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Abstract

In a paper by Cesco [Cesco, J.C., 2003. Fundamental cycles of pre-imputations in non-balanced TU-games. International Journal of
Game Theory 32, 211–222], it was proven that the existence of a certain type of cycles of pre-imputations, fundamental cycles, is equiv-
alent to the non-balancedness of a TU-game, i.e., the emptiness of the core of the game. There are two characteristic sub-classes related to
fundamental cycles: U-cycles and maximal U-cycles. In this note we show that it is enough to consider U-cycles in obtaining a similar
characterization for non-balanced TU-games.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Balanced TU-games (games with transferable utilities)
have been characterized in many different ways. The most
famous result on this subject is the well-known Shapley–
Bondareva Theorem (Bondareva, 1963; Shapley, 1967).
Recently, in Cesco (2003), a characterization of non-bal-
anced games was given in terms of the existence of certain
cycles of pre-imputations (fundamental cycles). Later, for
some class of TU-games, it was shown that the character-
ization theorem can still be obtained using narrow classes
of cycles – U-cycles and maximal U-cycles (Cesco and Calı́,
2006). The games studied are games where the only coali-
tions with non-zero value are the grand coalition and those
having n� 1 players, although these conditions could be
substantially relaxed by asking only that the latter family
is a minimal objecting family of coalitions (see Section 2).
However, no general proof has been obtained for either
U-cycles or maximal U-cycles. Here we do provide proof
for the intermediate case of U-cycles.
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It is already known (see for instance Cesco, 2003) that
the existence of any kind of the above mentioned cycles
implies the non-balancedness of the game. Here we show
that every non-balanced game has a U-cycle. More pre-
cisely, we prove that, given any minimal balanced objecting
family of coalitions, we are able to construct an associated
U-cycle. A general existence of maximal U-cycles is still an
open issue. We think that this is the most interesting case
for several reasons. On one hand, an algorithm originally
developed to reach points in the core of a balanced TU-
game (Cesco, 1998) seems to have maximal U-cycles as
limit cycles when it is run on non-balanced games. This fact
has been observed numerically in all the examples tried,
and formally proved in the framework of certain simple
games (Cesco and Calı́, 2004). On the other hand, maximal
U-cycles are related to a well established solution concept
which is the dynamic solution (Shenoy, 1980; Cesco and
Calı́, 2004). Moreover, since the notions involved in the
dynamic solution concept studied in Cesco and Calı́
(2004) are much in the spirit of the ongoing literature of
coalition formation (Sengupta and Sengupta, 1994, 1996;
Koczy and Lauwers, 2004), maximal U-cycles could be use-
ful in developing strategies to predict the formation of
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some coalition structures as the result of a well-defined
dynamic bargaining process. The main result in this paper
could be useful to later get an existence theorem about
maximal U-cycles in non-balanced games which would
support further studies along this line.

The note is organized as follows: Preliminaries and some
notation are set forth in the next section. Cycles of pre-
imputations are also defined in this section, as well as the
most relevant result previously obtained. In Section 3 we
prove the main existence result of this note. We close with
some remarks about the possibility of obtaining a charac-
terization result in terms of maximal cycles. We also
include an Appendix exhibiting a non-balanced 5-person
game which shows that a minimal balanced objecting fam-
ily of coalitions is able to support both U-cycles and max-
imal U-cycles.

2. Preliminaries

A TU-game is a pair ðN ; vÞ where N ¼ f1; 2; . . . ; ng rep-
resents the set of players and v the characteristic function.
We assume that v is a real valued function defined on the
family of subsets of N ;PðNÞ; satisfying vðUÞ ¼ 0: We will
also assume that vðNÞ ¼ 1 although this will not represent
any restriction since the concepts we study here are invari-
ant under strategic equivalence. The elements in PðNÞ are
called coalitions.

