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Ideals of Multilinear Forms – a Limit
Order Approach
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Abstract. A general theory of limit orders for ideals of multilinear forms is
developed. We relate the limit order of an ideal to those of its maximal hull
and its adjoint ideal. We study the limit orders of the ideals of dominated
and multiple summing multilinear forms. Finally, estimates of the diagonal of
a (non-necessarily diagonal) multilinear form are presented, in terms of the
limit order of the ideals to which it belongs.
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Introduction

In 1983, A. Pietsch [20] presented his “designs of a theory” for ideals of multilinear
forms. His work provided a general framework from which different lines of inves-
tigation developed. Some ideals of multilinear forms appeared as the multilinear
natural extension of ideals of linear operators (e.g., nuclear and integral multilin-
ear forms). However, it is not always clear what the multilinear analogous of a
linear operators ideal should be. For example, the ideal of absolutely r-summing
operators lead to the development of many ideals of multilinear forms: absolutely
r-summing, r-dominated, multiple r-summing, etc. Independently of their linear
origin, many ideals of multilinear forms were studied by their own interest and
also in relation to ideals of polynomials and holomorphy types. In any case, the
theory of ideals of multilinear forms allows to deal with all the different situations
in a unified way.

In the linear theory, the calculus of limit orders proved a useful tool, spe-
cially to compare different ideals of linear operators. The concept of limit order
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for multilinear forms was introduced in [4]. As an application, it could be shown
that some properties of bilinear ideals were no longer valid for the n-linear case
(n ≥ 3).

The first aim of this article is to develop a bit further the general theory of
limit orders for multilinear forms. Even though some of our proofs are adaptations
of the linear analogous results, we chose to present them here. Our motivation
was to give a self-contained treatment of the subject, since the linear versions of
these results come from different sources and with different notations. The general
theory developed, we focus on some particular ideals of multilinear forms.

In the first section, we recall the definitions of limit order and present some
general properties. In section 2 we study the diagonal of a multilinear form. We
show that the limit order of a multilinear ideal gives estimates of the diagonal of
any multilinear form in the ideal. The third section deals with maximal and adjoint
ideals of multilinear forms and their corresponding limit orders. In section 4, the
ideal of r-dominated n-linear forms is shown to be dual to a tensor norm. This
allows us to describe its adjoint ideal. In section 5 we estimate the limit order of
the ideal of multiple 1-summing forms.

Given X, Y Banach spaces, we denote by L(X;Y ) the space of contin-
uous linear mappings T : X → Y . If X1, . . . , Xn and Y are Banach spaces,
L(X1, . . . , Xn;Y ) denotes the space of continuous n-linear mappings T :
X1 × · · · × Xn → Y . Whenever X1 = · · · = Xn = X and Y = C, the space of
continuous n-linear mappings is simply denoted by L(nX). We are going to deal
with mappings T ∈ L(n�p). We denote by x1, . . . , xn the elements in �p. If x is a
sequence we write x = (x(k))∞

k=1, with x(k) ∈ C. Given a sequence (x(k))k ⊆ C,
its p-norm (

∑ |x(k)|p)1/p will be denoted by �p(x(i)) or ‖x‖p.
If we have two sequences (x(k))k and (y(k))k we will denote (x(k))k ≺ (y(k))k

if there exist a constant C such that x(k) ≤ C y(k) for every k. We will denote
(x(k))k 	 (y(k))k if (x(k))k ≺ (y(k))k and (y(k))k ≺ (x(k))k.
Although all the results in the article are proved for complex Banach spaces, stan-
dard modifications can be made to obtain the real version of most of them.

1. Limit order of ideals of multilinear forms

In [4], the limit order for ideals of multilinear forms is defined. We recall the
definitions and some basic facts.

Given a sequence σ, the associated diagonal operator Dσ from �p to �q is
defined by Dσ(x) = (σ(k)x(k))k. With this, given an operator ideal A, the limit
order λ(A; p, q) (see [19, Section 14.4]) is the infimum over all λ ≥ 0 such that
every diagonal operator Dσ : �p → �q with σ ∈ �1/λ belongs to A(�p, �q).

Ideals of multilinear forms were introduced in [20]. Let us recall the defini-
tion. An ideal of multilinear forms A is a subclass of L, the class of all multilinear
forms such that, for any Banach spaces X1, . . . , Xn the set

A(X1, . . . , Xn) = A ∩ L(X1, . . . , Xn)
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satisfies
1. For any γ1 ∈ X ′

1, . . . , γn ∈ X ′
n, the mapping (x1, . . . , xn) �→ γ1(x1) · · · γn(xn)

belongs to A(X1, . . . , Xn).
2. If S, T ∈ A(X1, . . . , Xn), then S + T ∈ A(X1, . . . , Xn).
3. If T ∈ A(X1, . . . , Xn) and Si ∈ L(Yi,Xi) for i = 1, . . . , n, then T◦(S1, . . . Sn) ∈

A(Y1, . . . , Yn).
An ideal of multilinear forms is called (quasi-) normed if for each X1, . . . , Xn there
is a (quasi-) norm ‖ · ‖A(X1,...,Xn) in A(X1, . . . , Xn) such that

1. ‖(x1, . . . , xn) �→ γ1(x1) · · · γn(xn)‖A(X1,...,Xn) = ‖γ1‖ · · · ‖γn‖.
2. ‖T ◦ (S1, . . . Sn)‖A(Y1,...,Yn) ≤ ‖T‖A(X1,...,Xn) · ‖S1‖ · · · ‖Sn‖.

