simply, an A-n-cell) if there exists a pushout
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diagram

Σn−1A
g //

i
��

push

B

��
CΣn−1A

f
// X

The A-cell is the image of f . The map g is the attaching map of the cell, and f is its
characteristic map. We say that X is obtained from B by attaching a 0-cell of type A if
X = B ∨A.

Note that attaching an S0-n-cell is the same as attaching an n-cell in the usual sense,
and that attaching an Sm-n-cell means attaching an (m+ n)-cell in the usual sense.

For example, the reduced cone CA of A is obtained from A by attaching an A-1-cell. In
particular, D2 is obtained from D1 by attaching a D1-1-cell. Also, the reduced suspension
ΣA can be obtained from the singleton ∗ by attaching an A-1-cell.

Definition 2.2. A CW-structure with base A on a space X, or simply a CW(A)-structure
on X, is a sequence of spaces ∗ = X−1, X0, X1, . . . , Xn, . . . such that, for n ∈ N0, Xn is
obtained from Xn−1 by attaching n-cells of type A, and X is the colimit of the diagram

∗ = X−1 → X0 → X1 → . . .→ Xn → . . .

The subspace Xn is called the n-skeleton of X. We say that the space X is a CW(A)-
complex (or simply a CW(A)), if it admits some CW(A)-structure. In this case, the space
A will be called the core or the base space of the structure.

Examples 2.3.
(1) A CW(S0) is just a CW-complex and a CW(Sn) is a CW-complex with no cells

of dimension less than n, apart from the base point.
(2) The space Dn admits several different CW(D1)-structures. For instance, we can

take Xr = Dr+1 for 0 ≤ r ≤ n− 1 since CDr = Dr+1. We may also define

X0 = . . . = Xn−2 = ∗ and Xn−1 = Dn

since we have a pushout

Σn−2D1 = Dn−1 //

i
��

push

∗

��
CΣn−2D1 = CDn−1 // ΣDn−1 = Dn

It is clear that, in general, a topological space may admit many different decompositions
into cells of different types. In [8] we studied the relationship between such different
decompositions. In particular, we obtained results such as the following.

Theorem 2.4. Let A be a CW (B)-complex of finite dimension and let X be a generalized
CW (A)-complex. Then X is a generalized CW (B)-complex. In particular, if A is a stan-
dard finite dimensional CW-complex, then X is a generalized CW-complex and therefore
it has the homotopy type of a CW-complex.

By a generalized complex we mean a space which is obtained by attaching cells in
countable many steps, allowing cells of any dimension to be attached in any step. The
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subspaces obtained at every step are called layers. They are the analogues of the n-
skeletons.

We also analyzed the changing of the core A by a core B via a map α : A → B and
obtained the following result.

Theorem 2.5. Let A and B be pointed topological spaces with closed base points, let X
be a CW(A)-complex and let α : A→ B and β : B → A be continuous maps.

i. If βα = IdA, then there exists a CW(B)-complex Y and maps ϕ : X → Y and
ψ : Y → X such that ψϕ = IdX .

ii. If β is a homotopy equivalence, then there is a CW(B)-complex Y and a homotopy
equivalence ϕ : X → Y .

iii. If βα = IdA and αβ ' IdA then there exists a CW(B)-complex Y and maps
ϕ : X → Y and ψ : Y → X such that ψϕ = IdX and ϕψ = IdX .

In particular, when the core A is contractible, all CW(A)-complexes are also con-
tractible.

Finally, we mention the following generalization of Whitehead Theorem.

Theorem 2.6. Let X and Y be CW (A)-complexes and let f : X → Y be a continuous
map. Then f is a homotopy equivalence if and only if it is an A-weak equivalence.

We emphasize that our approach tries to keep the geometric intuition of Whitehead’s
original theory. There exist many generalizations of CW-complexes in the literature. We
especially recommend Baues’ generalization of complexes in Cofibration Categories [1].
There is also a categorical approach to cell complexes by the first named author of this
paper [7]. The main advantage of the geometric point of view that we take in this article is
that it allows the generalization of the most important classical results for CW-complexes
and these new results can be applied in several concrete examples.

The theory of CW(A)-complexes that we develop in this series is also related to previous
work of E. Dror Farjoun [4] and W. Chachólski [3] and to the underlying theory behind
Kenzo, which is a set of computer programs for calculating homology and homotopy
groups of spaces out of the homology and homotopy of simpler spaces [10]; although the
approaches are quite different.

