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AN ELEMENTARY PROOF OF THE CONTINUITY FROM L2
0(Ω)

TO H1
0 (Ω)

n
OF BOGOVSKII’S RIGHT INVERSE OF THE

DIVERGENCE

RICARDO G. DURÁN

Abstract. The existence of right inverses of the divergence as an operator from H1

0
(Ω)n to

L2

0
(Ω) is a problem that has been widely studied because of its importance in the analysis of

the classic equations of fluid dynamics. When Ω is a bounded domain which is star-shaped with
respect to a ball B, a right inverse given by an integral operator was introduced by Bogovskii,
who also proved its continuity using the Calderón-Zygmund theory of singular integrals.

In this paper we give an alternative elementary proof of the continuity using the Fourier
transform. As a consequence, we obtain estimates for the constant in the continuity in terms of
the ratio between the diameter of Ω and that of B. Moreover, using the relation between the
existence of right inverses of the divergence with the Korn and improved Poincaré inequalities, we
obtain estimates for the constants in these two inequalities. We also show that one can proceed
in the opposite way, that is, the existence of a continuous right inverse of the divergence, as well
as estimates for the constant in that continuity, can be obtained from the improved Poincaré
inequality. We give an interesting example of this situation in the case of convex domains.

1. Introduction

Let Ω ⊂ Rn be a bounded domain. Given a smooth vector field u defined in Ω
we will denote with Du its differential matrix, namely,

Du =

(
∂ui
∂xj

)

and for a tensor field (aij) we define its norm by

‖a‖2L2(Ω) =

n∑

i,j=1

‖aij‖2L2(Ω).

The existence of solutions u ∈ H1
0 (Ω)

n of

divu = f (1.1)

satisfying
‖Du‖L2(Ω) ≤ Cdiv,Ω‖f‖L2(Ω), (1.2)
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60 R. G. Durán

where f ∈ L2
0(Ω) := {f ∈ L2(Ω) :

∫
Ω
f = 0} and the constant Cdiv,Ω depends only

on Ω, is a problem that has been widely analyzed because of its several applications
and connections with other important results.

Assume that Ω ⊂ Rn is a domain with diameter R which is star-shaped with
respect to a ball B ⊂ Ω, which we assume centered at the origin and of radius ρ.
For a function ω ∈ C∞

0 (B) such that
∫
Ω
ω = 1, a solution of (1.1) is given by

u(x) =

∫

Ω

G(x, y)f(y) dy (1.3)

where G = (G1, · · · , Gn) is defined by

G(x, y) =

∫ 1

0

(x− y)

t
ω

(
y +

x− y

t

)
dt

tn
.

Moreover, u ∈ H1
0 (Ω)

n and (1.2) is satisfied.
This formula was introduced in [6] by Bogovskii who proved the estimate (1.2), as

well as its generalization for Lp, 1 < p < ∞, using the general Calderón-Zygmund
theory of singular integrals developed in [7].

More recently, several papers have considered extensions and applications of this
formula. In [10], a weighted version of (1.2), which is of interest in finite element
analysis, was proved. In [1], an extension of Bogovskii’s formula was introduced for
the rather general class of John domains and the estimate (1.2) was proved using
again the Calderón-Zygmund theory. Also, extensions of (1.2) for fractional order
positive and negative Sobolev norms have been obtained in [8, 13].

The goal of this paper is twofold:
First, we want to give a simple proof of the estimate (1.2) for the solution given

by (1.3) using elementary properties of the Fourier transform. In this way we avoid
the use of the complicated general theory of singular integral operators. We believe
that this can be interesting for teaching purposes.

Second, we are interested in obtaining some information on the constant in terms
of the ratio R/ρ. As a byproduct, this result can be used to give estimates for the
constants in some Korn and improved Poincaré inequalities.

The paper is organized in such a way that the reader interested only in the
first part needs to read only up to the end of Section 2, which deals with the
continuity of the singular integral operator. In Section 3 we modify the proof of
the continuity in order to obtain a sharper estimate of the constant in (1.2). In
Section 4 we obtain estimates for the constant in the so called second case of Korn
inequality. Finally, Section 5 deals with the improved Poincaré inequality. First,
we recall that the existence of solutions of (1.1) satisfying (1.2) can be proved by
assuming the improved Poincaré inequality. Moreover, tracing constants in this
proof, it is possible to obtain information for the constant in (1.2) from that in
the improved Poincaré inequality. As an interesting example of this situation we
show how sharp estimates for the constant in (1.2) can be obtained for the case of
convex domains. On the other hand, we show that in some cases one can proceed
the other way around, namely, it is possible to obtain estimates for the constant in
the improved Poincaré inequality knowing estimates for the constant in (1.2). This
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A proof of the continuity of Bogovskii’s right inverse of the divergence 61

is, for example, the case of planar star-shaped domains. Consequently, we obtain
new estimates for the constant in the improved Poincaré inequality in this case.

2. Boundedness of the singular integral operator

In order to work with functions defined in Rn we extend f by zero outside of Ω
in (1.3).

Let us recall the basic properties of the Fourier transform that we will need (see
for example [24]). The Fourier transform is defined for f ∈ L1(Rn) by

f̂(ξ) =

∫
e−2πix·ξf(x)dx.

Here and in the rest of the paper, when we do not indicate the domain of integration
it is understood that it is Rn. The Fourier transform can be extended to f in the
class of tempered distributions S ′, in particular, it is defined in L2(Rn) and it is
an isometry, i.e.,

‖f̂‖L2(Rn) = ‖f‖L2(Rn).

We will use the well known equality

∂̂f

∂xj
(ξ) = 2πiξj f̂(ξ).