Following the spirit of the definition of limit order for operator ideals, the
concept of limit order was defined in [4] for ideals of multilinear forms. First of all,
if T ∈ L(n�p), we call it diagonal if there exists a sequence α = (α(k))k such that
for all x1, . . . , xn ∈ �p we can write

T (x1, . . . , xn) =
∑

k

α(k)x1(k) · · · xn(k).

We denote by Tα the diagonal multilinear mapping given by the sequence α. With
this the limit order can be defined.

Definition 1.1. Let A be an ideal of multilinear forms. For 1 ≤ p ≤ ∞, the limit
order λn(A; p) is given by:

λn(A; p) = inf{λ : for each α ∈ �1/λ, Tα belongs to A(n�p)}
From the definition we have that 0 ≤ λn(A; p) ≤ 1 for every ideal A and all

p and n. Also, if A,B are ideals such that A ⊆ B, then λn(A; p) ≥ λn(B; p).
With almost the same proof as in [19, Section 14.4], we obtain alternative

expressions for λn(A; p). First, we have:

λn(A; p) = inf{λ : if α = (k−λ)k, then Tα belongs to A(n�p)}.

Given N ∈ N, we define the n-linear form ΦN on C
N by:

ΦN (x1, . . . , xn) =
N∑

k=1

x1(k) · · · xn(k).

With this, if A is quasi-normed and complete, then λn(A; p) is the infimum of all
λ ≥ 0 such that

‖ΦN‖A(n�N
p ) ≤ CNλ (1.1)

for all N ∈ N, where C > 0 is a constant.
The following definition is the multilinear version of that introduced in [14]

for linear operators. As in [14], we denote �n(A, p) := {α ∈ �∞ : Tα ∈ A(n�p)}.
The sequence space �n(A, p) is a Banach space if A is normed and we consider the
norm

‖α‖�n(A,p) = ‖Tα‖A(n�p)
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Definition 1.2. Let A be an ideal of n-linear forms and 1 ≤ p ≤ ∞. We define the
defect by

dn(A, p) = inf
{

1
r

− 1
s

: �r ⊂ �n(A, p) ⊂ �s

}

.

Clearly, the definitions of limit order and defect can be generalized to
n-linear forms on �p1 × · · · × �pn

. All the results in this article can be extended to
this situation. However, for the reader’s convenience, we prefer to state them in
the simple case p1 = · · · = pn = p.

It is also possible to define the limit order of ideals of n-homogeneous polyno-
mials. But this will not lead us to new horizons. Indeed, in [12] the authors showed
that, given a λ-normed ideal of n-homogeneous polynomials Q, there exists a
λ-normed ideal of n-linear forms Q∨ with the following property:

A polynomial P is in Q if and only if its associated symmetric
n-linear form P̌ is in Q∨.

Moreover, P ↔ P̌ is a one-to-one correspondence between diagonal n-homoge-
neous polynomials and diagonal symmetric n-linear forms. Then, the limit orders
of ideals of homogeneous polynomials can be seen as limit orders of ideals of mul-
tilinear forms.

Given a diagonal multilinear form Tα ∈ L(n�p), we consider a sequence σ
such that σ(k)n = α(k) for all k. We take the diagonal operator Dσ : �p → �n

associated to σ and define a mapping Φ : �n × · · · × �n → C by Φ(x1, . . . , xn) =∑
k x1(k) · · · xn(k). The fact that Tα is well defined on �p guarantees that Dσ(�p) ⊂

�n. Now, the diagonal n-linear mapping Tα can be rewritten as

Tα(x1, . . . , xn) = Φ(Dσ(x1), . . . , Dσ(xn)). (1.2)

This decomposition allows to sometimes get some relations between limit orders
of ideals of multilinear forms and of ideals of operators.

Examples: In [4] the limit orders of nuclear, integral and r-dominated multi-
linear forms (see [8, 17] for definitions) are computed:

λn(L; p) =

⎧
⎨

⎩

0 if p ≤ n

1 − n
p if p > n

λn(N ; p) = λn(I; p) =

⎧
⎨

⎩

n
p′ if 1 ≤ p < n′

1 if n′ ≤ p

λn(Dr; p) = n λ(Πr; p, n)

where λ(Πr; p, n) is the limit order of the ideal of absolutely r-summing linear oper-
ators (see [19, Section 22.4]). The relation of the limit order of r-dominated n-linear
forms and absolutely r-summing operators follows from the following result:
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Proposition 1.3. [4] Let Tα ∈ L(n�p) be diagonal and Dσ its associated diagonal
operator. Then Tα is r-dominated if and only if Dσ is absolutely r-summing.

Now we state some general properties of limit orders. As in the linear case, the
following property holds for composition ideals:

Proposition 1.4. Let A be an ideal of n-linear forms and B1, . . . ,Bn linear oper-
ator ideals. Then:

λn(A ◦ (B1, . . . ,Bn); p) ≤ λ(B1; p, s) + · · · + λ(Bn; p, s) + λn(A; s)

As a consequence, since A = A ◦ (L, . . . ,L), we have

|λn(A; p) − λn(A; p0)| ≤ n

∣
∣
∣
∣
1
p

− 1
p0

∣
∣
∣
∣ .

Therefore, λn(A; p) is a continuous function of 1
p .

