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Abstract
In this article, we investigate the temperature and chemical potential 
dependence of the optical conductivity of graphene, within a field theoretical 
representation in the continuum approximation, arising from an underlying 
tight-binding atomistic model, that includes up to second-nearest neighbors 
coupling. Our calculations allow us to obtain the dependence of the optical 
conductivity on frequency, temperature and finite chemical potential, thus 
generalizing our previously reported calculations at zero temperature, and 
reproducing the universal and experimentally verified value at zero frequency. 
Moreover, we also show that a small but still measurable shift in the 
conductance minimum arises as a function of the second-nearest neighbors 
hopping t′ , thus providing the possibility to directly measure this parameter 
in transport experiments.
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1.  Introduction

Graphene, a monolayer of carbon atoms arranged in a honeycomb lattice with C3v ⊗ Z2 sym-
metry [1], possesses an electronic spectrum that displays two non-equivalent points K+, K− 
where the conduction and valence bands touch, and in whose vicinity the dispersion relation 
is approximately linear. The electronic spectrum is correctly described by an atomistic tight-
binding model that, when including up to first-nearest neighbors coupling, leads to an effec-
tive low-energy continuum model describing relativistic Dirac fermions in 2D. Transparency 
is a physical property determined by the optical conductivity, i.e. the linear response to an 
external electromagnetic field. Several experiments confirm [3–16] that the measured trans-
mittance is indeed compatible with the effective single-particle model of relativistic Dirac 
fermions in graphene, as supported by a large number of theoretical works [8–16, 18–21]. 
Moreover, the frequency-dependence of the conductivity in graphene, whithin this effective 
Dirac theory arising from first-nearest neighbors approximation, has been calculated at finite 
temperature and chemical potential [21], including the effect of scattering by impurities [20, 
21] as well as many-body screening due to polarization [18, 19].

Several many-body effects may induce deviations from the single-particle Dirac disper-
sion continuum model, such as electron–electron Coulomb interactions [17, 22], lattice pho-
nons [23–27], impurities [20, 21, 28–30] and different forms of quenched disorder [17, 30]. 
Nevertheless, at the fundamental level of the atomistic single-particle Hamiltonian, the mini-
mal tight-binding model can be extended to include second-nearest neighbors couplings, that 
in the continuum representation leads to an effective field theory with a quadratic contribution 
to the linear Dirac dispersion [2]. In this article, we shall focus on the contribution to the 
optical conductivity that arises in the context of this effective field theory for graphene [31], 
at finite temperature and chemical potential. Such a model has been considered by some of 
us in [2] to fully account for the anomalous integer quantum Hall effect in this material and 
the underlying wave equation is referred to in literature as second order Dirac equation [32]. 
Notice that this is an isotropic model in which, the quadratic (anisotropic next to leading) term 
in the dispersion relation coming from the first-nearest neighbor sites has been shown to give 
a vanishing contribution to the Hamiltonian spectrum at first order in perturbation theory, thus 
justifying the consideration of the quadratic (isotropic) leading contribution of second-nearest 
neighbors in the honeycomb array [2]. In a previous article [31], we investigated the frequency 
dependence of the zero-temperature optical conductivity of graphene, calculated in the Kubo 
linear response approximation [33–35], when these second-nearest neighbors corrections are 
included in an effective field theory on the closed time path (CTP) (or Keldysh [35, 36]) for-
malism. In our present article, we extend this analysis to include finite temperature and finite 
chemical potential effects. Along the previously exposed ideas, we have organized the remain-
ing of this article as follows: in section 2, we present the details of the model. In section 3 we 
present the Matsubara formalism to calculate the vacuum polarization tensor in the Euclidean 
representation, to finally obtain the optical conductivity from the vacuum polarization tensor 
via analytic continuation to real frequency space. Our analytical results are summarized by 
equations (3.21) and (3.27) for the real and imaginary parts of the conductivity, respectively. 
We discuss our findings in section 4, showing that the explicit dependence of the real part 
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of the conductivity, as displayed in our equation (3.21), could be used in combination with 
transport experiments to determine the second-nearest neighbor hopping parameter t′, whose 
precise value remains elusive in the current literature [30]. Some calculation details are pre-
sented in two appendices.

2.  Lagrangian, conserved current and generating functional

Graphene crystal structure, as sketched in figure 1, is described in terms of two overlapping 
triangular (Bravais) sublattices. The band structure obtained from an atomistic, tight-binding 
description including up to the next-to-nearest neighbors contribution is of the form

E±(k) = ±t
√

f (k)− t′[ f (k)− 3],� (2.1)

where t and t′ are the nearest and next-to-nearest hopping parameters and

f (k) = 3 + 4 cos
(

3kxa
2

)
cos

(√
3kya
2

)
+ 2 cos(

√
3kya).� (2.2)

Here, a � 1.42 Å  is the interatomic distance [30]. The literature reports a value [30] t ∼ 2.8 
eV, while for the second nearest-neighbour coupling the reference values are not so precisely 
established, but reported in the range [30] 0.02t � t′ � 0.2t .

The points K+ and K− at which f (K±) = 0 define the so-called Dirac points. Around K+ ,

E±(k + K+) = ±t
[

3
2

a|k| − 3
8

a2k2 sin(3ϑ)
]
+ t′

[
−9

4
a3k2 + 3

]
+O(|k|3),

�

(2.3)

with tan(ϑ) = ky/kx. Around the K− point, one just needs to replace ϑ → −ϑ in equa-
tion  (2.3). The isotropic portion of the model in equation  (2.3) was first considered in [2] 
as a natural framework to explain the anomalous integer quantum Hall effect in graphene. 
Moreover, as previously mentioned, the anisotropic quadratic term, so called trigonal warping, 

Figure 1.  Sketch of the crystal structure of graphene. The honeycomb array is described 
in terms of two overlapping triangular sublattices.
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in this effective dispersion relation was shown not to contribute to the energy spectrum at first 
order in perturbation theory [2], thus justifying to retain just the isotropic terms up to this 
order in the pseudo-momenta.