The k-component of u is given by

uk = uk,1 − uk,2,

where

uk,1(x) =

∫ 1

0

∫ (
yk +

(xk − yk)

t

)
ω

(
y +

x− y

t

)
f(y) dy

dt

tn
.

and

uk,2(x) =

∫ 1

0

∫
ykω

(
y +

x− y

t

)
f(y) dy

dt

tn
.

These double integrals exist, if for example we assume that f ∈ L1(Rn) and has
compact support. Indeed, if supp f ⊂ B(0,M) then both integrands vanish unless∣∣y + x−y

t

∣∣ < ρ and |y| < M , and so, assuming that ρ < M , we can restrict the
domain of integration to |x−y| < 2Mt. Therefore, integrating first in the t variable,
it follows that, for i = 1, 2,

|uk,i(x)| ≤ C

∫ |f(y)|
|x− y|n−1

dy,

where the constant C depends only on ω, n, and M . Since f ∈ L1(Rn) the last
integral is finite for almost every x.

In order to take the derivatives of uk,i it is convenient to write

uk,1(x) = lim
ε→0

∫ 1

ε

∫ (
yk +

(xk − yk)

t

)
ω

(
y +

x− y

t

)
f(y) dy

dt

tn
,
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and

uk,2(x) = lim
ε→0

∫ 1

ε

∫
ykω

(
y +

x− y

t

)
f(y) dy

dt

tn
,

where, as we will see, the limits exist in S ′. Consider the first integral and, to
simplify notation, define ϕ(x) = xkω(x). Then, given g ∈ S we have to show that

∫ (∫ 1

ε

∫
ϕ

(
y +

x− y

t

)
f(y) dy

dt

tn

)
g(x) dx

→
∫ (∫ 1

0

∫
ϕ

(
y +

x− y

t

)
f(y) dy

dt

tn

)
g(x) dx

when ε→ 0. It is enough to see that

Iε :=

∫ ε

0

∫ ∫ ∣∣∣∣ϕ
(
y +

x− y

t

)∣∣∣∣ |f(y)| |g(x)| dx dy
dt

tn
→ 0. (2.1)

But, making the change of variable z = x−y
t in the interior integral we have

Iε =

∫ ε

0

∫ ∫
|ϕ(y + z)| |f(y)| |g(y + tz)| dz dy dt ≤ ‖g‖L∞(Rn)‖ϕ‖L1(Rn)‖f‖L1(Rn)ε

which proves (2.1). The integral defining uk,2 can be treated in the same way,
indeed, defining now ϕ(x) = ω(x), the only difference with the case of uk,1 is the
factor yk appearing in the integrand, but it can be bounded assuming again that
f has compact support.

Now, for ε > 0 fixed, we can take the derivative inside the integral, and therefore,

∂uk
∂xj

= Tkj,1f + Tkj,2(ykf) (2.2)

where Tkj,1 and Tkj,2 are of the form

Tf(x) = lim
ε→0

∫ 1

ε

∫
∂

∂xj

[
ϕ

(
y +

x− y

t

)]
f(y) dy

dt

tn
(2.3)

with ϕ(x) = xkω(x) for Tkj,1 and ϕ(x) = ω(x) for Tkj,2.
We are going to prove continuity of operators of the form given in (2.3) where

ϕ ∈ C∞
0 (B) with B = B(0, ρ). With this goal we decompose the operator as

Tf = T1f + T2f

where

T1f(x) = lim
ε→0

∫ 1
2

ε

∫
∂

∂xj

[
ϕ

(
y +

x− y

t

)]
f(y) dy

dt

tn
(2.4)

and

T2f(x) =

∫ 1

1
2

∫
∂

∂xj

[
ϕ

(
y +

x− y

t

)]
f(y) dy

dt

tn

An estimate of ‖T2f‖L2(Rn) for L2-functions f vanishing outside Ω can be ob-
tained easily as we show in the following lemma.
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Lemma 2.1. If f ∈ L2(Rn) vanishes outside Ω then

‖T2f‖L2(Ω) ≤ 2n|Ω|
∥∥∥∥
∂ϕ

∂xj

∥∥∥∥
L∞(Rn)

‖f‖L2(Ω)

Proof. We have

T2f(x) =

∫ {∫ 1

1
2

(
∂ϕ

∂xj

)(
y +

x− y

t

)
dt

tn+1

}
f(y) dy. (2.5)

Then,

|T2f(x)| ≤ 2n
∥∥∥∥
∂ϕ

∂xj

∥∥∥∥
L∞(Rn)

∫

Ω

|f(y)| dy

and the result follows immediately using the Schwarz inequality.
We now proceed to bound the operator T1 in L2. This will be done using

the Fourier transform. By standard density arguments it is enough to bound the
operator acting on f smooth enough. In the following lemma we give a simple form
for T1 in terms of Fourier transforms.

Lemma 2.2. For f ∈ C∞
0 (Rn) we have

T̂1f(ξ) = 2πiξj

∫ 1
2

0

ϕ̂(tξ)f̂((1 − t)ξ) dt (2.6)

Proof. From (2.4) we have

T1f = lim
ε→0

T1,εf,

where

T1,εf(x) =

∫ 1
2

ε

∫
∂

∂xj

[
ϕ

(
y +

x− y

t

)]
f(y) dy

dt

tn

and the limit is taken in S ′.
Now, we have

T̂1,εf(ξ) =

∫ ∫ 1
2

ε

∫
∂

∂xj

[
ϕ

(
y +

x− y

t

)]
f(y) e−2πix·ξ dy

dt

tn
dx,

and, since this triple integral exists, we can interchange the order of integration.
Therefore, integrating by parts we obtain

T̂1,εf(ξ) = 2πiξj

∫ 1
2

ε

∫ ∫
ϕ

(
y +

x− y

t

)
f(y) e−2πix·ξ dx dy

dt

tn
,

and making the change of variable

z = y +
(x − y)

t
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in the interior integral,

T̂1,εf(ξ) = 2πiξj

∫ 1
2

ε

∫ ∫
ϕ(z) e−2πi(tz+(1−t)y)·ξ f(y)dz dy dt

= 2πiξj

∫ 1
2

ε

∫ ∫
ϕ̂(tξ) e−2πi(1−t)y·ξ f(y) dy dt,

and therefore,

T̂1,εf(ξ) = 2πiξj

∫ 1
2

ε

ϕ̂(tξ)f̂((1 − t)ξ) dt,

and taking ε→ 0 we conclude the proof.
Using the expression given in (2.6) we will give an estimate for the operator T1

in L2. First we prove an auxiliary result.