Let A be a quasi-normed ideal of n-linear forms. The maximal hull Amax of
A is defined as the class of all n-linear forms T such that

‖T‖Amax(E1,...,En) := sup{‖T |M1×···×Mn
‖A(M1,...,Mn) : Mi ⊂ Ei, dimMi < ∞}

is finite.
Amax is always complete and it is the largest ideal whose quasi-norm coin-

cides with ‖·‖A in finite dimensional spaces. Hence, if A is complete, equation (1.1)
says that

λn(A; p) = λn(Amax; p)

for all p.
A quasi-normed ideal A is called maximal if (A, ‖ · ‖A) = (Amax, ‖ · ‖Amax).

Following [5, 10, 13] we define now the adjoint of an ideal of multilinear mappings.
Let A be a normed ideal of n-linear mappings. If M1, . . . ,Mn are finite dimensional
normed spaces, the multilinear norm ‖ · ‖A induces a tensor norm α in FIN (the
class of all finite dimensional normed spaces) by means of the identification:

(
n⊗

i=1

Mi;α

)
1= A(M ′

1, . . . ,M
′
n)

This norm can be extended to a finitely generated tensor norm on the class of
normed spaces by

‖s‖(
⊗n

i=1 Ei;α) := inf

{

‖s‖(
⊗n

i=1 Mi;α) : Mi ∈ FIN(Ei), s ∈
n⊗

i=1

Mi

}

In this case, the tensor norm α and the ideal A are said to be associated.
Given a normed ideal A associated to the finitely generated tensor norm α,

its adjoint ideal A∗ is defined by

A∗(E1, . . . , En) :=

(
n⊗

i=1

Ei;α

)′
.

The adjoint ideal is called dual ideal in [10].
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The tensor norm associated to A∗ is denoted by α∗. We also have the repre-
sentation theorem [13, Section 3.2] (see also [10, Section 4]):

Amax(E1, . . . , En) =

(
n⊗

i=1

Ei;α∗
)′

.

In particular, this shows that the adjoint ideal A∗ is maximal.

2. The diagonal of a multilinear form

Throughout this section, Xi will be Banach spaces with unconditional basis {ei
j}j

(i = 1, . . . , n). We define the mapping D : L(X1, . . . , Xn) → L(X1, . . . , Xn) given
by

D(T )(x1, . . . , xn) =
∞∑

j=1

T (e1
j , . . . , e

n
j )x1(j) · · · xn(j).

Note that D(T ) is the diagonal n-linear form given by the diagonal of T . The
linear mapping D is well defined and continuous [7, Proposition 1.3]. Let us show
now that it preserves some ideals of multilinear forms.

Proposition 2.1. Let β be a tensor norm of order n. If T ∈ L(X1, . . . , Xn) is
β-continuous (i.e., T ∈ (

⊗n
i=1 Xi;β)′), then D(T ) is also β-continuous.

Proof. For 0 ≤ t ≤ 1 and i = 1, . . . , n, we define Λi
t : Xi → Xi by

Λi
t(x) =

∞∑

j=1

x(j)rj(t)ei
j ,

where {rj}j are the generalized n-Rademacher functions [2, Section 1]. By the
unconditionality of the basis, Λi

t is continuous and ‖Λi
t‖ ≤ 2Ki (being Ki the

unconditionality constant of the basis).
Let s ∈⊗n

i=1 Xi, s =
∑M

k=1 x1
k ⊗ · · · ⊗ xn

k . We have

|D(T )(s)| =

∣
∣
∣
∣
∣

M∑

k=1

D(T )(x1
k, . . . , xn

k )

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∫ 1

0

M∑

k=1

T
(
Λ1

t (x
1
k), . . . ,Λn

t (xn
k )
)
dt

∣
∣
∣
∣
∣

=
∣
∣
∣
∣

∫ 1

0

T
(
(Λ1

t ⊗ · · · ⊗ Λn
t )(s)

)
dt

∣
∣
∣
∣

≤ ‖T‖(⊗n
i=1 Xi;β)′ · ‖Λ1

t ‖ · · · ‖Λn
t ‖ · ‖s‖β

≤ ‖T‖(⊗n
i=1 Xi;β)′ · 2nK1 · · · Kn · ‖s‖β

�
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Corollary 2.2. If A is a maximal ideal of n-linear forms, then D : A(X1, . . . , Xn) →
A(X1, . . . , Xn) is well defined and continuous.

In particular, the ideals of integral, extendible and r-dominated (r ≥ n)
n-linear forms are preserved by D. The same holds for the ideal of multiple r-sum-
ming multilinear forms (see [16, 3] for the definitions and Section 5 for the limit
orders of the case r = 1). An example of an ideal which is not maximal but is
preserved by D is given in the following:

Proposition 2.3. If T ∈ L(X1, . . . , Xn) is weakly sequentially continuous, then so
is D(T )

Proof. Let (xi
k)k ⊆ Xi be weakly convergent to xi ∈ Xi. With the notation of the

proof of Proposition 2.1, we have

D(T )(x1
k, . . . , xn

k ) =
∫ 1

0

T
(
Λ1

t (x
1
k), . . . ,Λn

t (xn
k )
)
dt.

Since each Λi
t is linear and T is weakly sequentially continuous, T (Λ1

t (x
1
k), . . . ,

Λn
t (xn

k )) converges to T
(
Λ1

t (x
1), . . . ,Λn

t (xn)
)

for every t ∈ [0, 1]. Now the result
follows from the dominated convergence theorem. �

However, not every ideal is preserved by D:
Example. The ideals of nuclear, approximable and weakly continuous on

bounded sets multilinear forms are not preserved by D:
Let T ∈ L(n�1) be given by

T (x1, . . . , xn) =

⎛

⎝
∞∑

j=1

x1(j)

⎞

⎠ · · ·
⎛

⎝
∞∑

j=1

xn(j)

⎞

⎠ .