3. Homology of CW(A)-complexes

As we claimed in the introduction, our aim is to compute the singular homology groups
of CW(A)-complexes out of the homology of A and the CW(A)-structure of the space.

Remark 3.1. Recall that if A and X are (pointed) CW-complexes and g : A → X is a
continuous (cellular) map there is a long exact sequence

. . . // Hn(A, ∗)
g∗ // Hn(X, ∗) i∗ // Hn(Cg, ∗)

q∗ // Hn−1(A, ∗)
g∗ // . . .

which induces short exact sequences

0 // Coker g∗
i∗ // Hn(Cg, ∗)

q∗ // Ker g∗ // 0

Here, Cg denotes the mapping cone of g. This has an evident analogy with the chain
complex Cg∗, where g∗ is the induced map in the singular chain complexes.
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In case that all these short exact sequences split, the homology of Cg can be computed
in the following way. The map g induces a morphism of chain complexes g∗ : H∗(A) →
H∗(X). The homology of the cone of this morphism

. . . // Hn+1(X)⊕Hn(A)

(
0 g∗
0 0

)
// Hn(X)⊕Hn−1(A)

(
0 g∗
0 0

)
// Hn−1(X)⊕Hn−2(A) // . . .

is clearly the homology of Cg.

The well-known remark above will be our starting point to compute the singular ho-
mology of finite CW(A)-complexes. Consider the following example. Define D2

4 as the
pushout

S1
g4 //

��
push

S1

��

D2 // D2
4

where g4 is a map of degree 4. Let the core A be D2
4 and let g : D2 ⊆ C → D2 be the

map g(z) = z2. The map g induces a well defined cellular map g′ : A→ A. Let X be the
CW(A)-complex of dimension one defined by the following pushout

A
g′ //

��
push

A

��
CA // X

Note that H1(A) = Z4 and Hr(A) = 0 for r 6= 1. Also, the induced map
g′∗ : H1(A) → H1(A) is given by multiplication by 2. The cone of g′ is in this case

. . . // 0 // Z4
g′∗ //// Z4

// 0

where the group Z4 appears in degrees 1 and 2. Note that in the short exact sequences
as above one gets ker g∗ = 0 or coker g∗ = 0. It follows that Hr(X) = Z2 for r = 1, 2 and
Hr(X) = 0 for r 6= 1, 2.

The previous idea can also be applied to prove the following.

Proposition 3.2. Let A be a CW-complex and let n ∈ N. Let X be a CW(A)-complex
with the property that, for every r ∈ N0, Hn−r(A) = 0 whenever X has at least one
A-r-cell. Then Hn(X) = 0.

Proof. Since A is a CW-complex, by cellular approximation we can suppose that X is also
a standard CW-complex. Since all (standard) cells of dimension less than or equal to n+1
lie in the A-(n+ 1)-skeleton Xn+1, it suffices to prove that Hn(Xn+1) = 0.

We proceed by induction in the A-skeletons Xk. For k = 0 the result is clear. Now
suppose the result holds for Xk−1 and that X has A-k-cells. We denote by gα : Σk−1A→
Xk−1, α ∈ Λ, their attaching maps. Consider the long exact sequence

. . . // Hn(Xk−1)
i∗ // Hn(Xk, ∗)

q∗ //
⊕
α∈Λ

Hn−1(Σk−1A) =
⊕
α∈Λ

Hn−k(A)+(gα)∗ // . . .
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By hypothesis, Hn(Xk−1) = 0 and since Xk has an A-k-cell, Hn−k(A) = 0. Hence,
Hn(Xk, ∗) = 0. �

Corollary 3.3. Let A be a CW-complex with homology concentrated in degree r and let X
be a CW(A)-complex. If X does not have any A-n-cells, then Hn+r(X) = 0. �

Given a CW(A)-complex X, our aim is to construct a suitable chain complex whose
homology coincides with the homology of X. We investigate two particular cases: First we
study the case when the homology of the core A is concentrated in one degree. The second
case is when the homology of A is free. The constructions and results that we obtain in
both cases generalize the standard results on cellular homology of CW-complexes.

We begin with the first case. Suppose Hn(A) = 0 for n 6= r, i.e. the (reduced) homology
of A is concentrated in degree r.