Lemma 2.3. Define Cϕ,ρ = ρ−1‖ϕ‖L1(Rn) + ρ
∥∥∥∂2ϕ

∂x2
j

∥∥∥
L1(Rn)

. Then,

2π|ξj |
∫ ∞

0

|ϕ̂(tξ)| dt ≤ Cϕ,ρ

Proof. We have

2π|ξj |
∫ ∞

0

|ϕ̂(tξ)| dt = 2π|ξj |
∫ 1

2πρ|ξj |

0

|ϕ̂(tξ)| dt+ 2π|ξj |
∫ ∞

1
2πρ|ξj |

|ϕ̂(tξ)| dt := I + II

Now,

I ≤ ρ−1‖ϕ̂‖L∞(Rn) ≤ ρ−1‖ϕ‖L1(Rn)

and

II = 2π

∫ ∞

1
2πρ|ξj |

t2|ξj |2|ϕ̂(tξ)|
t2|ξj |

dt ≤ 2π‖ξ2j ϕ̂‖L∞(Rn)

∫ ∞

1
2πρ|ξj |

1

t2|ξj |
dt

but

−4π2ξ2j ϕ̂ =
∂̂2ϕ

∂x2j

and therefore,

II ≤ 1

2π

∥∥∥∥∥
∂̂2ϕ

∂x2j

∥∥∥∥∥
L∞(Rn)

∫ ∞

1
2πρ|ξj |

1

t2|ξj |
dt ≤ ρ

∥∥∥∥∥
∂2ϕ

∂x2j

∥∥∥∥∥
L1(Rn)

and the lemma is proved.
As a consequence of this lemma we obtain the following estimate for the operator

T1.

Lemma 2.4. If Cϕ,ρ is the constant defined in the previous lemma, then

‖T1f‖L2(Rn) ≤ 2
n−1
2 Cϕ,ρ‖f‖L2(Rn).
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Proof. Applying the Schwarz inequality in (2.6) we have

|T̂1f(ξ)|2 ≤
(∫ 1

2

0

2π|ξj ||ϕ̂(tξ)| dt
)(∫ 1

2

0

2π|ξj ||ϕ̂(tξ)||f̂((1 − t)ξ)|2 dt
)

and so, from Lemma 2.3,

|T̂1f(ξ)|2 ≤ Cϕ,ρ

∫ 1
2

0

2π|ξj ||ϕ̂(tξ)||f̂ ((1− t)ξ)|2 dt

Then, integrating in ξ and making the change of variable η = (1− t)ξ, we obtain
∫

|T̂1f(ξ)|2 dξ ≤ Cϕ,ρ

∫ 1
2

0

∫
2π

(1− t)n+1
|ηj |

∣∣∣∣ϕ̂
(

tη

1− t

)∣∣∣∣ |f̂(η)|2 dη dt

and, integrating first in the variable t and making now the change s = t/(1 − t),
we get

∫
|T̂1f(ξ)|2 dξ ≤ 2n−1Cϕ,ρ

∫ (∫ 1

0

2π|ηj ||ϕ̂(sη)| ds
)

|f̂(η)|2 dη.

Therefore, applying again Lemma 2.3,
∫

|T̂1f(ξ)|2 dξ ≤ 2n−1C2
ϕ,ρ

∫
|f̂(η)|2 dη,

and we conclude the proof recalling that the Fourier transform is an isometry in
L2(Rn).

Summing up the lemmas we obtain the main result of this section.

Theorem 2.1. If T is the operator given in (2.3) and f vanishes outside Ω, then

‖Tf‖L2(Ω) ≤ Cϕ,ρ,Ω‖f‖L2(Ω)

with

Cϕ,ρ,Ω = 2
n−1
2 ρ−1‖ϕ‖L1(Rn) + 2

n−1
2 ρ

∥∥∥∥∥
∂2ϕ

∂x2j

∥∥∥∥∥
L1(Rn)

+ 2n|Ω|
∥∥∥∥
∂ϕ

∂xj

∥∥∥∥
L∞(Rn)

.

3. Dependence of the constant on Ω

An interesting question is what can be said, in terms of the geometry of the
domain Ω, about the behavior of the constant Cdiv,Ω in the estimate (1.2). Recall
that we are assuming that the domain Ω has diameter R and that it is star-shaped
with respect to a ball of radius ρ which, to simplify notation, we assume centered
at the origin.