Clearly, T is a finite type n-linear form. Now,

D(T )(x1, . . . , xn) =
∞∑

j=1

x1(j) · · · xn(j)

which is not weakly continuous on bounded sets (see, for example,
[8, Proposition 2.6]). Hence it is neither nuclear, nor approximable.
From the above results about the operator D and the definitions of limit order and
defect, we can obtain some information about the diagonal of any n-linear form
belonging to certain ideal.

Proposition 2.4. If A is a maximal ideal of n-linear forms (or any ideal of n-linear
forms preserved by D) and T ∈ A(n�p), then, for every ε > 0,

(T (ej , . . . , ej))j ∈ �r+ε

where r = 1
λn(A;p)−dn(A;p) and (ej)j is the canonical basis of �p.
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3. Maximal and adjoint ideals of multilinear mappings

The limit orders of an ideal and its adjoint ideal are related, as in the linear case,
by the following equality (see [5, Sect. 17.19])

Lemma 3.1. ‖ΦN‖A(n�N
p )‖ΦN‖A∗(n�N

p′ ) = N

Proof. Let us note first that

N =
N∑

k=1

ΦN (ek, . . . , ek) = ΦN

(
N∑

k=1

ek ⊗ · · · ⊗ ek

)

≤ ‖ΦN‖A(n�N
p )

∥
∥
∥
∥
∥

N∑

k=1

ek ⊗ · · · ⊗ ek

∥
∥
∥
∥
∥
(⊗n �N

p ;α∗)
= ‖ΦN‖A(n�N

p ) · ‖ΦN‖A∗(n�N
p′ )

For the reverse inequality, let us choose a norm one s ∈ (⊗n
�N
p ;α∗) such

that ‖ΦN‖A(n�N
p ) = |ΦN (s)|. Then

‖ΦN‖A(n�N
p ) · ‖ΦN‖A∗(n�N

p′ ) = ‖ΦN (s) · ΦN‖A∗(n�N
p′ ).

We write s =
∑N

i1,...,in=1 αi1,...,in
ei1⊗· · ·⊗ein

and define s0 :=
∑N

i=1 αi,...,iei⊗
· · · ⊗ ei the diagonal of s. Clearly, ΦN (s) = ΦN (s0).

Now we define S : �N
p′ → �N

p′ by S(x1, x2, . . . , xN ) = (x2 . . . , xN , x1). It is easy
to see that for each 1 ≤ j ≤ n,

∑N
k=1(ej ⊗· · ·⊗ej)◦(Sk, · · · , Sk) = ΦN ∈ A∗(n�N

p′ ).
Therefore,

‖ΦN (s) · ΦN‖A∗(n�N
p′ ) = ‖ΦN (s0) · ΦN‖A∗(n�N

p′ )

=

∥
∥
∥
∥
∥

N∑

i=1

αi,...,i ·
N∑

k=1

(ei ⊗ · · · ⊗ ei) ◦ (Sk, · · · , Sk)

∥
∥
∥
∥
∥

A∗(n�N
p′ )

=

∥
∥
∥
∥
∥

N∑

k=1

s0 ◦ (Sk, . . . , Sk)

∥
∥
∥
∥
∥

A∗(n�N
p′ )

≤ N · ‖s0‖A∗(n�N
p′ ).

Here we identify tensors with multilinear forms. Proceeding as in Proposition 2.1
and noting that in this situation the operator Λt has norm one, we can see that
‖s0‖A∗(n�N

p′ ) ≤ ‖s‖A∗(n�N
p′ ) = ‖s‖(⊗n �N

p ;α∗) = 1. This completes the proof. �

Inmmediatelly from this and (1.1) we have

Corollary 3.2. Let A be a normed ideal of multilinear forms. Then λn(A, p) +
λn(A∗; p′) ≥ 1.

The remaining results in this section can be seen as multilinear versions of
some results in [14].
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Proposition 3.3. Let A be a Banach ideal of n-linear forms. Then dn(A, p) is the
infimum of λ − μ where λ, μ ≥ 0 are such that

CNμ ≤ ‖ΦN‖A(n�N
p ) ≤ DNλ (3.1)

for all N ∈ N, for some constants C,D > 0.

Proof. Take r, s such that �r ⊂ �n(A, p) ⊂ �s. From the closed graph theorem,
the inclusions �r ↪→ �n(A, p) and �n(A, p) ↪→ �s are continuous. Thus, there exist
constants C and D such that, for all N ∈ N,

CN
1
s ≤ ‖ΦN‖A(n�N

p ) = ‖(1, . . . , 1, 0, . . . )‖�n(A,p) ≤ DN
1
r .

Conversely, suppose CN
1
s ≤ ‖ΦN‖A(n�N

p ) ≤ DN
1
r for all N ∈ N. It is enough

to show that, for all ε > 0, we have �r−ε ⊂ �n(A, p) ⊂ �s+ε.
The first inclusion follows from the equivalence between the definitions of

limit order. For the second inclusion, let σ ∈ �n(A, p). We first consider the case
in which (σ(k))k converges to 0. We can assume that (|σ(k)|)k is non-increasing.
We can factor ΦN as

�N
p × · · · × �N

p
ΦN−→ C

Dα ↓ Dα ↓ ↗
Tσ

�N
p × · · · × �N

p

where α = σ−1/n. Therefore,

CN
1
s ≤ ‖ΦN‖A(n�N

p ) ≤ ‖Tσ‖A(n�N
p ) · ‖Dα‖n ≤ ‖Tσ‖A(n�p) · |σ(N)|−1

Consequently, |σN | ≤ ‖Tσ‖A(n�p)

DN1/s for all N ∈ N. This implies that σ ∈ �s+ε.