In the presence of electromagnetic interactions, the model in the continuum approximation 
is described by an effective field theory with the Lagrangian [2, 31]

L :=
i
2
[
ψ† ∂tψ − ∂tψ

† ψ
]
+ ψ†eA0ψ

− 1
2m

{
[(p − eA + θσ)ψ]

† · [(p − eA + θσ)ψ]− 2θ2ψ†ψ
}

=
i
2
[
ψ† ∂tψ − ∂tψ

† ψ
]
− 1

2m

{
∇ψ† ·∇ψ + i∇ψ† · (−eA + θσ)ψ

−iψ† (−eA + θσ) ·∇ψ + ψ†
[
(−eA + θσ)

2 − 2θ2
]
ψ
}

,

�

(2.4)

where θ = mvF and m = ±2�2/(9t′a2), where the sign depends on each Dirac cone K±. The 
gauge invariance of this Lagrangian was discussed in detail in our previous work [2, 31].

A summary of the numerical values for the relevant parameters of the model is presented 
in table 1.

Here, the three-momentum is pµ = ( p0, p), with p = ( p1, p2). The vector potential 
A = (A1, A2), whereas σ = (σ1,σ2) are Pauli matrices. In this model, ψ† and ψ are regarded 
as independent fields whose equations of motion are derived from the variation of the action,

∂L
∂ψ† − ∂t

(
∂L

∂ (∂tψ†)

)
−∇ ·

(
∂L

∂ (∇ψ†)

)

= i∂tψ − 1
2m

[
(p − eA + θσ)

2 − 2θ2
]
ψ = 0,

�

(2.5)

and similarly for ψ.
Nœther’s theorem leads to the existence of a locally conserved current, whose time-comp

onent defines the local charge density [31]

j0 = eψ†ψ,� (2.6)

while the spatial components define the current density [31]

jk =
e

2m

{
i
(
∂kψ† ψ − ψ† ∂kψ

)
+ 2ψ† (−eAk + θσk)ψ} .� (2.7)

It is straightforward to verify, from the equations of motion, that jµ is conserved [31],

∂µjµ = ∂tj0 −∇ · j = 0.� (2.8)

Table 1.  Parameters of the model.

a (Å) [30] 1.42
t (eV) [30] 2.8
t′ (eV) [30] ∼0.056–0.56
m (kg) 1.37 × 10−29–1.37 × 10−30

vf  (m s−1) [30] ∼106

mv2
f  (eV) 7–70
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Notice also that we can write [31]

jµ(x) =
δ

δAµ(x)

∫
L(y) d3y.� (2.9)

In our previous work [31], we developed a generating functional on the CTP (or Keldysh 
contour) for the effective field theory in equation (2.3), defined as

Zγ [A] =
∫

Dψ†(x, τ)Dψ(x, τ)ei
∫
γ

dτ
∫

d2xL[ψ†(x,τ),ψ(x,τ)],� (2.10)

with γ = γ− ⊕ γ+, such that γ− represents the time-ordered branch of the contour, while γ+ is 
the anti-time-ordered branch (see [31] for details). From the CTP functional defined in equa-
tion (2.10), we generate the average current components as follows [31]

−i
δ log Zγ [A]
δAµ(x)

=
1

Zγ [A]

∫
Dψ†Dψ ei

∫
γ

d3yL(y)jµ(x)

= 〈 jµ(x)〉 ,
�

(2.11)

while the second functional derivative gives the current-current correlation function [31],

(−i)2 δ2 log Zγ [A]
δAµ(x)δAν(y)

= −i
〈

δjµ(x)
δAν(y)

〉
+ 〈T jµ(x) jν(y)〉

− 〈 jµ(x)〉 〈 jν(y)〉 .
�

(2.12)

Here, the first term is the diamagnetic contribution [31, 37]
〈

δjµ(x)
δAν(y)

〉
= δµkδνk

(
− e2

m2

)〈
ψ†(x)ψ(x)

〉
δ(3) (x − y) ,

� (2.13)
and the others are the paramagnetic ones.

The currents are defined in normal order with respect to the fermionic field, so that 
〈 jµ(x)〉|A=0 = 0. The linear response of the system to the external electromagnetic field is 
described by the second derivative in equation (2.12) evaluated at Aµ = 0 [31, 37],

Kµν(x, y) = (−i)2 δ2 log Zγ [A]
δAµ(x)δAν(y)

∣∣∣∣
A=0

= Kνµ(y, x)

= 〈T jµ(x) jν(y)〉0 .
�

(2.14)

The spatial components of the current are given by [31]

jk(x)

∣∣∣∣∣
A=0

=
e

2m

{
i∂kψ†(x)ψ(x)− iψ†(x)∂kψ(x) + 2θψ†(x)σkψ(x)

}

≡ ψ†
a(x)D̂

k
abψb(x),

�

(2.15)

where we have defined the differential operators [31]

D̂k
ab =

e
2m

{
−i

↔
∂k δab + 2θ

[
σk]

ab

}
.� (2.16)

Applying Wick’s theorem [35, 36, 38] on the CTP for the definition of the current-correla-
tor (correlators associated to disconnected diagrams vanish), we obtain [31]:
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〈T jk(x) jl(y)〉 = 〈T ψ†
a(x)D̂

k
abψb(x)ψ†

c (y)D̂
l
cdψd(y)〉

= −D̂k
abD̂l

cd〈T ψb(x)ψ†
c (y)〉〈T ψd(y)ψ†

a(x)〉.
�

(2.17)
The previous relation allows us to define the corresponding components of the polarization 
tensor in the CTP contour indices α,β = ±,

Kkl
αβ(x, y) = 〈T jkα(x) jlβ(y)〉

= −D̂k
abD̂l

cd∆
αβ
bc (x, y)∆βα

da (y, x).
� (2.18)

As discussed in detail in [31], the retarded component of the polarization tensor is obtained 
from the combination

Kkl
R (x, y) = Kkl

−−(x, y)− Kkl
−+(x, y)

= D̂k
abD̂l

cd

{
∆F

bc(x, y)∆A
da(y, x) + ∆R

bc(x, y)∆F
da(y, x)

−∆R
bc(x, y)∆A

da(y, x)

}
.