The set of pre-imputations for a game ðN ; vÞ is

E ¼ x ¼ ðx1; . . . ; xnÞ 2 Rn :
X
i2N

xi ¼ vðNÞ
( )

and the set of imputations is

A ¼ fx 2 E : xi P vðfigÞ for all i 2 Ng:

Given a coalition S 2 PðNÞ and a pre-imputation x, the ex-
cess of the coalition S with respect to x is
eðS; xjvÞ ¼ vðSÞ � xðSÞ, where xðSÞ ¼

P
i2Sxi if S 6¼ U and

0 otherwise.
The core of a game ðN ; vÞ is defined by

C ¼ fx 2 E : eðS; xjvÞ 6 0 for all S 2 PðNÞg

and it may be an empty set. Shapley–Bondareva’s theorem
characterizes the sub-class of TU-games with non-empty
core where a central role is played by balanced families
of coalitions. A family of non-empty coalitions
B � PðNÞ is called balanced if there exists a set of positive
real numbers ðkSÞS2B satisfying

P
fS2B:i2SgkS ¼ 1, for all

i 2 N . The numbers kS ; S 2 B are called the balancing
weights for B. B is minimal balanced if there is no proper
balanced subfamily of it. In this case, the set of balanced
weights is unique. Equivalently, if vS 2 Rn denotes the indi-
cator vector of a coalition S defined by ðvSÞi ¼ 1 if i 2 S
and 0 if i 2 N n S, the family B is balanced if there exists
a family of positive balancing weights ðkSÞS2B, such thatX
S2B

kS � vS ¼ vN : ð1Þ
A well-known result establishes thatX
S2B

kS � xðSÞ ¼ xðNÞ ð2Þ

for any balanced family of coalitions B with balancing
weights ðkSÞS2B. At this point we mention that the set of
characteristic vectors (vSÞS2B is linearly independent pro-
vided B is a minimal balanced family of coalitions.

A game ðN ; vÞ is balanced ifX
S2B

kS � vðSÞ 6 vðNÞ ð3Þ

for each balanced family B with balancing weights ðkSÞS2B.
The Shapley–Bondareva theorem states that the core of a
game ðN ; vÞ is non-empty if and only if the game is bal-
anced. An objectionable family is a balanced family not
satisfying (3).

In what follows the notion of U-transfer in the frame-
work of a TU-game ðN ; vÞ will play a central role. Given
x 2 E and a proper coalition S; we say that y results from
x by the U-transfer from N n S to S (shortly, y is a U-trans-
fer from xÞ if

y ¼ xþ eðS; xjvÞ � bS ; ð4Þ

with eðS; xjvÞ > 0: Here bS ¼ vS
jSj �

vNnS
jNnSj if S is a proper coa-

lition and the zero vector of Rn otherwise. jSj indicates the
number of players in S. The vector bS describes a transfer
of one unit of utility from the members of N n S to the
members of S: The U-transfer is called maximal if
eðS; xjvÞP eðT ; xjvÞ for all T 2 PðNÞ.

We now introduce some kinds of cycles of pre-imputa-
tions and state, without proof, several results proved in
(Cesco and Aguirre, 2002; Cesco, 2003).

Definition 1. A cycle c in a TU-game ðN ; vÞ is a finite
sequence of pre-imputations ðxkÞmk¼1; m > 1; such that
there exist associated sequences of positive real numbers
ðlkÞ

m
k¼1 and ðSkÞmk¼1 of non-empty, proper coalitions of N

(not necessarily all different) satisfying the neighboring
transfer properties

xkþ1 ¼ xk þ lk � bSk
for all k ¼ 1; . . . ;m ð5Þ

and

xmþ1 ¼ x1 ð6Þ

as well.