Now we assume that (σ(k))k does not converge to 0. Let us take constants a and
b and a subsequence of (σ(k))k such that a ≤ σ(ki) ≤ b for all i. We will see that
in this case, both �n(A, p) and �s coincide with �∞.

Let β ∈ �∞. We define S : �p → �p by

S(ei) =
(

β(i)
σ(ki)

) 1
n

eki

Since Tβ = Tσ ◦ (S, . . . , S), we have that Tβ ∈ A(n�p) and then β ∈ �n(A, p).
Now, since �n(A, p) = �∞, we have Φ = T(1,1,... ) ∈ A(n�p). From the inequal-

ity CN
1
s ≤ ‖ΦN‖A(n�N

p ) ≤ ‖Φ‖A(n�p) for all N , we obtain s = ∞. �

Proposition 3.4. Let A be a Banach ideal of n-linear forms and A∗ its adjoint
ideal. Then

λn(A; p) + λn(A∗; p′) = 1 + dn(A; p).
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Proof.

λn(A; p) + λn(A∗; p′) = inf{λ > 0 : ∃D > 0 with ‖ΦN‖A(n�N
p ) ≤ DNλ, ∀N}

+ inf{ν > 0 : ∃C > 0 with ‖ΦN‖A∗(n�N
p′ ) ≤ CNν , ∀N}

= inf{λ > 0 : ∃D > 0 with ‖ΦN‖A(n�N
p ) ≤ DNλ, ∀N}

+ inf{ν > 0 : ∃C̃ > 0 with C̃N1−ν ≤ ‖ΦN‖A(n�N
p ), ∀N}

=1 + inf{λ − μ : C̃Nμ ≤ ‖ΦN‖A(n�N
p ) ≤ DNλ}

=1 + dn(A; p).

�

Note that Corollary 3.2 can also be obtained as a consequence of
Proposition 3.4. We also get the following:

Corollary 3.5. Let A be a Banach ideal. The following are equivalent:

(a) λn(A; p) + λn(A∗; p′) = 1.
(b) There exists r > 0 such that for all ε > 0, �r−ε ⊂ �n(A, p) ⊂ �r+ε.
(c) There exists λ ≥ 0 such that for all ε > 0 and all N ∈ N, CNλ−ε ≤

‖ΦN‖A(n�N
p ) ≤ DNλ+ε for some constants C,D > 0.

(d)
(

log ‖ΦN ‖A(n�N
p )

log N

)

N∈N

converges as N → ∞.

Moreover, if these equivalences hold, then 1
r = λ = λn(A, p)

Remark 3.6. The definition of limit order implies that, for all ε > 0,

�1/λn(A,p)−ε ⊂ �n(A, p).

Therefore, the equality λn(A; p) + λn(A∗; p′) = 1 is equivalent to the inclusion
�n(A, p) ⊂ �1/λn(A,p)+ε for all ε > 0.

4. Dominated multilinear forms

Absolutely summing and p-summing operators (see [5, Ch. 11] or [19, Ch. 17])
admit different generalizations to the multilinear setting, depending on the dif-
ferent properties that we want to preserve. One of these posible generalizations
is done attending to the Pietsch’s Domination Theorem [19, Sect. 17.3.2]. With
this we obtain the r-dominated multilinear mappings. In [4] the limit order of
r-dominated n-linear forms was computed. Our aim in this section is to relate the
adjoint ideal of r-dominated forms with the ideal of r-integral forms (see defini-
tions below) and use the results in [4] and in the previous sections to compute the
limit order of the latter. Let us recall first some definitions.
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A sequence in a Banach space is weakly p-summable if (γ(xn))n ∈ �p for all
γ ∈ X ′. The space of weakly p-summable sequences endowed with the norm

wp((xn)n) = sup
γ∈BX′

(
∑

n

|γ(xn)|p
)1/p

is a Banach space.
A map T ∈ L(X1, . . . , Xn;Y ) is said to be absolutely (s; r1, . . . , rn)-summing

(where 1
s ≤ 1

r1
+ · · · + 1

rn
) [1, 15] if there exists C > 0 such that for any finite

choice of elements xi
j ∈ Xj , j = 1, . . . , n, i = 1, . . . ,m we have

(
m∑

i=1

‖T (xi
1, . . . , x

i
n)‖s

)1/s

≤ C · wr1(x
i
1) · · · wrn

(xi
n).

A map T ∈ L(X1, . . . , Xn;Y ) is said to be r-dominated [21, 17] if it is absolutely
(r/n; r, . . . , r)-summing; that is, there exists C > 0 such that for every xi

j ∈ Xj ,
j = 1, . . . , n, i = 1, . . . ,m,

(
m∑

i=1

‖T (xi
1, . . . , x

i
n)‖r/n

)n/r

≤ C · wr(xi
1) · · · wr(xi

n).

We denote by Dr(nX) the space of r-dominated n-linear forms on X.
First we show that r-dominated n-linear forms are dual to a tensor norm

whenever r ≥ n. Next, this duality will be used to study the adjoint ideal D∗
r .

For r ≥ n, we define in
⊗n

i=1 Xi,

αn
r′(s) = inf

{

�u(λ(i)) · wr(x1
i ) · · · wr(xn

i ) : s =
N∑

i=1

λ(i) · x1
i ⊗ · · · ⊗ xn

i

}

where 1
u + n

r = 1.