It is known that the constant cannot be bounded independently of the ratio
R/ρ. Indeed, this can be seen by the following elementary example which also
shows that, in some cases,

Cdiv,Ω ≥ c1(R/ρ) (3.1)

where c1 is a constant independent of Ω.
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Given positive numbers a and ε, consider the rectangular domain Ωa,ε := (−a, a)×
(−ε, ε) and suppose that, for any f ∈ L2

0(Ωa,ε), there exists u ∈ H1
0 (Ωa,ε) solv-

ing (1.1) and satisfying the estimate (1.2) with a constant Cdiv,Ω = Ca,ε. Take
f(x1, x2) = x1 and the corresponding solution u, then

‖x1‖2L2(Ωa,ε)
=

∫

Ωa,ε

x1divu = −
∫

Ωa,ε

u1 =

∫

Ωa,ε

x2
∂u1
∂x2

≤ ‖x2‖L2(Ωa,ε)

∥∥∥∥
∂u1
∂x2

∥∥∥∥
L2(Ωa,ε)

≤ Ca,ε‖x2‖L2(Ωa,ε)‖x1‖L2(Ωa,ε)

and so,

‖x1‖L2(Ωa,ε) ≤ Ca,ε‖x2‖L2(Ωa,ε)

but,

‖x1‖L2(Ωa,ε) =
2√
3
ε

1
2 a

3
2 and ‖x2‖L2(Ωa,ε) =

2√
3
ε

3
2 a

1
2

and therefore,

Ca,ε ≥ (a/ε).

Consequently, if a > ε, it follows that in this example (3.1) holds.

For the kind of domains that we are considering the following estimate for the
constant Cdiv,Ω is given in [12]

Cdiv,Ω ≤ C0(R/ρ)
n+1

with a constant C0 independent of Ω. The reader can check that the result given
in Theorem 2.1 recovers this estimate. However, as we will show, this result can
be improved.

Indeed, Theorem 2.1 does not give a good estimate of the constant in terms
of the function ϕ (or equivalently on ρ). Curiously, this is due to the estimate
obtained in Lemma 2.1 for the operator T2 which in some sense is easier to handle
than T1. Then, in order to obtain a sharper bound, we will give in the following
lemmas a different argument to bound T2.

Lemma 3.1. If 1 ≤ p < n
n−1 then

‖T2f‖Lp(Rn) ≤
2

n
p′

(1− n
p′ )

∥∥∥∥
∂ϕ

∂xj

∥∥∥∥
L1(Rn)

‖f‖Lp(Rn).

Proof. From (2.5) we have

|T2f(x)| ≤
∫ 1

1
2

∫ ∣∣∣∣
(
∂ϕ

∂xj

)(
y +

x− y

t

)∣∣∣∣ |f(y)| dy
dt

tn+1
.

Making the change of variable

z = y +
x− y

t
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in the interior integral, we obtain

|T2f(x)| ≤ 2

∫ 1

1
2

∫ ∣∣∣∣
∂ϕ

∂xj
(z)

∣∣∣∣
∣∣∣∣f
(
tz − x

t− 1

)∣∣∣∣
1

(1− t)n
dz dt.

Applying now the Minkowski inequality for integrals we have

‖T2f‖Lp(Rn) ≤ 2

∫ 1

1
2

∫ ∣∣∣∣
∂ϕ

∂xj
(z)

∣∣∣∣
(∫ ∣∣∣∣f

(
tz − x

t− 1

)∣∣∣∣
p

dx

) 1
p 1

(1 − t)n
dz dt

and, by the change of variable

x =
tz − x

t− 1
in the interior integral, it follows that

‖T2f‖Lp(Rn) ≤ 2

∥∥∥∥
∂ϕ

∂xj

∥∥∥∥
L1(Rn)

‖f‖Lp(Rn)

∫ 1

1
2

1

(1 − t)
n
p′
dt

therefore, since p′ > n, the integral on the right hand side of this inequality is finite
and so we obtain the lemma.

Unfortunately the restriction for the value of p in the previous lemma excludes
the case p = 2. However, using well known interpolation theorems we can obtain
an estimate for the L2 case.

Lemma 3.2. If f ∈ L2(Rn) vanishes outside Ω then, for 1 ≤ p < n
n−1 ,

‖T2f‖L2(Ω) ≤
2

n
2

(1− n
p′ )

p
2

|Ω|1− p
2

∥∥∥∥
∂ϕ

∂xj

∥∥∥∥
p
2

L1(Rn)

∥∥∥∥
∂ϕ

∂xj

∥∥∥∥
1−p

2

L∞(Rn)

‖f‖L2(Ω)

Proof. From the definition of T2 (2.5) it is easy to see that

‖T2f‖L∞(Ω) ≤ 2n|Ω|
∥∥∥∥
∂ϕ

∂xj

∥∥∥∥
L∞(Rn)

‖f‖L∞(Ω).

Then, the result follows immediately from this estimate together with Lemma 3.1
and the well known Riesz-Thorin interpolation theorem (see for example [14, p. 34])
which states that

‖T2‖L(L2,L2) ≤ ‖T2‖
p
2

L(Lp,Lp)‖T2‖
1−p

2

L(L∞,L∞).

Summing up we obtain the following estimate in terms of the function ϕ.

Theorem 3.1. If T is the operator given in (2.3), f vanishes outside Ω, and
1 ≤ p < n

n−1 , then

‖Tf‖L2(Ω) ≤
(
2

n−1
2 Cϕ,ρ +

2
n
2

(1 − n
p′ )

p
2

C̃ϕ,p|Ω|1−
p
2

)
‖f‖L2(Ω)

where

Cϕ,ρ = ρ−1‖ϕ‖L1(Rn) + ρ

∥∥∥∥∥
∂2ϕ

∂x2j

∥∥∥∥∥
L1(Rn)
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and

C̃ϕ,p =

∥∥∥∥
∂ϕ

∂xj

∥∥∥∥
p
2

L1(Rn)

∥∥∥∥
∂ϕ

∂xj

∥∥∥∥
1− p

2

L∞(Ω)

Proof. The result follows immediately from Lemmas 2.4 and 3.2.
We want to bound ‖∂uk

∂xj
‖L2(Rn) using the expression (2.2). This is the goal of

the following theorem.
In what follows Cn denotes a constant depending only on n, not necessarily the

same at each occurrence, and A ∼ B means that A/B is bounded by above and
below by positive constants which may depend on n and p only.