In this case, given a CW(A)-complex X, we define the A-cellular chain complex (C∗, d)
of X as follows. Take

Cn =
⊕

A-(n− r)-cells

Hr(A)

and define dn : Cn → Cn−1 in the following way. Given enα and en−1
β A-cells of dimensions

n and n− 1 respectively we consider gα : Σn−1A→ Xn−1 the attaching map of enα (where
Xn−1 denotes the A-n-skeleton of X) and the quotient map

qβ : Xn−1 → Xn−1/(Xn−1 −
◦

en−1
β ) = Σn−1A.

The map qβgα : Σn−1A→ Σn−1A induces

(qβgα)∗ : Hn+r−1(Σn−1A) = Hr(A) → Hn+r−1(Σn−1A) = Hr(A).

Finally, dn is induced by the maps dα,β
n = (qβgα)∗ from the α-th copy of Hr(A) to the

β-th copy of Hr(A) (recall that Hk(A) = 0 if k 6= r).
Note that this chain complex is very similar to the standard (cellular) one. In fact, to

prove that (C∗, d∗) is actually a chain complex one may proceed as in the classical case,
but replacing Sn−1 with Σn−1A and Dn with CΣn−1A.

Theorem 3.4. Let A be a CW-complex with homology concentrated in degree r and let
X be a CW(A)-complex. Then, the homology of the A-cellular chain complex defined as
above coincides with the singular homology of X.

Proof. We proceed by induction in the A-n-skeleton Xn. For n = 0 the result is clear.
Suppose the result holds for Xn−1. For simplicity, we assume that X is obtained from

Xn−1 by attaching only one A-n-cell. The general case is similar.
Let (C ′

∗, d
′
∗) be the A-cellular chain complex of Xn−1. By hypothesis, the homology

of (C ′
∗, d

′
∗) coincides with the singular homology of Xn−1. Hence, by 3.1, the singular

homology of Xn can be computed as the homology of the chain complex

. . . // Hn+1(C ′
∗)⊕Hn(Σn−1A)

(
0 g∗
0 0

)
// Hn(C ′

∗)⊕Hn−1(Σn−1A) // . . .

where g : Σn−1A→ Xn−1 is the attaching map of the A-n-cell.
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We want to prove that this complex has the same homology as the A-cellular complex
of X, namely

. . . // 0 // Hn+r−1(Σn−1A)
+(qβg)∗// C ′

n+r−1

d′n+r−1// . . .

By the long exact sequence of the homology of the cone, it suffices to prove that +qβg∗
induces the map g∗ in homology. But this follows from the commutativity of the diagram

Hn+r−1(Σn−1A)
g∗ // Hn+r−1(Xn−1)

+(qβ)∗
��

'

uukkkkkkkkkkkkkk

ker d′n+r−1 inc
// ⊕Hn+r−1(Σn−1A)

where the isomorphism Hn+r−1(Xn−1) → ker d′n+r−1 is induced by the map +(qβ)∗. �

Remark 3.5. The previous construction generalizes the classical one for cellular homology
of CW-complexes. Note that the S0-cellular chain complex of X is the standard cellular
chain complex.

The following corollary is an example of one possible application of the theorem.

Corollary 3.6. Let G and H be finite abelian groups with relatively prime orders. Let
A and B be CW-complexes with homology concentrated in certain degrees n and m re-
spectively, and with Hn(A) = G and Hm(B) = H. Let X be a simply connected CW(A)-
complex and let Y be a simply connected CW(B)-complex. Then X and Y have the same
homotopy type if and only if both of them are contractible.

Proof. By the hypothesis on the order of the elements, a quotient of
⊕
G different from 0

cannot be isomorphic to any quotient of
⊕
H. It follows that if X and Y have the same

homotopy type, then all their singular homology groups must vanish. �

We investigate now the case when the homology groups Hn(A) are free for all n. The
following lemma plays a key role in the proof of 3.8. Since its proof is standard, we only
sketch the main ideas.

Lemma 3.7. Let (C∗, d∗) and (D∗, d
′
∗) be chain complexes of Z-modules, with Cn free for

every n. Given morphisms fn : Hn(C∗) → Hn(D∗), n ∈ N, there exists a morphism of
chain complexes g : (C∗, d∗) → (D∗, d

′
∗) which induces the maps fn in homology.