A cycle is fundamental if lk 6 eðSk; xkjvÞ for all k ¼
1; . . . ;m:

A cycle is a U-cycle if lk ¼ eðSk; xkjvÞ for all k ¼
1; . . . ;m:

A U-cycle is maximal if for all k ¼ 1; . . . ;m;
eðSk; xkjvÞP eðS; xkjvÞ for all coalition S. A maximal U-
cycle is regular if the strict inequality holds in the former
conditions for all S 6¼ Sk. Otherwise, it will be called
singular.
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Given a cycle c ¼ ðxkÞmk¼1; we denote the vector of coali-
tions ðSkÞmk¼1 by supp(c). Let BðcÞ ¼ fS : S ¼ Sk for some
entry of supp(c)}. We will refer to BðcÞ as the family of
coalitions supporting c, and to the entries of the vector
ðlkÞ

m
k¼1 as the transfer amounts .BðcÞ is a balanced family

of coalitions for every fundamental cycle c (Cesco, 2003,
Theorem 1). In the latter paper it was also shown that
the existence of a fundamental cycle implies the non-bal-
ancedness of the game and that every non-balanced TU-
game has a fundamental cycle (Cesco, 2003, Theorem 3
and Theorem 9). These two results together provide a char-
acterization of the non-balanced TU-games (i.e., games
with non-empty core) in terms of fundamental cycles. Dur-
ing the proof of the latter theorem, the following claim
which we state without proof, is included.

Proposition 1. Let ðN ; vÞ be a TU-game and

B ¼ fS1; S2; . . . ; Smg a minimal objectionable family of

coalitions. Then there exists a fundamental cycle of pre-
imputations ðxkÞmk¼1 whose support is ðSkÞmk¼1, i.e. there exist

ðxkÞmk¼1 and ðlkÞmk¼1; lk > 0 for all k ¼ 1; . . . ;m such that

xkþ1 ¼ xk þ lk � bSk
for all k ¼ 1; . . . ;m; and xmþ1 ¼ x1:

Remark 1. Proposition 1 implies that with every ordering
of the coalitions in B there exists a fundamental cycle
whose pre-imputations share the same cyclic ordering as
the coalitions in B. Its proof is based on a result about con-
sistency of linear systems of inequalities due to K. (Fan,
1975) whose proof is not however, of a constructive type.
3. The existence of U-cycles

The existence of a U-cycle is proven in several steps. It
rests on the observation that the U-cycles of a TU-game
whose support is a family B; are homothetic, except for a
translation, to those of a canonical simple game. The key
point in the proof is the explicit determination of the center
and the expansion factor for the homothecy as well as the
vector to carry out the translation. These observations will
be formalized by proving successive results.

Let ðN ; vÞbe a TU-game and B ¼ fS1; S2; . . . ; Smg a min-
imal objectionable balanced family of coalitions in ðN ; vÞ
having ðkkÞmk¼1 as its set of balancing weights. Both the
game ðN ; vÞ and the family B will remain the same in the
rest of the note. For further references, given a real number
l P 0, we will denote with ðN ; vlÞ the related game having
characteristic function given by vlðSkÞ ¼ l for all Sk 2 B
and vlðSÞ ¼ vðSÞ otherwise. Usually we will call ðN ; vlÞ a
l-uniform B-game related to ðN ; vÞ or simply, a l-uniform
game. Furthermore, we will denote vðSkÞ by lk for all
Sk 2 B. EB will stand for the m� n matrix having vSk

as
its kth row, k ¼ 1; . . . ;m: We note that m 6 n and that
the rank of EB is m. Thus, the linear system EB � t0 ¼ b0 is
always consistent for any vector b: Now, let

l ¼
Pm

k¼1kk � lkPm
k¼1kk

ð7Þ
and t ¼ ðt1; t2; . . . ; tnÞ be any solution of the linear system

EB � t0 ¼ b0; ð8Þ

where b ¼ ðl1 � l; . . . ; lm � lÞ: In the next result we show
that the homeomorphism on Rn assigning

x ¼ �xþ t; ð9Þ

to any vector �x 2 Rn relates U-cycles in the l-uniform game
ðN ; vlÞ to U-cycles in ðN ; vÞ; while the inverse homeomor-
phisms induces an inverse relationship between U-cycles
in ðN ; vÞ to those in ðN ; vlÞ.