Theorem 3.2. Let Ω ⊂ Rn be a bounded domain of diameter R which is star-
shaped with respect to a ball B ⊂ Ω of radius ρ and u ∈ H1

0 (Ω) be the solution of
(1.1) given by (1.3). Then, there exists a constant Cn depending only on n such
that

‖Du‖L2(Ω) ≤ Cn
R

ρ

( |Ω|
|B|

) n−2
2(n−1)

(
log

|Ω|
|B|

) n
2(n−1)

‖f‖L2(Ω)

Proof. As we have mentioned, both operators on the right hand side of (2.2) are
of the form given in (2.3). We will estimate the term Tkj,2(ykf) which is the worst
part due to the presence of yk. The reader can check that the term Tkj,1f can be
bounded analogously.

For Tkj,2 the function ϕ is exactly ω, which is supported in B(0, ρ) and has
integral equal to one. Therefore, ϕ can be taken as

ϕ(x) = ρ−nψ(ρ−1x),

where ψ is a smooth function supported in the unit ball and with integral equal to
one. Then,

∂ϕ

∂xj
(x) = ρ−n−1 ∂ψ

∂xj
(ρ−1x),

∂2ϕ

∂x2j
(x) = ρ−n−2 ∂

2ψ

∂x2j
(ρ−1x)

and so,

Cϕ,ρ = ρ−1‖ϕ‖L1(Rn) + ρ

∥∥∥∥∥
∂2ϕ

∂x2j

∥∥∥∥∥
L1(Rn)

∼ ρ−1 (3.2)

and

C̃ϕ,p =

∥∥∥∥
∂ϕ

∂xj

∥∥∥∥
p
2

L1(Rn)

∥∥∥∥
∂ϕ

∂xj

∥∥∥∥
1− p

2

L∞(Rn)

∼ ρ−1−n(1− p
2 ). (3.3)

Therefore, applying Theorem 3.1 for T = Tkj,2, using |yk| ≤ R and the relations
(3.2) and (3.3), we obtain, for 1 ≤ p < n

n−1 ,

‖Du‖L2(Ω) ≤ Cn
R

ρ

1

(1− n
p′ )

p
2

( |Ω|
|B|

)1− p
2

‖f‖L2(Ω)

= Cn
R

ρ

1

(1− n
p′ )

p
2

( |Ω|
|B|

) n−2
2(n−1)

( |Ω|
|B|

) 1
2 (

n
n−1−p)

‖f‖L2(Ω)
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Now, assuming that |Ω|
|B| is large enough, we can choose p such that

1

2

(
n

n− 1
− p

)
=

1

log |Ω|
|B|

obtaining

‖Du‖L2(Ω) ≤ Cn
R

ρ

1

(1− n
p′ )

p
2

( |Ω|
|B|

) n−2
2(n−1)

e‖f‖L2(Ω),

and so, we conclude the proof using that

1− n

p′
=

(n− 1)

p

(
n

n− 1
− p

)
=

2(n− 1)

p log
(

|Ω|
|B|

)

and p < n
n−1 .

Remark 3.1. In the particular case n = 2 the theorem gives

‖Du‖L2(Ω) ≤ C

(
R

ρ

)
log

(
R

ρ

)
‖f‖L2(Ω)

In view of the example given above this estimate is almost optimal (i.e., optimal
up to the logarithmic factor).

4. The Korn inequality

As it is well known, Korn type inequalities are strongly connected with the exis-
tence of solutions of (1.1) satisfying (1.2). For example, in the particular case of two
dimensional simple connected domains with a C1 boundary, the explicit relation
between the best constant in (1.2) and that in the so-called second case of Korn
inequality was given in [17]. More generally, for arbitrary domains in n dimensions,
n ≥ 2, the Korn inequality can be derived from the existence of solutions of the
divergence satisfying (1.2), and therefore, information on the constant in the Korn
inequality can be obtained from estimates for the constant in (1.2).

A lot of work has been done in order to obtain the behavior of the constant in
the different versions of Korn inequality in terms of the domain (see [16] and its
references).

We are going to show how our results in the previous section can be used to
obtain estimates for the constant in the second case of Korn inequality. Let us
mention that domains which are star-shaped with respect to a ball were considered
by Kondratiev and Oleinik in [20, 21] where the authors obtain sharp estimates for
the constant in a Korn inequality in terms of R/ρ. However, their results are for
a different type of Korn inequality than the one that we are considering and it is
not clear what is the relation between the constants in the two different Korn type
inequalities.

For a vector field v ∈ H1(Ω)n, ε(v) and µ(v) denote the symmetric and skew
symmetric part of Dv respectively, i.e.,

εij(v) =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
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and

µij(v) =
1

2

(
∂vi
∂xj

− ∂vj
∂xi

)

Then, the so-called second case of Korn inequality states that there exists a
constant CK,Ω such that

‖Dv‖L2(Ω) ≤ CK,Ω‖ε(v)‖L2(Ω)

for vector fields v ∈ H1(Ω)n satisfying
∫

Ω

µij(v) = 0 , for i, j = 1, . . . , n. (4.1)

The argument used in the proof of the following theorem is known but we include
it for the sake of completeness. For an arbitrary domain Ω we will say that it admits
a right inverse of the divergence with constant Cdiv,Ω if, for any f ∈ L2

0(Ω), there
exists u ∈ H1

0 (Ω)
n satisfying

divu = f

and

‖Du‖L2(Ω) ≤ Cdiv,Ω‖f‖L2(Ω).