Proof. Since C0 is projective, there exists a map g0 : C0 → D0 inducing f0 in homology.
Suppose that we have already defined g0, . . . , gn−1 and they commute with the differentials
and induce f0, . . . , fn−1 in homology. Since ker dn is projective there exists a map β in a
commutative diagram

ker dn
qC
n //

β

��

ker dn/Im dn+1

fn

��
ker d′n

qD
n // ker d′n/Im d′n+1

Note that Cn ' ker dn ⊕ Im dn. We define gn = β in ker dn. Since Im dn is projective, we
can define gn in Im dn such that gn−1(y) = d′ngn(y) for all y ∈ Im dn. It is easy to check
that d′ngn = gn−1dn and that gn induces the map fn. �
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Theorem 3.8. Let A be a CW-complex with free homology groups and let X be a finite
dimensional CW(A)-complex. Then there exists a chain complex of Z-modules (C∗, d)
whose homology is the singular homology of X, where

Cn =
⊕

r

Hn−r(A)#r−cells.

Proof. We proceed by induction in the dimension of X. If X has dimension zero, the
result is trivial and if X has dimension one, the result follows from remark 3.1.

Suppose that the result is true for X ′ and that X is obtained from X ′ by attaching
A-n-cells. For simplicity, we may suppose that only one A-n-cell is attached, and let g
be its attaching map. We denote by H∗(Σn−1A) and H∗(X ′) the chain complexes of the
homology of Σn−1A and X ′ respectively with all differentials equal to zero, and by C(X ′)
the chain complex of X ′ of the inductive step. By remark 3.1, the homology of X can be
computed as the homology of the chain complex Cg∗, where g∗ : H∗(Σn−1A) → H∗(X ′) is
the morphism of chain complexes (with zero differentials) induced by g in homology.

By lemma 3.7, there exists a morphism ϕ : H∗(Σn−1A) → C(X ′) inducing g∗ in ho-
mology. It is easy to prove that the homology of Cϕ coincides with the homology of Cg∗
which is the homology of X. �

Example 3.9. Let A be a CW-complex such that Hr(A) = Z for r = 1, 4 and 0 otherwise.
Let X be a CW(A)-complex having n A-0-cells and m A-2-cells. Note that all the maps
in the chain complex of the previous theorem are 0 and hence

Hr(X) =

 Zn for r = 1, 4
Zm for r = 3, 6
0 otherwise

Example 3.10. This example shows that theorem 3.8 may not hold if the hypothesis are
not satisfied. Concretely, for the core A = D2

4 ∨ ΣD2
4 (see page 5) we exhibit a CW(A)-

complex X whose homology cannot be computed with a chain complex as in 3.8. Note that
the homology of A is not concentrated in any degree and that its homology groups are not
free. Moreover, the space X will constitute an example of a generalized CW(D4

2)-complex
which does not have the homotopy type of a CW(D4

2)-complex.
The space X will consist of 3 A-cells, one of each dimension 0, 1 and 2. The attaching

maps are defined as follows. For each n ∈ Z let g′n : D2 ⊆ C → D2 be the map g′n(z) = zn.
The map g′n induces a well defined cellular map gn : D2

4 → D2
4. We will also denote

g′n = g′n|S1 : S1 → S1.
Let X1 be the CW(A)-complex of dimension one defined by attaching an A-1-cell to A

by the map ∗∨Σg2. We obtain X by attaching an A-2-cell to X1 by the map β∨∗, where
β : ΣD2

4 → X1 is the unique map induced by γ and δ in the following pushout

S2
Σg′4 //

inc

��
push

S2

in1

�� γ

��

D3
in2

//

δ //

ΣD2
4

β

!!DD
DD

DD
DD

X1
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The map γ is defined as the composition

S2
Σg′−2 // S2

in1 // ΣD2
4

in3 // X1

(where in3 is the canonical inclusion in the pushout) and δ = (δ1∨ δ2)◦q, where δ1, δ2 and
q are defined as follows. The map q : D2 → D2 ∨D2 is the quotient map that collapses
the equator to a point. The map δ1 is the composition

D3
Σg′−1 // D3

in2 // ΣD2
4

in3 // X1

and the map δ2 is the composition

D3
Σg′−2 // D3

Cin1 // CΣD2
4

in4 // X1

The map in4 is the canonical map induced in the pushout

A = D2
4 ∨ ΣD2

4

∗∨Σg2 //

��
push

A = D2
4 ∨ ΣD2

4

in′3∨in3

��
CA = CD2

4 ∨ CΣD2
4 in′4∨in4

// X1

It is easy to check that δinc = γg4. Since the attaching maps are cellular, it follows that
X is a CW-complex. We will show that H3(X) = Z8. Hence, its homology cannot be
computed with a chain complex as in 3.8 because H3(X) has an element of order 8. Note
that X, as a standard CW-complex, has 1 0-cell, 1 1-cell, 3 2-cells, 4 3-cells, 3 4-cells and
1 5-cell. It is not difficult to prove that the rightmost part of its cellullar chain complex is
the following.