Proposition 2. Let l be given by (7) and let t be any solution

of system (8). If �c ¼ ð�x1;�x2; . . . ;�xmÞ is a U-cycle in ðN ; vlÞ
whose support is ðSkÞmk¼1; then c ¼ ð�x1 þ t;�x2 þ t; . . . ;�xm þ tÞ
is a U-cycle in ðN ; vÞ with the same support as c�. Conversely,
if c ¼ ðx1; x2; . . . ; xmÞ is a U-cycle in ðN ; vÞ whose support is

ðSkÞmk¼1; then, �c ¼ ðx1 � t; x2 � t; . . . ; xm � tÞ is a U-cycle in

ðN ; vlÞ with the same support as c.

Proof. We first point out that any solution t ¼ ðt1; . . . ; tnÞ
of (8) satisfies

Pn
i¼1ti ¼ 0. In fact, by associating the follow-

ing matrix product in two different ways, where k is the m-
vector ðk1; k2; . . . ; kmÞ, and taking into account (1), we get
that

k � EB � t0 ¼
Xn

i¼1

ti ¼
Xm

k¼1

kk � lk �
Xm

k¼1

kk � l ¼ 0;

which proves our claim. Now, let �c ¼ ð�x1;�x2; . . . ;�xmÞ be a
U-cycle in ðN ; vlÞ whose support is ðSkÞmk¼1 and let

xk ¼ �xk þ t

for all k ¼ 1; 2; . . . ;m. We are going to show that c ¼
ðxkÞnk¼1 is a U-cycle of pre-imputations in ðN ; vÞ: To prove
this, we first note that

eðSk; x1jvÞ ¼ lk � x1ðSkÞ ¼ lk � �x1ðSkÞ � tðSkÞ
¼ l� �x1ðSkÞ þ ðlk � l� tðSkÞÞ ¼ l� �x1ðSkÞ
¼ eðSk;�x1jvlÞ

for all Sk 2 B. Here we have used the fact that t is a solu-
tion of the linear system (8) to justify that lk�
l� tðSkÞ ¼ 0. Thus

x1 þ eðS1; x1jvÞ � bS1
¼ �x1 þ eðS1;�x1jvlÞ � bS1

þ t ¼ �x2 þ t ¼ x2:

With a similar argument, we are able to prove that
eðSi; xkjvÞ ¼ eðSi;�xkjvlÞ for all k ¼ 1; . . . ;m; and Si 2 B
which allow us to get that

xk þ eðSk; xkjvÞ � bSk
¼ xkþ1

for all k ¼ 2; . . . ;m. Since xnþ1 ¼ x1, we conclude that c is a
U-cycle in ðN ; vÞ.

The converse statement is proven similarly by using the
inverse transformation �xi ¼ xi � t of (9). h
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Remark 2. The family B has the same worth
wðB; vÞ ¼

Pm
k¼1kk � vðSkÞ with respect to both of the above

games ðN ; vÞ and ðN ; vlÞ.

Lemma 3. Let ðN ; v1Þ be the 1-uniform game related to

ðN ; vÞ and let a ¼ 1� 1Pm

k¼1
kk
: Then, there exists a pre-impu-

tation x such that eðS; xjv1Þ ¼ a for all Sk 2 B.

Proof. Let 1� a ¼ ð1� a; . . . ; 1� aÞ be the m-vector hav-
ing all its components equal to 1� a: Let x be a solution
of the linear system EB � x0 ¼ ð1� aÞ0 which is, as we men-
tioned above, always consistent. Once more, since by (2)

k � EB � x0 ¼ xðNÞ

and k � ð1� aÞ0 ¼ 1, we get that x is also a pre-imputation
which satisfies eðS; xjv1Þ ¼ a for all Sk 2 B. h

Remark 3. As a referee pointed us, any solution of the lat-
ter system is a B-pre-nucleolus of (N ; v1Þ, namely, a pre-
nucleolus obtained in the agreement that the only coali-
tions considered to define the vector of excesses associated
to a pre-imputation, are those in B. Thus, there will be a
unique B-pre-nucleolus if and only if the matrix EB associ-
ated to B is non-singular, and this happens if and only the
minimal balanced family B contains n coalitions.