Theorem 4.1. If Ω admits a right inverse of the divergence with constant Cdiv,Ω,
then the second case of Korn inequality holds in Ω with a constant CK,Ω which
satisfies

CK,Ω ≤ (1 + 4n2)1/2Cdiv,Ω

Proof. Let v ∈ H1(Ω)n such that (4.1) holds. By density we can assume that v

is smooth. By orthogonality we have

‖Dv‖2L2(Ω) = ‖ε(v)‖2L2(Ω) + ‖µ(v)‖2L2(Ω)

and so, observing that Cdiv,Ω ≥ 1, it is enough to prove that

‖µ(v)‖2L2(Ω) ≤ 4n2C2
div,Ω‖ε(v)‖2L2(Ω). (4.2)

Given i and j, since ∫

Ω

µij(v) = 0,

there exists uij ∈ H1
0 (Ω)

n such that

divuij = µij(v)

and ∥∥Du
ij
∥∥
L2(Ω)

≤ Cdiv,Ω‖µij(v)‖L2(Ω). (4.3)

Then,

‖µij(v)‖2L2(Ω) =

∫

Ω

µij(v) divu
ij = −

∫

Ω

∇µij(v) · uij

but,
∂µij(v)

∂xk
=

(
∂εik(v)

∂xj
− ∂εjk(v)

∂xi

)
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and so,

‖µij(v)‖2L2(Ω) = −
n∑

k=1

∫

Ω

(
∂εik(v)

∂xj
− ∂εjk(v)

∂xi

)
uijk

=

n∑

k=1

∫

Ω

(
εik(v)

∂uijk
∂xj

− εjk(v)
∂uijk
∂xi

)
,

and using now (4.3) we obtain,

‖µij(v)‖2L2(Ω) ≤ Cdiv,Ω‖µij(v)‖L2(Ω)

n∑

k=1

(
‖εik(v)‖L2(Ω) + ‖εjk(v)‖L2(Ω)

)
.

Therefore,

‖µij(v)‖L2(Ω) ≤ Cdiv,Ω n
1/2

{
n∑

k=1

(
‖εik(v)‖L2(Ω) + ‖εjk(v)‖L2(Ω)

)2
}1/2

and then

‖µij(v)‖2L2(Ω) ≤ 2C2
div,Ω n

n∑

k=1

(
‖εik(v)‖2L2(Ω) + ‖εjk(v)‖2L2(Ω)

)
.

Finally, summing now in i and j we obtain (4.2).
Consequently, using the results of the previous section we obtain an estimate for

the Korn inequality in star-shaped domains.

Theorem 4.2. Let Ω ⊂ Rn be a bounded domain of diameter R which is star-
shaped with respect to a ball B ⊂ Ω of radius ρ. Then, there exists a constant Cn

depending only on n such that, for all v ∈ H1(Ω)n satisfying
∫
Ω
µij(v) = 0, for

i, j = 1, . . . , n,

‖Dv‖L2(Ω) ≤ Cn
R

ρ

( |Ω|
|B|

) n−2
2(n−1)

(
log

|Ω|
|B|

) n
2(n−1)

‖ε(v)‖L2(Ω)

Proof. The result follows immediately from Theorems 3.2 and 4.1.

5. The improved Poincaré inequality

In this section we consider another well known result usually called improved
Poincaré inequality. To recall this inequality we need to introduce some notation.
For a bounded domain Ω ⊂ Rn and any x ∈ Ω we denote with d(x) the distance
from x to the boundary of Ω. Then, the improved Poincaré inequality states that
there exists a constant CiP,Ω such that, for any f ∈ H1(Ω) ∩ L2

0(Ω),

‖f‖L2(Ω) ≤ CiP,Ω‖d∇f‖L2(Ω). (5.1)

It is known that this inequality is valid for Lipschitz domains and, more generally,
for John domains (see for example [5, 9, 18]).
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For the star-shaped domains that we are considering in this paper, the argument
given in [9], applied in this particular case, can be used to show that

CiP,Ω ≤ Cn(R/ρ)
n+1; (5.2)

indeed, this was done in [4, Prop. 5.2] for the analogous inequality in L1, but it
is easy to see that the arguments extend straightforward to the L2 case. We are
going to show that the dependence on R/ρ can be improved using our estimates of
Section 3, at least in the two dimensional case.

In [11] the relation between Poincaré type inequalities and solutions of the di-
vergence was analyzed in a very general context. A particular case of the results in
that paper says that the improved Poincaré inequality (5.1) implies the existence
of a right inverse of the divergence as an operator from H1

0 (Ω)
n to L2

0(Ω). The
interest of this result is that it allows us to obtain information on the constant in
(1.2) from that for the constant in the improved Poincaré inequality. We will give
an example of this situation for the case of convex domains.

Let us reproduce the argument given in [11] for the sake of completeness. With
this purpose we need to use a Whitney decomposition of Ω, i.e., a sequence of cubes
{Qj} with pairwise disjoint interiors and such that, if dj and ℓj are the distance
of Qj to the boundary of Ω and the length of its edges respectively, then dj/ℓj is
bounded by above and below by positive constants depending only on n. Associated
with this decomposition there is a partition of unity {φj}, namely,

∑
j φj = 1 in Ω,

with φj ∈ C∞
0 (Q̃j) where Q̃j is an expansion of Qj still with diameter proportional

to its distance to the boundary of Ω. A Whitney decomposition exists for any
domain (see for example [24] for a proof).