�

(2.19)

In terms of Fourier transforms,

ψ(x) =
1

(2π)3/2

∫
d3p e−ip·xψ̃( p), ψ†(x) =

1

(2π)3/2

∫
d3p eip·xψ̃†( p),

� (2.20)
we have [31]

∆αβ
ab (x, y) ≡ ∆αβ

ab (x − y) =
∫

d3p
(2π)3 ei(x−y)·p∆̃αβ

ab ( p).� (2.21)

Here, the different propagators for the Hamiltonian model considered are, in Fourier space (F: 
Feynman, R: Retarded, A: Advanced),

∆̃F( p) = ∆̃−−( p) = i
p0 − p2

2m + vFp · σ
(

p0 − p2

2m

)2
− v2

Fp2 + iε′

= i
p0 − p2

2m + vFp · σ(
p0 + iε− p2

2m − vF|p|
)(

p0 − iε− p2

2m + vF|p|
) ,

�

(2.22)

∆̃R( p) = i
p0 − p2

2m + vFp · σ
(

p0 + iε− p2

2m

)2
− v2

Fp2
,� (2.23)

∆̃A( p) = i
p0 − p2

2m + vFp · σ
(

p0 − iε− p2

2m

)2
− v2

Fp2
.� (2.24)

In order to consider the finite temperature dependence of the polarization tensor, the 
time-domain is compactified according to the prescription t → −iτ , with 0 � τ � β, with 
β = 1/(kBT) the inverse temperature. Correspondingly, the three propagators defined above 
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reduce to a single Euclidean one, by analytic continuation p0 + iε → ip4 + µ of the retarded 
one. Therefore, we define the Euclidean propagator by

∆̃E( p) = ∆̃R( p0 + iε → ip4 + µ, p) = i
ip4 + µ− p2

2m + vFp · σ
(

ip4 + µ− p2

2m

)2
− v2

Fp2
.� (2.25)

In particular, for the linear response theory [34–36, 38–40], we need the retarded comp
onent of the polarization tensor

Kµν
R (x − y) =

∫
d3p
(2π)3 ei(x−y)·p Πµν

R ( p),� (2.26)

which is obtained at finite temperature from the Euclidean polarization tensor by analytic 
continuation

Πkl
R (ω, p) = Πkl

E (ip4 → ω + iε, p).� (2.27)

The corresponding expression for the finite temperature, Euclidean polarization tensor is

Πkl
E (ip4, p) =

e2

4m2

1
β

∑
q4=ωn,n∈Z

∫
d2q
(2π)2 Γ

k
ab( p + 2q)

× ∆̃E
bc( p + q)Γl

cd( p + 2q)∆̃E
da(q)

�

(2.28)

with the symbol

Γk
ab( p + 2q) =

[
δab( p + 2q)k + 2θ

[
σk]

ab

]
,� (2.29)

and a similar expression for Γl
cd( p + 2q). We remark that due to compactification of the time 

domain at finite temperature, the component q4 = ωn, where ωn = 2π(n + 1/2)/β  for n ∈ Z 
are the Fermionic Matsubara frequencies.

3. The polarization tensor and optical conductivity

The polarization tensor Πkl( p) contains the information about the conductivity on the plane 
of this two-dimensional system and also about its light transmission properties [10, 37]. We 
are interested in the consequences of the application of harmonic homogeneous electric fields 
which, in the temporal gauge, are related with the vector potential by Ek = −∂Ak/∂t = −iωAk . 
Since the conductivity is determined by the linear relation between the current and the applied 
electric field, Jk = σklEl, from equations (2.11), (2.14) and (2.27), we can write for the con-
ductivity as a function of the frequency [10, 37]

σkl(ω) = 2 × 2
ΠR

kl( p)
iω

∣∣∣∣
p→(ω,0)

,� (3.1)

where the prefactor takes into account the valley and electronic spin degeneracy in graphene. 
Therefore, the real and imaginary components of the optical conductivity are given by

�eσkl(ω, T) = 4
�mΠR

kl(ω, T)
ω

� (3.2)

H Falomir et alJ. Phys. A: Math. Theor. 53 (2020) 015401



8

and

�mσkl(ω, T) = −4
�eΠR

kl(ω, T)
ω

,� (3.3)

respectively. In particular, it is the real part of the conductivity tensor that determines elec-
tronic transport in the DC limit ω → 0.

In order to include finite temperature effects, we first calculate ΠE
kl(ω, 0) from equa-

tion  (2.28), and then by analytic continuation, as described in equation  (2.27), we obtain 
ΠR

kl(ω, 0).
The evaluation requires to calculate two integrals and an infinite sum over (Fermionic) 

Matsubara frequencies, as defined in equation (2.28).

ΠE
kl( p) =

e2

4m2

1
β

∑
q4=ωn,n∈Z

∫
d2q
(2π)2 Tr

{
[ pk + 2qk + 2θσk] ∆

E( p + q)

× [ pl + 2ql + 2θσl] ∆
E(q)

}
.