Z


0
0
4


// Z3


2 −1 0
0 0 0
4 2 0
0 4 0


// Z4


0 0 0 0
4 0 −2 2
0 4 0 0


// Z3

(
4 0 0

)
// Z 0 // Z

It is easy to verify that H3(X) = Z8, with generator being the class of (0, 0, 1, 1).
Note that X is a generalized CW(D4

2)-complex which does not have the homotopy type
of a CW(D4

2)-complex. Indeed, if there existed a CW(D4
2)-complex Z, homotopy equivalent

to X, then by theorem 3.4, Z8 = H3(X) = H3(Z) would be a subquotient of
⊕

Z4, which
is impossible.

4. A-Euler characteristic and multiplicative characteristic

Let X be a pointed finite CW-complex. Recall that the reduced Euler characteristic of
X is defined by

χ(X) =
∑
j≥0

(−1)jαj

where αj is the number of j-cells and where the base point does not count as a 0-cell. In
this way the reduced Euler characteristic differs in 1 from the standard (unreduced) one.
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Definition 4.1. Let A be a CW-complex and let X be a CW(A)-complex with a finite
number of A-cells. We define the A-Euler characteristic of X by

χA(X) =
∑
j≥0

(−1)jαA
j

where αA
j is the number of A-j-cells of X.

Note that if A = S0 then the A-Euler characteristic of X is the reduced Euler char-
acteristic in the usual sense. Also, if A = Sn then χA(X) = (−1)nχ(X). Recall that a
CW(Sn)-complex is a CW-complex with no cells of dimension less than n, apart from the
base point.

The A-Euler characteristic gives us useful information about the space. For example,
proposition 4.2 will show that if the core A is a finite CW-complex and X is a finite
CW(A)-complex then χ(X) can be computed from χ(A) and χA(X). Note that χ(X) is
well defined since X has the homotopy type of a finite CW-complex. When χ(A) 6= 0,
the A-Euler characteristic is a homotopical invariant. In case χ(A) = 0, it might not be
invariant by homotopy equivalences or even homeomorphisms, as the following example
shows. Take the core A as D1 (with 1 as base point). The disk D2 is homeomorphic
to CA and ΣA. We know that CA is obtained from A by attaching an A-1-cell, hence
χA(CA) = 0. On the other hand, ΣA is obtained from ∗ by attaching a A-1-cell, so
χA(ΣA) = −1. Note that there are A-cellular approximations to the identity map of D2

between these two different A-cellular structures, and that the homology of D2 can be
computed from the A-cellular complex by 3.4. But in this case the A-Euler characteristic
cannot be computed from the A-cellular complex since, in contrast to the classical situation
where the cellular complex has a copy of Z for each cell, the A-cellular complex has a trivial
group for each A-cell of D2.

Proposition 4.2. Let A be a finite CW-complex and let X be a finite CW(A)-complex.
Then χ(X) = χA(X)χ(A).

Proof. The proposition follows from the fact that, for all n ∈ N0 the relative CW-complexes
(CΣnA,ΣnA) have exactly the same cells as A but shifted in dimension. Note also that
X has the homotopy type of a CW-complex X ′ which is obtained by approximating the
attaching maps of X by cellular maps. �

Corollary 4.3. If χ(A) 6= 0 and χA(X) 6= 0 then X is not contractible.

Note that in case A = Sn the corollary does not say anything new. But, for example, if
A is a torus (χ(A) = −1) and X is a CW(A)-complex with an odd number of cells, then
X is not contractible. Also, in this case, if X has any number of cells but only in even
dimensions, it cannot be contractible.

We study now another interesting case: when the homology of A is a finite graded
group. We say that graded group (Gn)n∈N0 is finite if only a finite number of groups are
non trivial and all of them are finite. In a similar way we say that a chain complex of
abelian groups is finite if the underlying graded group is finite.

Definition 4.4. Let G = (Gn)n∈N0 be a finite graded group. We define the multiplicative
Euler characteristic of G as

χm(G) =
∏
n≥0

#(Gn)(−1)n
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Let C = (C∗, d∗) be a chain complex of abelian groups whose underlying graded group
is finite. Since Hn(C) = ker dn/Im dn+1 and Cn/ ker dn = Im dn, then

#Hn(C) = # ker dn/#Im dn+1 and #Cn = # ker dn.#Im dn.