Lemma 5.1. If the improved Poincaré inequality (5.1) is satisfied in Ω then, given
f ∈ L2

0(Ω) and a Whitney decomposition of Ω, there exists a sequence {fj} such

that fj ∈ L2
0(Q̃j), f =

∑
j fj, and

‖f‖2L2(Ω) ≤ Cn

∑

j

‖fj‖2L2(Q̃j)
(5.3)

and ∑

j

‖fj‖2L2(Q̃j)
≤ Cn(1 + CiP,Ω)‖f‖2L2(Ω). (5.4)

Proof. First we observe that, by duality, (5.1) implies that, for all f ∈ L2
0(Ω),

there exists v ∈ L2(Ω)n such that

divv = f in Ω , v · n = 0 on ∂Ω (5.5)

and ∥∥∥v
d

∥∥∥
L2(Ω)

≤ CiP,Ω‖f‖L2(Ω), (5.6)

where both equations in (5.5) have to be understood in a distributional sense.
Indeed,

L(∇g) =
∫

Ω

fg
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defines a linear form on the subspace of L2(Ω)n formed by the gradient vector
fields. L is well defined because

∫
Ω
f = 0. Moreover, it follows from (5.1) that

|L(∇g)| =
∣∣∣∣
∫

Ω

f(g − g)

∣∣∣∣ ≤ CiP,Ω‖f‖L2(Ω)‖d∇g‖L2(Ω)

where g is the average of g in Ω.
By the Hahn-Banach theorem L can be extended as a linear continuous func-

tional to the space L2
d(Ω)

n, where L2
d(Ω) denotes the Hilbert space with norm

‖f‖L2
d
:= ‖df‖L2, and therefore, there exists v ∈ L2

d−1(Ω)n satisfying (5.6) and

such that

L(w) =

∫

Ω

v ·w ∀w ∈ L2
d(Ω)

n;

in particular, ∫

Ω

v · ∇g =

∫
fg ∀g ∈ H1(Ω)

which is equivalent to (5.5).
Given now f ∈ L2

0(Ω), let v ∈ L2(Ω)n satisfying (5.5) and (5.6), and define

fj = div (φjv).

Then, we have

f = divv = div
(
v

∑

j

φj

)
=
∑

j

div (φjv) =
∑

j

fj .

Since suppφj ⊂ Q̃j we have supp fj ⊂ Q̃j and
∫
fj = 0.

Moreover, using the finite superposition (with constant depending only on n) of

the expanded cubes Q̃j , we obtain immediately (5.3). On the other hand, using
again the finite superposition and that ‖φj‖L∞ ≤ 1 and ‖∇φj‖L∞ ≤ C/dj , we have

‖fj‖2L2(Q̃j)
≤ Cn

{
‖f‖2

L2(Q̃j)
+
∥∥∥v
d

∥∥∥
2

L2(Q̃j)

}
,

and therefore, (5.4) follows from (5.6).

Theorem 5.1. If the improved Poincaré inequality (5.1) is satisfied in Ω, then Ω
admits a right inverse of the divergence with constant Cdiv,Ω which satisfies

Cdiv,Ω ≤ Cn(1 + CiP,Ω). (5.7)

Proof. Given f ∈ L2
0(Ω) let fj be the functions given in the previous lemma. Since

fj ∈ L2
0(Q̃j), there exists uj ∈ H1

0 (Q̃j)
n such that

divuj = fj and ‖Duj‖L2(Q̃j)
≤ Cn‖fj‖L2(Q̃j)

,

indeed, a scaling argument shows that the constant in this inequality is independent
of the size of the cube. Then, u =

∑
j uj ∈ H1

0 (Ω)
n is a solution of divu = f .

Moreover, it follows from (5.4) that

‖Du‖L2(Ω) ≤ Cn(1 + CiP,Ω)‖f‖L2(Ω)

and the theorem is proved.
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Let us now consider the case of convex domains. For these domains it was proved
in [4, Cor. 5.3] that, for f ∈W 1,1(Ω),

‖f − fS̃‖L1(Ω) ≤ Cn
R

ρ
‖d∇f‖L1(Ω), (5.8)

where Cn is a constant depending only on n and fS̃ is the average of f over a

particular subset of Ω. From this inequality it is easy to see that, for f ∈W 1,1(Ω)
with vanishing mean value,

‖f‖L1(Ω) ≤ 2Cn
R

ρ
‖d∇f‖L1(Ω). (5.9)

Indeed, if
∫
Ω
f = 0, we have

‖fS̃‖L1(Ω) =
∣∣∣
∫

Ω

(fS̃ − f)
∣∣∣ ≤ ‖f − fS̃‖L1(Ω),

and therefore,

‖f‖L1(Ω) ≤ ‖f − fS̃‖L1(Ω) + ‖fS̃‖L1(Ω) ≤ 2‖f − fS̃‖L1(Ω)

which together with (5.8) implies (5.9).
It is known that (5.9) implies the improved Poincaré in L2. In fact, this was

proved in a more general context in [11, Prop. 3.3]. In the following lemma we
reproduce, for a particular case, the argument given in that paper but tracing
constants in the proof in order to obtain an explicit dependence of the constant in
the L2 estimate in terms of the constant in (5.9).

Lemma 5.2. Let Ω be an arbitrary bounded domain. If there exists a constant C1

such that, for any f ∈W 1,1(Ω) with
∫
Ω f = 0,

‖f‖L1(Ω) ≤ C1 ‖d∇f‖L1(Ω), (5.10)

then, for any f ∈ H1(Ω) ∩ L2
0(Ω),

‖f‖L2(Ω) ≤ 6
√
2C1 ‖d∇f‖L2(Ω). (5.11)

Proof. The first step in the proof given in [11] is to show that for any measurable
E ⊂ Ω such that |E| ≥ |Ω|/2 and any f ∈ W 1,1(Ω) which vanishes on E, it follows
from (5.10) that

‖f‖L1(Ω) ≤ 3C1 ‖d∇f‖L1(Ω). (5.12)

Indeed, calling fΩ the average of f over Ω and using that f vanishes on E, we have

|fΩ| =
1

|E|

∣∣∣∣
∫

E

(fΩ − f)

∣∣∣∣ ≤
1

|E|

∫

E

|fΩ − f |,

and therefore,

‖fΩ‖L1(Ω) ≤
|Ω|
|E| ‖fΩ − f‖L1(Ω).