A straightforward application of [9, §1.2] gives

Proposition 4.1. αn
r′ is a finitely generated tensor norm of order n.

Now we can show the desired duality:

Proposition 4.2. If r ≥ n, Dr(nX) = (
⊗n

X;αn
r′)

′.

Proof. Let T ∈ Dr(nX). For s =
∑N

i=1 λ(i) · x1
i ⊗ · · · ⊗ xn

i ∈⊗n
X we have

|T (s)| =

∣
∣
∣
∣
∣

N∑

i=1

λ(i) · T (x1
i , . . . , x

n
i )

∣
∣
∣
∣
∣
≤ � r

n
(T (x1

i , . . . , x
n
i )) · �u(λ(i))

≤ ‖T‖Dr(nX) · wr(x1
i ) · · · wr(xn

i ) · �u(λ(i)).

Since this is valid for any representation of s, we obtain that T ∈ (
⊗n

X;αn
r′)

′

and ‖T‖(⊗n X;αn
r′)′ ≤ ‖T‖Dr(nX).
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Conversely, let T ∈ (
⊗n

X;αn
r′)

′. For any sequences (x1
i )

N
i=1, . . . , (x

n
i )N

i=1 in
X, there exist scalars λ(1), . . . , λ(N) with �u(λ(i)) = 1 such that

� r
n

(
T (x1

i , . . . , x
n
i )
)

=
N∑

i=1

λ(i) · T (x1
i , . . . , x

n
i )

= T

(
N∑

i=1

λ(i) · x1
i ⊗ · · · ⊗ xn

i

)

≤ ‖T‖(⊗n X;αn
r′)′ · αn

r′

(
N∑

i=1

λ(i) · x1
i ⊗ · · · ⊗ xn

i

)

≤ ‖T‖(⊗n X;αn
r′)′ · wr(x1

i ) · · · wr(xn
i ) · �u(λ(i)).

Thus, T ∈ Dr(nX) and ‖T‖Dr(nX) ≤ ‖T‖(⊗n X;αn
r′)′ . �

Inspired by [5, Chapters 17 and 18], we study D∗
r , the adjoint ideal to the

ideal of r-dominated multilinear mappings.
Note that, since Dr is a maximal ideal, we have Dr = (D∗

r )∗. Therefore, for
M1, . . . ,Mn ∈ FIN,

D∗
r(M1, . . . ,Mn) 1=

(
n⊗

i=1

Mi;αn
r′

)

.

Let T ∈ D∗
r (M1, . . . ,Mn) and fix ε > 0. T admits a representation in the following

way:

T (x1, . . . , xn) =
N∑

k=1

λ(k) · γ1
k(x1) · · · γn

k (xn), (4.1)

where (λ(k))k ⊂ C, (γi
k)k ⊂ M ′

i satisfy

�u(λ(k)) · wr(γ1
k) · · · wr(γn

k ) = ‖T‖D∗
r (M1,...,Mn) · (1 + ε)

with 1
u + n

r = 1.
Then we can factor T as:

M1 × · · · × Mn
T−→ C

R1 ↓ Rn ↓ ↗
Tλ

�N
r × · · · × �N

r

(4.2)

where Ri(x) = (γi
k(x))N

k=1. Since ‖Tλ‖ = �u(λ(k)) and ‖Ri‖ = wr(γi
k), we have

‖Tλ‖ · ‖R1‖ · · · ‖Rn‖ = ‖T‖D∗
r (nM) · (1 + ε).

Following these steps backwards, we obtain for each factorization of T as in
(4.2), a representation of T as in equation (4.1). Therefore, we have

‖T‖D∗
r (nM) = inf

{‖Tλ‖ · ‖R1‖ · · · ‖Rn‖ : T factors as in (4.2)
}

.
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In [11, Section 4.3], the ideal of r-integral polynomials is defined. We define
in an analogous way the ideal Ir of r-integral multilinear forms. If r ≥ n, we say
that T ∈ L(X1, . . . , Xn) is r-integral if there exist a finite measure space (Ω, μ)
and operators Si : Xi → Lr(μ) such that T = Qn

μ,r ◦ (S1, . . . , Sn), where Qn
μ,r ∈

L(nLr(μ)) is the integrating n-linear form Qn
μ,r(f1, . . . , fn) =

∫
Ω

f1 · · · fn dμ:

X1 × · · · × Xn
T−→ C

S1 ↓ Sn ↓ ↗
Qn

μ,r

Lr(μ) × · · · × Lr(μ)

Ir is a Banach ideal with the r-integral norm:

‖T‖Ir(X1,...,Xn) = inf
{‖S1‖ · · · ‖Sn‖ · ‖Qn

μ,r‖ : T = Qn
μ,r ◦ (S1, . . . , Sn)

}
.

Lemma 4.3. The n-linear form Qn
μ,r belongs to D∗

r and ‖Qn
μ,r‖D∗

r (nLr(μ)) =
‖Qn

μ,r‖ = μ(Ω)1/u, where 1
u + n

r = 1.

Proof. We have to show that Qn
μ,r is a continuous linear form on (

⊗n
Lr(μ); (αn

r′)∗)
with norm μ(Ω)1/u. This is shown in [5, Proposition 18.2] for bilinear forms. Their
proof is also valid for n ≥ 3. �
Corollary 4.4. If r ≥ n, Ir ⊂ D∗

r and ‖T‖D∗
r

≤ ‖T‖Ir
for each r-integral n-linear

form T .