�

(3.4)

Specializing this expression to the case p = (ip4, 0), and using polar coordinates for the spatial 
components q1 = Q cosϕ, q2 = Q sinϕ, we write

ΠE
kl(ip4, 0) =

e2

4π
1
β

∑
q4=ωn,n∈Z

∫ ∞

0

dQ Q
4πm2

∫ 2π

0
dϕ

Tr{A}
BEE� (3.5)

with

A = [2qk + 2θσk]

[
ip4 + iq4 + µ− q2

2m
+ vFq · σ

]
[2ql + 2θσl]

×
[

iq4 + µ− q2

2m
+ vFq · σ

]
,

BEE =

((
ip4 + iq4 + µ− q2

2m

)2

− v2
Fq2

)((
iq4 + µ− q2

2m

)2

− v2
Fq2

)
.

� (3.6)
We notice that the denominator is independent of ϕ, and hence it is straightforward to calcu-
late the trace in the numerator integrated over ϕ,

N(Q, ip4, iq4 + µ) =
1

4πm2

∫ 2π

0
Tr {A} dϕ

= −
(
8
(
8m4v2

f (iq4 + µ)(iq4 + µ+ ip4) + 4m2Q2

×
(
ip4

(
mv2

f + iq4 + µ
)
+ (iq4 + µ)

(
iq4 + µ+ 2mv2

f

)))

−2mQ4 (mv2
f + 2iq4 + 2µ+ ip4

)
+ Q6)

�
(3.7)

for k, l = 1, 1 or 2, 2, and a vanishing result for k, l = 1, 2 or 2, 1.
Let us now consider the sum over (Fermionic) Matsubara frequencies, since 

q4 = ωn = (2n + 1)π/β. The sum can be obtained through the construction of a contour int
egral on the complex plane (see figure 2), by choosing a meromorphic function with infinitely 
many poles at the Matsubara frequencies. A straightforward choice is the Fermi function,

nF(k0 − µ) =
1

1 + eβ(k0−µ)
,� (3.8)
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that clearly has poles at k0 = iωn + µ, for n ∈ Z, with residues

Res [nF(k0 − µ)]k0=iωn+µ = lim
k0→iωn+µ

(k0 − iωn − µ)

1 + eβ(k0−µ)

= lim
k0→iωn+µ

(k0 − iωn − µ)

1 + eiβωn eβ(k0−iωn−µ)
= − 1

β
,

�

(3.9)

where the identity eiβωn = −1, valid for fermionic Matsubara frequencies, was applied.
Therefore, defining iq4 + µ → k0, we calculate the contour integral depicted in figure 2, 

when the radius of the outer circular contour ΓR goes to infinity, R → ∞, and the radius of the 

four contours γ
(α)
ε  goes to zero, ε → 0

lim
R→∞,ε→0

∮

C

N(Q, ip4, k0)

BEE(Q, ip4, k0)
nF(k0 − µ)

dk0

2πi

= −
∑
α=1,4

Res
[

N(Q, ip4, k0)

BEE(Q, ip4, k0)

]

k0=k(α)
0

nF(k
(α)
0 − µ)

−
∑
n∈Z

N(Q, ip4, iωn + µ)

BEE(Q, ip4, iωn + µ)
Res [nF(k0 − µ)]k0=iωn+µ = 0.

�

(3.10)

Using equation (3.9), we solve for the required Matsubara sum from the equation above,

1
β

∑
n∈Z

N(Q, ip4, iωn + µ)

BEE(Q, ip4, iωn + µ)
=

∑
α=1,4

Res
[

N(Q, ip4, k0)

BEE(Q, ip4, k0)

]

k(α)
0

nF(k
(α)
0 − µ).

�

(3.11)

Here, the poles are the roots of the denominator of the quartic polynomial, i.e. 

BEE(Q, ip4, k(α)0 ) = 0, for α = 1, . . . , 4. Explicitly, one finds

Figure 2.  The complex contour C = ΓR ⊕ Γ↑↓ ⊕α γ
(α)
ε  used to calculate the Matsubara 

sum. Notice that Γ↑↓ and γ
(α)
ε  are oriented clockwise, in order to exclude the poles from 

the contour C.
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k(1)
0 =

Q(Q + 2mvf )

2m
,

k(2)
0 =

Q(Q − 2mvf )

2m
,

k(3)
0 =

Q(Q + 2mvf )

2m
− ip4,

k(4)
0 =

Q(Q − 2mvf )

2m
− ip4.

�

(3.12)

By recalling that the external Matsubara frequency in the diagram is a Bosonic one, we have 
p4 = 2nπ/β, with n ∈ Z, and hence eiβp4 = 1. Using this simple identity, we find that

nF(k
(3)
0 − µ) = nF(k

(1)
0 − µ), nF(k

(4)
0 − µ) = nF(k

(2)
0 − µ).� (3.13)

Using this, and calculating explicitly the residues, we finally obtain

ΠE
11(ip4, 0) =

e2

4π

∫ ∞

0
dQ

4v3
f Q2

4v2
f Q2 − (i p4)2

(
nF

[
Q(Q − 2mvf )

2m
− µ

]

−nF

[
Q(Q + 2mvf )

2m
− µ

])
.

�
(3.14)

From this expression, by analytic continuation to real frequency space ip4 → ω + iε we 
recover the retarded polarization tensor

ΠR
11(ω) = ΠE

11(0, ip4 → ω + iε).� (3.15)

For this purpose, we write part of the integrand in equation (3.14) as follows

4v3
f Q2

4v2
f Q2 − (ω + iε)2

= v2
f Q

[
1

2vf Q − ω − iε
+

1
2vf Q + ω + iε

]

= P
4v3

f Q2

4v2
f Q2 − ω2

+ iπv2
f Q [δ(2vf Q − ω)− δ(2vf Q + ω)] ,

� (3.16)
where P  stands for the Cauchy principal value. Therefore, the real and imaginary parts of the 
retarded polarization tensor are given by the expressions

�eΠR
11(ω) =

e2

4π
P
∫ ∞

0
dQ

4v3
f Q2

4v2
f Q2 − ω2

(
nF

[
Q(Q − 2mvf )

2m
− µ

]

−nF

[
Q(Q + 2mvf )

2m
− µ

])�

(3.17)

�mΠR
11(ω) =

e2

4
v2

f

∫ ∞

0
dQ Q [δ(2vf Q − ω)− δ(2vf Q + ω)]

×
(

nF

[
Q(Q − 2mvf )

2m
− µ

]
− nF

[
Q(Q + 2mvf )

2m
− µ

])
.