Then,

‖f‖L1(Ω) ≤ ‖f − fΩ‖L1(Ω) + ‖fΩ‖L1(Ω) ≤ ‖f − fΩ‖L1(Ω) +
|Ω|
|E| ‖fΩ − f‖L1(Ω)
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and using that |E| ≥ |Ω|/2 we obtain

‖f‖L1(Ω) ≤ 3‖f − fΩ‖L1(Ω),

which together with (5.10) applied to f − fΩ gives (5.12).
Now, for E ⊂ Ω as above and f ∈ H1(Ω) vanishing on E we can apply (5.12)

for f2 to obtain,∫

Ω

f2 ≤ 3C1

∫

Ω

d|∇f2| ≤ 6C1

∫

Ω

d|f ||∇f | ≤ 6C1‖f‖L2(Ω)‖d∇f‖L2(Ω),

and therefore,
‖f‖L2(Ω) ≤ 6C1‖d∇f‖L2(Ω). (5.13)

For a function f we define f+ as the function which agrees with f where f ≥ 0 and
is equal to zero otherwise, and f− := f+ − f . Now, given f ∈ H1(Ω), it is easy to
see by continuity arguments, that there exists λ ∈ R such that∫

Ω

(f − λ)2+ =

∫

Ω

(f − λ)2−. (5.14)

On the other hand one of the two functions (f − λ)+ or (f − λ)− vanishes in a set
E such that |E| ≥ |Ω|/2, suppose that it is (f − λ)+ (if not we apply the same
argument to the other function). Then, using (5.13) applied to (f −λ)+ we obtain

‖(f − λ)+‖L2(Ω) ≤ 6C1‖d∇f‖L2(Ω),

but, in view of (5.14) we have∫

Ω

(f − λ)2 =

∫

Ω

(f − λ)2+ +

∫

Ω

(f − λ)2− = 2

∫

Ω

(f − λ)2+ ≤ 72C2
1‖d∇f‖2L2(Ω),

and the proof concludes by recalling that, for f ∈ L2
0(Ω),

‖f‖L2(Ω) ≤ ‖f − λ‖L2(Ω).

Theorem 5.2. Let Ω ⊂ Rn be a bounded convex domain of diameter R which
contains a ball B of radius ρ. Then, given f ∈ L2

0(Ω), there exists a solution
u ∈ H1

0 (Ω)
n of (1.1) such that

‖Du‖L2(Ω) ≤ Cn
R

ρ
‖f‖L2(Ω),

where Cn is a constant which depends only on n.

Proof. The result follows immediately from Theorem 5.1, inequality (5.9), and
Lemma 5.2.

Now, a natural question is whether the converse of Theorem 5.1 is true, namely,
if the improved Poincaré inequality can be proved assuming the existence of contin-
uous right inverses of the divergence. To the author’s knowledge this is not known.
However, a weaker result will allow us to obtain an estimate for the constant in
the improved Poincaré inequality for planar star-shaped domains using the results
of Section 3. In fact, we will see that the converse can be proved if we assume that
the following inequality is satisfied in Ω,∥∥∥g

d

∥∥∥
L2(Ω)

≤ CH,Ω‖∇g‖L2(Ω) ∀ g ∈ H1
0 (Ω). (5.15)
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This is one of the many results called “Hardy inequality” although, at least to
the author’s knowledge, Hardy proved only the one dimensional case. It is known
that this inequality is valid for a very large class of domains (see for example
[15, 19, 22, 23]).

Theorem 5.3. If Ω admits a right inverse of the divergence with constant Cdiv,Ω

and the Hardy inequality (5.15) is satisfied in Ω, then the improved Poincaré in-
equality (5.1) is valid in Ω with a constant CiP,Ω such that

CiP,Ω ≤ CH,ΩCdiv,Ω. (5.16)

Proof. Given f ∈ H1(Ω) ∩ L2
0(Ω) let u ∈ H1

0 (Ω)
n be such that

divu = f and ‖Du‖L2(Ω) ≤ Cdiv,Ω‖f‖L2(Ω). (5.17)

Then,

‖f‖2L2(Ω) =

∫

Ω

fdivu = −
∫

Ω

∇f · u ≤ ‖d∇f‖L2(Ω)

∥∥∥u
d

∥∥∥
L2(Ω)

≤ CH,Ω‖d∇f‖L2(Ω)‖Du‖L2(Ω)

and using (5.17) we conclude the proof.
In order to apply this theorem together with our results of Section 3 we need

to know estimates for CH,Ω. For example, for simply connected (in particular for
star-shaped) planar domains it has been proved that

CH,Ω ≤ 4; (5.18)

see [2, 3].
Therefore, using this estimate and the results of Section 3, we obtain an estimate

for the constant CiP which improves (5.2).

Theorem 5.4. Let Ω ⊂ R2 be a bounded domain of diameter R which is star-
shaped with respect to a ball B ⊂ Ω of radius ρ. Then, there exists a positive
constant C such that, for all f ∈ H1(Ω) ∩ L2

0(Ω), we have

‖f‖L2(Ω) ≤ C

(
R

ρ

)
log

(
R

ρ

)
‖d∇f‖L2(Ω).

Proof. The result follows immediately from Theorems 3.2 and 5.3 and inequality
(5.18).

To finish the paper let us mention that the bound given in the previous theorem
is almost optimal. Indeed, in view of Theorem 5.1, the same example given in
Section 3 shows that in some cases CiP ≥ c1(R/ρ), where c1 is a constant.
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