Proof. If T is r-integral, it can be written as T = Qn
μ,r ◦ (S1, . . . , Sn). Lemma 4.3

implies that T ∈ D∗
r and

‖T‖D∗
r

≤ ‖Qn
μ,r‖D∗

r
· ‖S1‖ · · · ‖Sn‖ = ‖Qn

μ,r‖ · ‖S1‖ · · · ‖Sn‖.

Taking the infimum over all representations of T we obtain the desired inequality.
�

Theorem 4.5. For r ≥ n, we have D∗
r

1= Imax
r .

Proof. It is enough to show, for M1, . . . ,Mn ∈ FIN, that ‖T‖Ir(M1,...,Mn) =
‖T‖D∗

r (M1,...,Mn). One inequality is given in Corollary 4.4. For the other one, we
factor T ∈ D∗

r (M1, . . . ,Mn) as

M1 × · · · × Mn
T−→ C

R1 ↓ Rn ↓ ↗
Tλ

�N
r × · · · × �N

r

Let us show now that Tλ can be factored as

�N
r × · · · × �N

r
Tλ−→ C

J ↓ J ↓ ↗
Qn

μ,r

Lr(μ) × · · · × Lr(μ)

with ‖Qn
μ,r‖ · ‖J‖n ≤ ‖Tλ‖. Since Tλ factors through T|λ|, we can assume that

λ(k) ≥ 0 for each k. Let (Ω, μ) a measure space such that Ω can be splitted as a
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disjoint union of subsets A1, . . . , An with μ(Ak) = λ(k)u. Let J : �N
r → Lr(μ) be

defined as

J(x) =
N∑

k=1

x(k) · λ(k)
1−u

n · χAk
.

Simple computations show that ‖J‖ = 1 and Qn
μ,r◦(J, . . . , J) = Tλ. Since ‖Qn

μ,r‖ =
μ(Ω)1/u = �u(λ(k)) then ‖Tλ‖ = �u(λ(k)). This completes the proof. �

In [19, Section 22.4], it is shown that absolutely r-summing operators satisfy
λ(Πr, p, q) + λ(Π∗

r , q, p) = 1. By [14, Corollary 1] (which is analogous to
Corollary 3.5), this means that �(Πr, p, q) ⊂ �1/λ(Πr,p,q)+ε for all ε > 0. Now,
by Proposition 1.3, �n(Dr, p) ⊂ �1/λn(Dr,p)+ε for all ε > 0. Consequently, by
Corollary 3.5 and the remark following it, we have that λn(Dr; p)+λn(D∗

r ; p′) = 1.
So we have, for r ≥ n,

λn(Ir; p) = λn(D∗
r ; p) = 1 − λn(Dr; p′). (4.3)

We can use now the results of this sections to obtain some properties of the
ideal of r-integral n-linear forms. For n = 2, the ideal of r-integral bilinear forms
is isomorphic to its maximal hull [11, 4.4]. Then, by Theorem 4.5, it is isomorphic
to the adjoint of the ideal of r-dominated bilinear forms. By [5] (see also [4]), r-
dominated and 2-dominated bilinear forms coincide for all r ≥ 2. Thus, the same
holds for r-integral bilinear forms: Ir(2X) = I2(2X) for all Banach space X and
all r ≥ 2. This result is not longer true for n ≥ 3. In fact, from [4, Proposition 2.6]
and equality (4.3) we have:

Corollary 4.6. Let n ≥ 3. Given r ≥ n, there exists p such that, for any s > r,
there are diagonal s-integral n-linear forms on �p which are not r-integral.

It is not known if Ir is a maximal ideal. This question is stated in [11, 4.4]
as an open problem.

5. Multiple 1-summing forms

The r-dominated multilinear mappings generalize the absolutely r-summing lin-
ear mappings by preserving the Pietsch’s Domination Theorem. This happened
to be too restrictive a class, in the sense that many other interesting properties
of summing operators were not preserved by r-dominated multilinear mappings.
This led to the multiple summing multilinear operators. These have been intro-
duced independently by M. Matos [16] and F. Bombal, D. Pérez-Garćıa and I.
Villanueva [3]. A multilinear operator T ∈ L(X1, . . . , Xn;Y ) is multiple r-sum-
ming (T ∈ Πr(X1, . . . , Xn;Y )) if there exists C > 0 such that for every choice of
finite sequences (xij

j ) ⊆ Xj the following holds
⎛

⎝
m1,...,mn∑

i1,...,in=1

‖T (xi1
1 , . . . , xin

n )‖r

⎞

⎠

1
r

≤ C · wr((xi1
1 )m1

i1=1) · · · wr((xin
n )mn

in=1).
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The least of such constants C is called the multiple p-summing norm and denoted
‖T‖Πr(X1,...,Xn;Y ).

A. Defant and D. Pérez-Garćıa studied multiple 1-summing mappings in [6]
and showed that its associated tensor norm preserves unconditionality. Some other
properties of the norm were also proved and applied in [6, Section 6] to compute the
limit order for bilinear multiple 1-summing operators. Their result can be written
with our notation as

λ2(Π1; p) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
p′ if 2 ≤ p

3
2

− 2
p

if 4
3 ≤ p < 2

0 if 1 ≤ p < 4
3

Our aim is now to compute the limit order of Π1 for higher n. In fact, what we do
is to compute the Π1-norm of ΦN : �N

p × · · · × �N
p → C.