�

(3.18)

Moreover, in order to remove unphysical vacuum contributions from the retarded polariza-
tion tensor, we define its regularized version as

ΠR
11, reg(ω) ≡ ΠR

11(ω, T)−ΠR
11(0, T),� (3.19)
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where we have subtracted the (finite) limit of zero frequency of the right hand side of 
equation  (3.17) (see appendix B). Note from the definitions above that, by construction, 
�mΠR

11(ω = 0, T) = 0, and hence no regularization is required for the imaginary part of the 
tensor. On the other hand, �eΠ11(ω = 0, T) �= 0 in general, and hence the real part will be 
regularized as described in appendix. The expression for the real part cannot be reduced to 
a simple analytical expression, however one can still evaluate it in a low-temperature series 
through a generalization of Sommerfeld expansion (as shown in appendix B). On the other 
hand, the integral for the imaginary part can be evaluated to yield

�mΠR
11(ω) =

e2

16
ω sgn(ω)

(
nF

[
ω2

8mv2
f
− ω

2
− µ

]
− nF

[
ω2

8mv2
f
+

ω

2
− µ

])

=
e2

32
|ω|

(
tanh

[
β

2

(
ω2

8mv2
f
+

ω

2
− µ

)]

− tanh

[
β

2

(
ω2

8mv2
f
− ω

2
− µ

)])
.

�

(3.20)

From the expression above, the real part of the optical conductivity is given by

�eσ11(ω, T) = 4
�mΠR

11(ω)

ω

=
e2

8�
sgn(ω)

(
tanh

[
β

2

(
�2ω2

8mv2
f
+

�ω
2

− µ

)]

− tanh

[
β

2

(
�2ω2

8mv2
f
− �ω

2
− µ

)])
,

�

(3.21)

where we have restored the � constant for normal I.S. units. The real part of the electrical conduc-

tivity, as a function of frequency and at different temperatures, is depicted in figures 3(a) and (b).
It is very interesting to analyze the zero-temperature limit (β → ∞) of equation (3.21), that 

becomes (see appendix B for details)

�eσ11(ω, T → 0) =

{
e2

4� ,
√

1 + 2µ
mv2

f
− 1 < �|ω|

2mv2
f
<

√
1 + 2µ

mv2
f
+ 1

0, otherwise.
� (3.22)

It is seen from this result that the actual value of the conductivity at T  =  0 is e2/(4�), indepen-
dent of frequency and the parameter m that captures the second nearest-neighbor interaction, in 
agreement with our previous calculation [31] and transparency experiments [3]. Interestingly 
though, there is however a hidden, non-analytic dependency through the domain of the step-
wise function, that defines a region where the conductivity actually vanishes. It is instructive to 
compare our result, that includes the second nearest-neighbor interaction through the parameter 
m, with the more standard result that only involves first nearest-neighbors, a situation that can 
be recovered from our model in the limit m → ∞. In this limit, from equation (3.21) we obtain

�eσ11(ω, T , m → ∞) =
e2

8�
sgn(ω)

(
tanh

[
β

2

(
�ω
2

− µ

)]

+tanh

[
β

2

(
�ω
2

+ µ

)])
.

�

(3.23)
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This limit, as expected, matches the one reported in [41, 42]. We notice, however, that the 
effects of scattering by impurities [20, 21], many-body screening [19] or buckling of the lat-
tice [18] will induce deviations from this behavior. Interestingly, equation  (3.23) was also 
obtained as the main result in [43], starting from an expansion of the tight-binding dispersion 
relation, but later arguing that the second-nearest neighbor contribution is negligible. Here, 
through our exact result in equation (3.21), we explicitly show that such contribution is not 
negligible, but can be a measurable effect, as we later discuss in the Conclusions. As seen from 
equation (3.23), if the effect of second-nearest neighbors t′ is neglected (m → ∞), the real 
part of the conductance displays a sigmoidal-shape centered at �ω = 2µ. In contrast, when 
t′ is included as in our model equation (3.21), the center of the sigmoidal curve is shifted to 

�ω = 2mv2
f

(√
1 + 2µ

mv2
f
− 1

)
∼ 2µ− µ2

mv2
f
, as displayed on the inset of figures 3(a) and (b). 

The predicted shift µ2

mv2
f
=

(
9a2µ2

2�2v2
f

)
t′ is thus linear in t′. In the Conclusions section, we shall 

comment on the potential implications of this effect on the experimental determination of t′.
Also in the limit m → ∞, the zero-temperature conductivity becomes

�eσ11(ω, 0, m → ∞) =
e2

8�
sgn(ω) { sgn (�ω − 2µ) + sgn (�ω + 2µ)}� (3.24)

=

{
0, |ω| < 2µ/�

e2

4� , |ω| > 2µ/�.
� (3.25)

in agreement with [3, 42, 43].
Let us now turn to the imaginary part of the optical conductivity. The integral over 

0 � Q < ∞ can be expressed as an asymptotic expansion in negative powers of β, through a 
similar analysis as in the more standard Sommerfeld expansion (for details see appendix B). 
The real part of the retarded polarization tensor (see appendix B) is given by the expression