Now let x̂ be a pre-imputation satisfying eðS; x̂jv1Þ ¼ a
for all S 2 B; which exists because of Lemma 3 and let

x ¼ 1� l
a
� x̂þ 1� 1� l

a

� �
� �x; ð10Þ

define an homeomorphism on Rn whose inverse is given by

�x ¼ a
a� ð1� lÞ � xþ

l� 1

a� ð1� lÞ � x̂:

Like in Proposition 2, this transformation allows us to re-
late U-cycles in the 1-uniform game related to ðN ; vÞ to U-
cycles in any non-balanced l-uniform game (N ; vlÞ related
to ðN ; vÞ:

Proposition 4. Let l be a number satisfying 1� a ¼
1Pm

k¼1
kk
< l. If �c ¼ ð�xjÞmj¼1 is a U-cycle of pre-imputations with

suppð�cÞ ¼ ðSkÞmk¼1 in the game ðN ; v1Þ; then c ¼ ðxjÞmj¼1;
where

xj ¼ 1� l
a

:x̂þ 1� 1� l
a

� �
:�xj;

j ¼ 1; . . . ;m; is a U-cycle of pre-imputations in the game

ðN ; vlÞ with the same support ðSkÞmk¼1: Conversely, if c ¼
ðxjÞmj¼1 is a U-cycle of pre-imputations with suppðcÞ ¼ ðSkÞmk¼1

in the game ðN ; vlÞ; then �c ¼ ð�xjÞmj¼1 where

�xj ¼ a
a� ð1� lÞ :x

j þ l� 1

a� ð1� lÞ :x̂;

j ¼ 1; . . . ;m; is a U-cycle of pre-imputations in the game

ðN ; v1Þ with the same support ðSkÞmk¼1:
Proof. The condition 1� a < l is to limit ourselves to stay
in the class of non-balanced games. Let �c ¼ ð�xjÞmj¼1 be a U-
cycle of pre-imputations in the game ðN ; v1Þ with
suppð�cÞ ¼ ðSkÞmk¼1. We stress on the fact that we are consid-
ering a labeling of the coalitions in B such that �xjþ1 ¼
�xj þ eðSj;�xjjv1Þ � bj; j ¼ 1; . . . ;m.

To prove that c ¼ ðxjÞmj¼1 is a U-cycle in ðN ; vlÞ; let
i; j ¼ 1; . . . ;m be given. Since xjðSiÞ ¼ 1� xjðN n SiÞ; we
have that

eðSi; xjjvlÞ ¼ l� 1þ xjðN n SiÞ

¼ l� 1þ 1� l
a

:x̂ðN n SiÞ

þ 1� 1� l
a

� �
� �xjðN n SiÞ

¼ l� 1þ 1� l
a
� aþ 1� 1� l

a

� �
� �xjðN n SiÞ

¼ 1� 1� l
a

� �
� �xjðN n SiÞ

¼ 1� 1� l
a

� �
� ð1� �xjðSiÞÞ

¼ 1� 1� l
a

� �
� eðSi;�xjjv1Þ: ð11Þ

The condition 1� a < l guarantees that the coefficient
ð1� 1�l

a Þ of eðSi;�xjjv1Þ in (11) is positive. This implies that
the excesses eðSi; xjjvlÞ related to xj are ordered in the same
way as those related to �xj; for all Si 2 B. Then, because of
(10) and (11) we get that

x1 þ eðS1; x1jvlÞ � bS1
¼ 1� l

a
� x̂þ 1� 1� l

a

� �
� �x1

þ 1� 1� l
a

� �
� eðSi;�x1jv1Þ � bS1

¼ 1� l
a
� x̂þ 1� 1� l

a

� �
� �x2 ¼ x2:

An inductive argument completes the first part of the
proof. The converse is proven in a similar way by using
the inverse transformation of (10). h

Remark 4. The relationships between U-cycles in ðN ; v1Þ
and U-cycles in ðN ; vlÞ showed in Proposition 4 can be eas-
ily extended to relationships between U-cycles in any pair
of non-balanced games ðN ; vlÞ and ðN ; v�lÞ related to ðN ; vÞ:

Remark 5. Transformations (9) and (10) are not unique
unless the rank of matrix EB is n (see also Remark 3).
The games studied in Cesco and Calı́ (2006) satisfy this
condition. The cycles studied there are isolated, in the sense
that each pre-imputation in cycle has a neighborhood
which does not contain a pre-imputation belonging to
another cycle. However, when the rank of EB is less than
n; each vector t belonging to the kernel of EB; which is a
subspace of dimension r P 1 included in the orthogonal
subspace to the vector ð1; . . . ; 1Þ; induces a U-cycle in the
game ðN ; vÞ related to a cycle ðxkÞmk¼1 in the game ðN ; vlÞ:
The family of cycles obtained in this way, are not isolated.
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Two cycles in such a class translate to one another with the
translation vector belonging to the kernel of EB.

We now prove the existence result.

Theorem 5. If B ¼ fS1; S2; . . . ; Smg is an objectionable fam-
ily of coalitions in ðN ; vÞ; then there always exists a U-cycle

of pre-imputations whose support is ðSkÞmk¼1.

Proof. We will develop the proof in several steps. First,
according to Proposition 1, there exists a fundamental
cycle of pre-imputations ðxkÞmk¼1 such that xkþ1 ¼ xk þ lk�
bSk
; k ¼ 1; . . . ;m; and xmþ1 ¼ x1. We claim that this funda-

mental cycle is also a U-cycle in the modified game ðN ;�vÞ
where �vðSkÞ ¼ xkðSkÞ þ lk for all Sk 2 B; and �vðSÞ ¼ vðSÞ
otherwise. In fact

eðS1; x1j�vÞ ¼ �vðS1Þ � x1ðS1Þ ¼ x1ðS1Þ þ l1 � x1ðS1Þ ¼ l1 > 0;

and

x1 þ eðS1; x1j�vÞ � bS1
¼ x1 þ l1 � bS1

¼ x2;

which shows that x2 is U-transfer from x1. An inductive
argument proves that xkþ1 ¼ xk þ eðSk; xkj�vÞ � bk; eðSk;
xkj�vÞ > 0 for all k ¼ 1; . . . ;m; and that xmþ1 ¼ x1. Thus,
ðxkÞmk¼1 is a U-cycle in ðN ;�vÞ.

In a second step and from the U-cycle ðxkÞmk¼1 in
ðN ;�vÞ;we construct, by the procedure described in Propo-
sition 2, a U-cycle in the game ðN ;�v�lÞ associated to ðN ;�vÞ
with �l ¼

Pm

k¼1
kk ��vðSkÞPm

k¼1
kk

. In the third step we construct from the

latter, a new U-cycle in the game ðN ;�vlÞ also associated to

ðN ;�vÞ, but with l ¼
Pm

k¼1
kk �vðSkÞPm

k¼1
kk

. This is carried out by the

procedure described in Proposition 4. Finally, the last step
is to get from this U-cycle, a U-cycle in the game ðN ; vÞ
once more by the procedure indicated in Proposition 2.
This last cycle is the cycle we are looking for. h

Remark 6. In the first part of the proof of the Theorem 5,
�vðSÞ 6 vðSÞ for all S � N . If all of the elements in the cycle
are imputations, then vðSkÞ > 0 for all Sk 2 B.

Remark 7. From Proposition 1 (see Remark 1) it follows
that with each permutation of the coalitions in B there is
an associated fundamental cycle. Therefore, by the proce-
dure described in the former result, we can construct up
to m! U-cycles whose support is B; and have no repetition
in the coalitions appearing in the support. However, sev-
eral of these cycles define the same sequence of pre-imputa-
tions except for the starting point. They are in fact, only
ðm� 1Þ! essentially different classes of U-cycles with the
two properties previously mentioned.
4. Final remarks