Let us begin by considering the case p ≤ 2. We follow the steps of [6, Section 6].
First of all, if T ∈ L(n�N

2 ) then

‖T‖Π1(n�N
2 ) 	

⎛

⎝
N∑

i1,...,in=1

|T (ei1 , . . . , ein
)|2
⎞

⎠

1/2

(5.1)

(see [18, Theorem 4.2], also [6, Theorem 5.1]). On the other hand, by
[6, Theorem 5.2], if X has 1-unconditional basis, has cotype 2 and dimX = N ,
then for S ∈ L(nX) we have

‖S‖Π1(nX) 	 sup
σj

‖S ◦ (Dσ1 , . . . , Dσn
)‖Π1(n�N

2 ), (5.2)

where Dσj
: �N

2 → X are norm-one diagonal operators.
Applying (5.1) and (5.2) to ΦN we obtain

‖ΦN‖Π1(n�N
p ) 	 sup

σj

⎛

⎝
N∑

k1,...,kn=1

|σ1(k1) · · · σn(kn)ΦN (ek1 , . . . , ekn
)|2
⎞

⎠

1/2

= sup
σj

(
N∑

k=1

|σ1(k) · · · σn(k)|2
)1/2

where the supremum is taken over all σj such that Dσj
: �N

2 → �N
p , j = 1, . . . , n

are norm-one operators. Note that ‖Dσj
‖ = ‖σj‖�N

r
, where 1

r = 1
2 − 1

p′ . If r ≥ n,
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we have

‖ΦN‖Π1(n�N
p ) 	 sup

⎧
⎨

⎩

(
N∑

k=1

|σ1(k) · · · σn(k)|2
)1/2

: σj ∈ B�N
r

⎫
⎬

⎭

= sup

⎧
⎨

⎩

(
N∑

k=1

|σ(k)|2
)1/2

: σ ∈ B�N
r/n

⎫
⎬

⎭

= ‖id : �N
r/n → �N

2 ‖ =
{

1 if 1 ≤ r
n ≤ 2

N
1
2 − n

r if 2 < r
n

If r < n, with the same procedure we obtain ‖ΦN‖Π1(n�N
p ) � 1. Since the

reverse inequality is always true, we also have ‖ΦN‖Π1(n�N
p ) 	 1 for this case. This

gives:

‖ΦN‖Π1(n�N
p ) 	

{
1 if 1 ≤ p ≤ 2n

n+1

N
n+1

2 − n
p if 2n

n+1 ≤ p ≤ 2.

We now consider p > 2. Let us see that in this case

max{
√

N,N1− n−1
p (log N)1/p′} ≺ ‖ΦN‖Π1(n�N

p ) ≺ N
n+1

2 − n
p .

To get the lower bound, first note that we can factor

�N
2 × · · · × �N

2
ΦN−→ C

i ↓ i ↓ ↗ΦN

�N
p × · · · × �N

p

This factorization together with (5.1) give
√

N = ‖ΦN‖Π1(n�N
2 ) ≤ ‖ΦN‖Π1(n�N

p ).
We complete the lower bound by induction on n. By [6, Lemma 3.4] we have

the isometry Π1(n�N
p ; C) 1= Π1(n−1�N

p ; �N
p′ ), denoted by T ↔ T̃ . If n = 2, then

Φ̃N = id : �N
p → �N

p′ . Therefore, ‖ΦN‖Π1(2�N
p ) = ‖id‖Π1(�N

p ;�N
p′ ) 	 (N log N)1/p′

, by
[19, 22.4.11].

Let us now consider ΣN : �N
p′ → C given by z �

∑N
k=1 z(k) and ΨN =

ΣN ◦ Φ̃N :

(n−1) times
︷ ︸︸ ︷
�N
p × · · · × �N

p → �N
p′ → C. By the induction hypothesis

N1− n−2
p (log N)1/p′ ≺ ‖ΨN‖Π1(n−1�N

p ) ≤ ‖ΦN‖Π1(n�N
p )‖ΣN‖.

Now, since ‖ΣN‖ = N
1
p , we have the desired lower bound.

To get the upper bound, let us factor ΦN in the following way

�N
p × · · · × �N

p
ΦN−→ C

↓ ↓ ↗
�N
2 × · · · × �N

2
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Hence

‖ΦN‖Π1(n�N
p ) ≤ ‖id : �N

p → �N
2 ‖n‖ΦN‖Π1(n�N

2 )

≺ (N
1
2 − 1

p )n
√

N = N
n+1

2 − n
p .

This altogether gives the following situation

‖ΦN‖Π1(n�N
p ) 	 1 if 1 ≤ p ≤ 2n

n+1

‖ΦN‖Π1(n�N
p ) 	 N

n+1
2 − n

p if 2n
n+1 ≤ p ≤ 2

max{√N,N1− n−1
p (log N)1/p′} ≺ ‖ΦN‖Π1(n�N

p ) ≺ N
n+1

2 − n
p if 2 ≤ p.

We can reformulate this results in terms of limit orders and defects:
For p ≤ 2:

λn(Π1; p) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if 1 ≤ p ≤ 2n
n+1

n + 1
2

− n

p
if 2n

n+1 ≤ p ≤ 2

and dn(Π1, p) = 0.
For p > 2:

max
{

1
2
, 1 − n − 1

p

}

≤ λn(Π1; p) ≤ min
{

n + 1
2

− n

p
, 1
}

and dn(Π1, p) ≤ n−1
2 − 1

p .
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Departamento de Matemática Aplicada and IMPA
Universidad Politécnica de Valencia
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