Figure 3.  The real part of the conductivity, calculated from equation  (3.21), for (a) 
t′ = 0.056 eV, and (b) t′ = 0.56 eV (see table 1), at constant chemical potential µ = 0.5 
eV, as a function of frequency, for different temperature values. On the inset of both 

figures is shown in detail the shift of the step from 2µ = 1.0 to 2µ− µ2

mv2
f
 as discussed 

in the main text.
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�eΠR
11,reg(ω, T) =

e2

8π
ωF(ω,µ, m) + β−2 e2πω2

24mv2
f

(
1 + 2µ

mv2
f

)3/2

×




ω2 − 8mv2
f

(
3µ+ 2mv2

f

(
1 +

√
1 + 2µ

mv2
f

))

[
ω2 − 8mv2

f

(
µ+ mv2

f

(
1 +

√
1 + 2µ

mv2
f

))]2

−
ω2 + 8mv2

f

(
−3µ+ 2mv2

f

(
−1 +

√
1 + 2µ

mv2
f

))

[
ω2 − 8mv2

f

(
µ+ mv2

f

(
−1 +

√
1 + 2µ

mv2
f

))]2 Θ

[
µ

mv2
f

]



+ O(β−3).
�

(3.26)

Therefore, the imaginary part of the optical conductivity is given by

�mσ11(ω) = −4
�eΠR

11,reg(ω, T)

ω

= − e2

2π�
F(ω,µ, m)− (kBT)2 e2πω

6mv2
f

(
1 + 2µ

mv2
f

)3/2

×




�2ω2 − 8mv2
f

(
3µ+ 2mv2

f

(
1 +

√
1 + 2µ

mv2
f

))

[
�2ω2 − 8mv2

f

(
µ+ mv2

f

(
1 +

√
1 + 2µ

mv2
f

))]2

−
�2ω2 + 8mv2

f

(
−3µ+ 2mv2

f

(
−1 +

√
1 + 2µ

mv2
f

))

[
�2ω2 − 8mv2

f

(
µ+ mv2

f

(
−1 +

√
1 + 2µ

mv2
f

))]2 Θ

[
µ

mv2
f

]



+ O(β−3),
�

(3.27)

where we have restored the � constant for I.S. units, and we defined the function

F(ω,µ, m) =





arctanh


 �ω

2mv2
f

(√
1+ 2µ

mv2
f
−1

)


− arctanh


 �ω

2mv2
f

(√
1+ 2µ

mv2
f
+1

)


 ,

if 0 < �ω < 2mv2
f

(√
1 + 2µ

mv2
f
− 1

)
.

1
2 ln




(√
1+ 2µ

mv2
f
+1− �ω

2mv2
f

)

(√
1+ 2µ

mv2
f
+1+ �ω

2mv2
f

)

(√
1+ 2µ

mv2
f
−1+ �ω

2mv2
f

)

(
�ω

2mv2
f
−
√

1+ 2µ
mv2

f
+1

)


 ,

if
√

1 + 2µ
mv2

f
− 1 < �ω

2mv2
f
<

√
1 + 2µ

mv2
f
+ 1.

arctanh




2mv2
f

(√
1+ 2µ

mv2
f
−1

)

�ω


− arctanh




2mv2
f

(√
1+ 2µ

mv2
f
+1

)

�ω


 ,

if �ω > 2mv2
f

(√
1 + 2µ

mv2
f
+ 1

)
.

� (3.28)
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The imaginary part of the optical conductivity, expressed in our model by equa-
tion  (3.27), displays two separate resonances (see figures  4(a) and (b)), the first at  

�ω = 2mv2
f

(√
1 + 2µ

mv2
f
− 1

)
∼ 2µ− µ2

mv2
f
, and the second at �ω = 2mv2

f

(√
1 + 2µ

mv2
f
+ 1

)
∼ 2mv2

f . 

The first one reproduces, in the limit m → ∞, results reported in the literature for the con-

ventional model with only first-to-nearest neighbor approximation [3, 42], with a small shift  

∼− µ2

mv2
f
 in the position of the peak. The second peak, which is a unique feature of the model, is 

located at an extremely large frequency, and in practice has no physical consequences.

4.  Conclusions

Throughout this article, we have discussed the effect of including the next-to-nearest neigh-
bors hopping t′, through the ‘mass’ parameter m = 2�2/(9t′a2) in the dispersion relation [2], 
on the optical conductivity of single-layer graphene. Our analysis is based on the continuum 
representation of the model via an effective field theory [31], by extending our previous results 
at zero temperature [31] to the finite chemical potential and finte temperature scenario, equa-
tions (3.21) and (3.27). As expected, our analytical calculation recovers the universal value 
�eσ → e2/(4�) in the limit of zero temperature, equation (3.22), but however reveals a non-
trivial and non-analytic dependence on the second-nearest neighbor hopping t′ through the 
ratio µ/(mv2

f ) in the frequency domain. Remarkably, our analytical equation (3.21) for the 
frequency-dependent real part of the optical conductivity at finite temperature and chemical 
potential, in the limit m → ∞ (t′ → 0) reduces to equation (3.23), that exactly reproduces 
previous results reported in the literature [3, 21, 42] for the conventional first-nearest neigh-
bor approximation. More importantly, and this is the main novelty of our work, our equa-
tion (3.21) generalizes this result to reveal the effect of including the next-to-nearest neighbor 
hopping t′ into the dispersion relation. In particular, we notice that, when t′ is neglected 
as in the conventional case, the real part of the conductivity presents a sharp step (at zero 