We close this note with a few remarks regarding maxi-
mal U-cycles, which are related to the U-cycles but are,
in our opinion, the ones we consider more attractive. The
method described in Section 3 does not provide, in general,
maximal U-cycles as it is shown by the example given in the
Appendix. However, for some games with a distinguished
family of coalitions C, like those studied in (Cesco and
Calı́, 2006), the U-cycles obtained for the associated canon-
ical game, i.e. the simple game with vðSÞ ¼ 1 if S 2 C or
S ¼ N ; and zero otherwise, are also maximal U-cycles. Fur-
ther studies to characterize games with this property should
be useful, although we have to mention that, since maximal
U-cycles are not preserved under the transformations
defined by (9) and (10), some extra limitations should be
imposed on the games in order to apply a similar technique
to guarantee the existence of maximal U-cycles.

Another way to obtain the existence of maximal U-
cycles is by proving a general ‘convergence’ theorem show-
ing that the algorithm described in Cesco (1998) always has
a limit cycle which is a maximal cycle. Up to now, only par-
tial results have been obtained. This point of view has been
successful in dealing with games having strong symmetry
properties.

Regarding the computational complexity of the algo-
rithm, we have to mention that it is associated to a problem
which is NP-hard. The heavy computational component of
the algorithm is that devoted to the computation of the
maximum excess over all the set of coalitions, which grows
like 2n; n being the number of players in the game. How-
ever, for some special, although very interesting games, like
assignment games, the set of relevant coalition reduces sub-
stantially, making the algorithm work in polynomial time.
Furthermore, the maximum excess problem has the advan-
tage of being highly parallelizable, which opens a gateway
for implementing efficient algorithms for problems of mod-
erate size. The reader is referred to Deng and Papadimitri-
ou (1994) for some observations about the complexity of
the solutions in cooperative game theory and to Faigle
et al. (2001) for the specific maximum excess problem.
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Appendix

The example we develop below is useful in showing that,
given an objectionable family B; the method presented in
Section 3 can provide a U-cycle c which is not maximal
and moreover, there can be another maximal U-cycle shar-
ing the same supporting family as c.

Let S1 ¼ f1; 2g; S2 ¼ f2; 3g; S3 ¼ f1; 3g; and S4 ¼ f4; 5g:
Then, the family B ¼ fS1; S2; S3; S4g is a minimal balanced
family in the framework of 5-person games. Let us now
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consider the 5-person game with characteristic function
given by

vðNÞ ¼ 1; vðSÞ ¼ 1 for all S 2 B;

vðSÞ ¼ 0 otherwise:

This game is a non-balanced game and B is an objection-
able family of coalitions. The pre-imputations

x1 ¼

0:0000

0:1429

�0:1429

0:5000

0:5000

0
BBBBBB@

1
CCCCCCA
; x2 ¼

0:4286

0:5714

�0:4286

0:2143

0:2143

0
BBBBBB@

1
CCCCCCA
;

x3 ¼

0:1429

1:000

0:000

�0:07145

�0:07145

0
BBBBBB@

1
CCCCCCA
; x4 ¼

0:5714

0:7143

0:4286

�0:35715

�0:35715

0
BBBBBB@

1
CCCCCCA
;

form a U-cycle c ¼ ðx1; x2; x3; x4Þ with suppðcÞ ¼ ðS1;
S2; S3; S4Þ; which is not, however, a maximal U-cycle.
Indeed,

eðf1; 3g; x1Þ ¼ 1þ 0:1429 > 1� 0:1429 ¼ eðf1; 2g; x1Þ:
On the other side, a maximal U-cycle ~c can be found having

suppð~cÞ ¼ ðS2; S3; S4; S1; S3; S4; S2; S4; S3; S1; S4; S2;

S4; S1; S3; S4; S2; S3; S4; S1; S4; S3; S2; S4; S1; S4Þ;

with 26 elements exhibiting a rather chaotic pattern. An
initial pre-imputation for the cycle c(exact up to the fourth
decimal place) is

x ¼

0:5779

0:4221

�0:2236

0:1118

0:1118

0
BBBBBB@

1
CCCCCCA
:
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