It follows that∏
n≥0

#(Hn(C))(−1)n
=

∏
n even

# ker dn.#Im dn/
∏

n odd

# ker dn.#Im dn =
∏
n≥0

#(Cn)(−1)n

Therefore, the multiplicative Euler characteristic of C coincides with the multiplicative
Euler characteristic of the graded group H∗(C). In particular, the multiplicative Euler
characteristic is invariant by quasi isomorphisms.

As a simple example, suppose (C∗, d∗) is a chain complex with Cn =
⊕
i∈In

Z4 for all n

(where In is any index set). Let (D∗, d
′
∗) be a chain complex with Hk(D) = Z2 for some k

and Hr(D) = 0 for r 6= k. Then C and D are not quasi isomorphic, because χm(C) = 4m

for some m ∈ Z, while χm(D) = 2 or χm(D) = 1
2 .

Remark 4.5. Let C = (Cn)n∈N0 , D = (Dn)n∈N0 and E = (En)n∈N0 be finite graded groups.
It is easy to prove that if for each n there exists a short exact sequence

0 → Cn → Dn → En → 0

then χm(D) = χm(C)χm(E).The same holds in case there is an exact sequence

. . .→ En+1 → Cn → Dn → En → Cn−1 → . . .

Definition 4.6. Let X be a topological space with finite homology. We define the multi-
plicative Euler characteristic of X as the multiplicative Euler characteristic of H∗(X).

Theorem 4.7. Let A be a CW-complex with finite homology and let X be a finite CW(A)-
complex. Then

χm(X) =
∏
n≥0

χm(A)(−1)n#A-n-cells = χm(A)χA(X)

Proof. We proceed by induction in the number of cells of X. If X has only one cell the
theorem trivially holds. Suppose the result is true for X ′ and that X is obtained from X ′

by attaching an A-r-cell. There exists a long exact sequence

. . . // Hn(Σr−1A, ∗) // Hn(X ′, ∗) // Hn(X, ∗) // Hn−1(Σr−1A, ∗) // . . .

Then, by 4.5,

χm(X ′) = χm(H∗(X ′)) = χm(H∗(Σr−1A))χm(H∗(X)) =
= χm(H∗(A))(−1)r−1

χm(H∗(X)) = χm(A)(−1)r−1
χm(X)

Thus, χm(X) = χm(X ′)χm(A)(−1)r
. �

Example 4.8. Let A be a CW-complex with H1(A) = Z4 and Hr(A) = 0 for r 6= 1. Let
X be a topological space with Hk(A) = Z2 for some k and Hr(A) = 0 for r 6= k. Then X
does not have the homotopy type of a CW(A)-complex.

The next result follows immediately from 4.7.
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Proposition 4.9. Let A and B be CW-complexes with finite homology. Let X be a
topological space with finite homology such that χm(X) 6= 1. Suppose, in addition, that X
can be given both CW(A) and CW(B) structures. Then there exist k, l ∈ Z − {0} such
that χm(A)k = χm(B)l.

Example 4.10 (Moore spaces). Fix a core A. Some questions that arise naturally are
the following. For which abelian groups G and n ∈ N does there exist a CW(A)-complex
X such that Hn(X) = G and Hr(X) = 0 if r 6= n? Or more generally, for which sequences
of abelian groups (Gn)n∈N0 does there exist a CW(A)-complex X such that Hn(X) = Gn

for all n?
For example, if the core A is a simply connected CW-complex with Hr(A) = Z for r = n

and Hr(A) = 0 in other case, then A is homotopy equivalent to Sn. We know that for any
abelian group G and for any k ≥ n there exists a CW-complex Z such that Hk(Z) = G
and Hr(Z) = 0 if r 6= k. Hence, by 2.5, there exists a CW(A)-complex X such that X
has the same homology groups as Z. Therefore, in this particular case, for any sequence
of abelian groups (Gj)j≥n there exists a CW(A)-complex X such that Hj(X) = Gj for all
j ≥ n.

If A is a CW-complex with finite homology, the results above provide necessary condi-
tions for the required CW(A)-complexX to exist. For instance, 4.7 settles an easy-to-check
necessary condition, as example 4.8 shows. In the case A = D2

4 (see page 5), we cannot
construct a CW(A)-complex X such that Hn(X) = Z5 for some n ∈ N since, by 3.4,
Hn(X) must be a quotient of a subgroup of

⊕
Z4.
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