Figure 4.  The imaginary part of the electrical conductance, for (a) t′ = 0.056 eV, and 
(b) t′ = 0.56 eV (see table 1), at constant chemical potential µ = 0.5 eV, as a function 
of frequency, at zero temperature. The finite temperature dependence is very weak (as 
seen in equation  (3.27) and cannot be appreciated at the scale of the plot. The inset 
shows with higher resolution the region near the first peak.
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temperature) or a sigmoidal shape (at finite temperature) exactly centered at �ω = 2µ [3, 21, 
42] (see for instance equation (3.23)). In contrast, when t′ is included as in our model, the step 

is shifted to �ω = 2mv2
f

(√
1 + 2µ

mv2
f
− 1

)
∼ 2µ− µ2

mv2
f
. The predicted shift µ2

mv2
f
=

(
9a2µ2

2�2v2
f

)
t′ 

is thus linear in t′. This effect is particularly interesting since, as shown in the existing lit-

erature [30], there seems to be a large uncertainty on the exact value for the second-nearest 
neighbors hopping in graphene, 0.056 eV < t′ < 0.56 eV (see table 1). The order of magni-
tude of this shift can be estimated from the parameters in table 1, where the reported range 
of t′ implies that 7 eV < mv2

f < 70 eV, and hence for a chemical potential of µ ∼ 0.5 eV, we 

have 3.6 meV < µ2

mv2
f
< 36 meV, which is a value accessible to be detected in transport experi-

ments. Our result therefore suggests that an experimental characterization of the frequency-
dependence of the real part of the optical conductivity, at finite chemical potential (to be 
adjusted, for instance, with a gate potential) could provide an accurate and direct experimental 
measurement of t′, to be compared with the broad estimations obtained so far from ab initio 
calculations [44] or cyclotron resonance experiments [45].
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Appendix A.  Zero temperature limit of �e σ11(ω, T )

Let us start from equation  (3.21) (in natural units � = 1), and consider the limit T → 0 
(β → ∞),

�eσ11(ω, T = 0) =
e2

8
sgn(ω)

(
sgn

[
ω2

4mv2
f
+ ω − 2µ

]

− sgn

[
ω2

4mv2
f
− ω − 2µ

])
.

�

(A.1)

Clearly, the difference between the sgn(z) functions is either ±2 or 0. In order to analyze 
the different cases, let us define the two quadratic functions

y1(ω) =
ω2

4mv2
f
+ ω − 2µ = (ω − ω

(1)
+ )(ω − ω

(1)
− ),

y2(ω) =
ω2

4mv2
f
− ω − 2µ = (ω − ω

(2)
+ )(ω − ω

(2)
− ),

�
(A.2)
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where roots are given by

ω
(1)
± = −2mv2

f ± 2mv2
f

√
1 +

2µ
mv2

f
,

ω
(2)
± = 2mv2

f ± 2mv2
f

√
1 +

2µ
mv2

f
.

� (A.3)

On the other hand, the two parabolas intersect at ω = 0, with the common value 
y1(0) = y2(0) = −2µ. A graphical representation of the roots and intercept is displayed in 
figure A1. Moreover, we remark that equation (A.1) can be written as

�eσ11(ω, T = 0) =
e2

8
sgn(ω) ( sgn(y1)− sgn(y2))

=
e2

4





sgn(ω), y1(ω) > 0, y2(ω) < 0
− sgn(ω), y1(ω) < 0, y2(ω) > 0

0, otherwise.

�
(A.4)

The condition y1(ω) > 0 and y2(ω) < 0 is satisfied for −2mv2
f +  

2mv2
f

√
1 + 2µ

mv2
f
< ω < 2mv2

f + 2mv2
f

√
1 + 2µ

mv2
f
, where sgn(ω) = 1. On the other hand, the  

condition y1(ω) < 0 and y2(ω) > 0 is satisfied for −2mv2
f − 2mv2

f

√
1 + 2µ

mv2
f
< 

ω < 2mv2
f − 2mv2

f

√
1 + 2µ

mv2
f
, where sgn(ω) = −1. Taking this into account, we arrive at the 

final expression

�eσ11(ω, T → 0) =

{
e2

4� ,
√

1 + 2µ
mv2

f
− 1 < �|ω|

2mv2
f
<

√
1 + 2µ

mv2
f
+ 1

0, otherwise
� (A.5)

Figure A1.  Sketch of the locus of the roots in equation  (A.3). The regions in white 
represent the frequency range where, at zero temperature and finite chemical potential, 
the real part of the optical conductivity does not vanish, as seen in equation (A.5).
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where we have restored the � constant for I.S. units.

Appendix B.  Low temperature expansion for �e ΠR
11(ω)

Let us consider the integral representing the real part of the retarded polarization tensor

�eΠR
11(ω) =

e2

4π
P
∫ ∞

0
dQ

4v3
f Q2

4v2
f Q2 − ω2

(
nF

[
Q(Q − 2mvf )

2m
− µ

]

−nF

[
Q(Q + 2mvf )

2m
− µ

])
,

�

(B.1)

where P  stands for Cauchy’s principal value.
It is convenient to express the integral defining the polarization tensor in dimensionless 

variables, i.e.

x = Q/(mvf ), Ω = ω/(2mv2
f ), β̄ = mv2

f β/2, γ = 2µ/(mv2
f ).� (B.2)

Hence, we have

�eΠR
11(ω) =

e2

8π
mv2

f P
∫ ∞

0
dx

[
x

x +Ω
+

x
x − Ω

] [
n̄F(x2 − 2x − γ)

−n̄F(x2 + 2x − γ)
]

,
�

(B.3)

with the Fermi distributions at the dimensionless β̄,

n̄F(z) =
(

1 + eβ̄z
)−1

.� (B.4)

As discussed in the main text, in order to remove spurious unphysical contributions arising 
from the vacuum, we regularize the retarded polarization tensor according to the expression

�eΠR
11,reg(ω, T) ≡ �eΠR

11(ω, T)−�eΠR
11(0, T),� (B.5)

where we have subtracted the (finite8) zero frequency limit of the right hand side of 
equation (B.3).

It is interesting first to analyze the T → 0 limit of the regularized polarization tensor. From 
the expression for the Fermi functions, it is clear that n̄F(z) → Θ(−z) as β̄ → ∞ (T → 0). 
Therefore, we have

�eΠR
11,reg(ω, T → 0) =

e2

4π
mv2

f Ω
2P

∫ ∞

0
dx

1
x2 − Ω2

[
Θ(x2 + 2x − γ)

−Θ(x2 − 2x − γ)
]

,

=
e2

4π
mv2

f Ω
2P

∫ x(2)
+

x(1)
+

dx
x2 − Ω2 ,

�

(B.6)

8 Indeed, the term with the factor x/(x +Ω) gives rise to a uniformly convergent integral for Ω � 0, while the term 
with the x/(x − Ω) factor gives a finite (and identical to the previous one) contribution in this limit, by virtue of the 
principal value operator.
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where x(1)
+ =

√
1 + γ − 1 and x(2)

+ =
√

1 + γ + 1 are the positive roots of the quadratic poly-
nomials y1(x) = x2 + 2x − γ and y2(x) = x2 − 2x − γ, respectively. The principal value int
egral must be calculated separately in three frequency intervals, giving the results

P
∫ x(2)

+

x(1)
+

dx
x2 − Ω2 =




1
Ω

[
arctanh(Ω/x(1)

+ )− arctanh(Ω/x(2)
+ )

]
, 0 < Ω < x(1)

+

1
2Ω ln

[
x(2)
+ −Ω

x(2)
+ +Ω

x(1)
+ +Ω

Ω−x(1)
+

]
, x(1)

+ < Ω < x(2)
+

1
Ω

[
arctanh(x(1)

+ /Ω)− arctanh(x(2)
+ /Ω)

]
, Ω > x(2)

+ .
� (B.7)

Therefore, we have the analytical expression

�eΠR
11,reg(ω, T → 0) =

e2

8π
ωF(ω,µ, m)� (B.8)

where we have defined the function

F(ω,µ, m) =





arctanh


 ω

2mv2
f

(√
1+ 2µ

mv2
f
−1

)


− arctanh
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 ω
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f

(√
1+ 2µ

mv2
f
+1

)


 ,

if 0 < ω < 2mv2
f

(√
1 + 2µ

mv2
f
− 1

)
.

1
2 ln




(√
1+ 2µ

mv2
f
+1− ω

2mv2
f

)

(√
1+ 2µ

mv2
f
+1+ ω

2mv2
f

)

(√
1+ 2µ

mv2
f
−1+ ω

2mv2
f

)

(
ω

2mv2
f
−
√

1+ 2µ
mv2

f
+1

)


 ,
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√

1 + 2µ
mv2

f
− 1 < ω

2mv2
f
<

√
1 + 2µ

mv2
f
+ 1.

arctanh




2mv2
f

(√
1+ 2µ

mv2
f
−1

)

ω


− arctanh



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(√
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mv2
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)

ω


 ,

if ω > 2mv2
f

(√
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mv2
f
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)
.

� (B.9)
For the finite temperature contribution, we obtain

�eΠR
11,reg(ω, T) = �eΠR

11,reg(ω, T → 0)

+
e2

2π
mv2

f (Π1(ω)−Π2(ω)−Π1(0) + Π2(0)) ,
�

(B.10)

where

Π1(ω) = 2
N∑

k=0

β−2k−2 (1 − 2−2k−1) ζ(2k + 2)F(2k+1)
+ (0)

+ δγ

[
2N∑

k=1

β−k−1 (1 − 2−k) (−1)kζ(k + 1)F(k)
− (0) + β−1F−(0) log(2)

]

γ→0

�

(B.11)
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Π2(ω) = 2θ(γ)
N∑

k=0

β−2k−2 (1 − 2−2k−1) ζ(2k + 2)G(2k+1)
+ (0)

+ δγ

[
2N∑

k=1

β−k−1 (1 − 2−k) (−1)kζ(k + 1)G(k)
+ (0) + β−1G+(0) log(2)

]

γ→0

.

�

(B.12)

In these expressions, we have defined the auxiliary functions obtained from the roots of the 
quadratic equations x2 ± 2x − γ = z , corresponding to

x(1)
± (z) = 1 ±

√
1 + γ + z,

x(2)
± (z) = −1 ±

√
1 + γ + z,

� (B.13)

and the corresponding implicit functions

F±(z) =
f [x(1)

± (z)]

2( x(1)
± (z)− 1)

G±(z) =
f [x(2)

± (z)]

2( x(2)
± (z) + 1)

,

�

(B.14)

where we defined the function

f (x) =
x2

x2 − Ω2 .� (B.15)

Similarly, in the above expansions we defined the derivatives of these implicit functions 
with respect to z, as

F(k)
± (0) =

dk

dzk F±(z)
∣∣∣∣
z=0

, G(k)
± (0) =

dk

dzk G±(z)
∣∣∣∣
z=0

.� (B.16)

The explicit expression for finite temperature corrections up to O(β−3) is

�eΠR
11,reg(ω, T) =

e2

8π
ωF(ω,µ, m) + β−2 e2πω2

24mv2
f

(
1 + 2µ

mv2
f

)3/2

×




ω2 − 8mv2
f

(
3µ+ 2mv2

f

(
1 +

√
1 + 2µ

mv2
f

))

[
ω2 − 8mv2

f

(
µ+ mv2

f

(
1 +

√
1 + 2µ

mv2
f

))]2

−
ω2 + 8mv2

f

(
−3µ+ 2mv2

f

(
−1 +

√
1 + 2µ

mv2
f

))

[
ω2 − 8mv2

f

(
µ+ mv2

f

(
−1 +

√
1 + 2µ

mv2
f

))]2 Θ

[
µ

mv2
f

]



+ O(β−3).
�

(B.17)

Here, we have defined the Heaviside Theta function as

θ(x) =
{

1, x > 0
0, x � 0.� (B.18)
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