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We review the concept of quantum vortices and their appearance in ionization collisions. By relaxing the
usual geometrical restrictions on the momenta of the final-state, we study these vortices as submanifolds
of codimension 2 in the space where the transition matrix element T is defined. In particular, we
exemplify their main characteristics by studying the ionization of hydrogen by positron impact.
Previous calculation under a collinear geometry for impact energies larger than 270 eV have shown
the presence of three isolated vortices. Here we demonstrate that they are produced by a single vortex
line intersecting three times the corresponding two-dimensional collinear plane.
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1. Introduction

We have a basic knowledge about vortices steaming from our
everyday experience. We see vortices while stirring a cup of coffee.
They evidence in smoke rings, the whirlpool in the wake of a boat,
or a dust devil crossing the road in front of our car. They can even
have planetary dimensions, as in the red spot of Jupiter. Besides
these macroscopic examples, vortices can also appear in Quantum
Physics. Their existence was predicted by Lars Onsager [1] in
connection with superfluid helium and by Alexei Abrikosov [2] in
type-II superconductors. Quantum vortices were also observed
experimentally in Bose–Einstein condensates [3].

In this article we discuss a completely different kind of quan-
tum vortices that can be observed in atomic collisions. They are
not the result of the interaction of a lot of particles as in a super-
fluid; they are not related to any magnetic field, as in a supercon-
ductor; and they do not require any external non-linear term to be
added to the dynamical equation, as in a Bose–Einstein condensate.
They appear in the Schrödinger equation for a few-body system
with Coulomb interactions. Nothing else is required.

But, how can we talk about vortices in such a simple quantum
system? In these previous cases we actually had a fluid flowing,
or a current. But, what is flowing in a few-body system? These very
valid questions will be addressed in Sections 4 and 5. But first, let
us review some basic concepts about vortices.
2. Vorticity and circulation

At a very basic level, a vortex is a region in a fluid where the
flow rotates about an axis. Its study requires the introduction of
some quantities that would help to define this rotation locally.
One of this key quantities is the vorticity, defined as the curl of
the velocity field uðr; tÞ of the fluid, namely

~xðr; tÞ ¼ r� u: ð1Þ
Using Stokes’ theorem it can be easily demonstrated that ~xðr; tÞ is
proportional to the rate of rotation of a small fluid element about its
own axes [7]. Since, by its own definition as a curl, r � ~x ¼ 0, only
two out of its three components are independent.

Another quantity of interest is the circulation C [8] which for
any closed contour C around an arbitrary curved surface S in the
fluid reads

C ¼
I
C
u � dl ¼

Z
S

~x � ds; ð2Þ

where the circuit C is oriented counterclockwise with respect to the
surface normal s. Let us consider, for instance, a fluid rotating as a
rigid body with angular speed X around an axis ẑ. In cylindrical
coordinates ðq; #; zÞ, its velocity field is u ¼ Xq #̂, and the vorticity
reads ~x ¼ 2X ẑ, i.e. it is constant and equal to twice the angular
velocity. Thus, the circulation about a surface S reads C ¼ 2SX.

We are not interested in this kind of rigid body rotating fluid
though, but in one that would contain ‘‘irrotational vortices”. This
is apparently a contradictio in terminis since, how can a vortex exist
in a fluid that is not rotating? To address this question, let us con-
sider a velocity field that is inversely proportional to the distance q
.1016/j.
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from its axis, namely u / #̂=q. Then, the vorticity is zero every-
where (and so, the flow is said to be irrotational), except at the axis
itself, where it diverges. But because this singularity is integrable,
the circulation is zero for any contour not encircling the axis, and
constant for a contour around the axis, independently of its size
and shape. We’ll come back to this example in a following section.

3. Irrotational vortices

We might have a quotidian understanding about vortices, but
not a rigorous definition, or even a broadly accepted one. Many
proposals have been made in the past [4–7], but none seems to
be entirely satisfactory [7]. Fortunately, here we are not dealing
with general vortices, but with irrotational ones, and so a precise
definition is possible. We can define an irrotational vortex as any
region of an irrotational fluid where the vorticity is different from
zero (or more specifically, diverges).

As it was first proven by von Helmholtz in 1858 [9] and further
developed by Lord Kelvin [10], the circulation around any point of
a vortex is constant. This constancy means that vortices cannot ter-
minate within a fluid, and therefore they must form loops or reach
the fluid’s boundary.

Since the seminal articles by Helmholtz and Kelvin, much work
have been devoted to the study of the kinematics and dynamics of
vortices, but the simple characterization provided here will be
enough for the purpose of the present analysis. Thus, without
any further delay, let us address the question stated in the intro-
duction, on how a vortex can be defined in a simple quantum
system.

4. Madelung’s hydrodynamical interpretation

Some few months after the publication of the famous article by
Schrödinger on wave mechanics [11], Erwin Madelung [12,13]
noticed that if the wave function for a particle of mass m under
the action of a potential Vðr; tÞ is written in terms of amplitude
and phase

Wðr; tÞ ¼ Aðr; tÞ exp i
�h
Sðr; tÞ

� �
; ð3Þ

and replaced in Schrödinger equation

� �h2

2m
r2Wþ VðrÞ � i�h

@W
@t

¼ 0; ð4Þ

separating it in its real and imaginary parts, we get, after some sim-
ple maths, two coupled real equations

@q
@t

þr � ðguÞ ¼ 0; ð5Þ
@uj

@t
þ ðu � rÞuj ¼ � 1

m
rjV � 1

mg
X
i

riPij: ð6Þ

Here we have defined the following quantities,

gðr; tÞ ¼ jAj2; ð7Þ
uðr; tÞ ¼ rS=m; ð8Þ
and

Pijðr; tÞ ¼ � �h2

4m

 !
q
@2 lng
@xi@xj

: ð9Þ

Even though there has been some controversy regarding the equiv-
alence between Schrödinger and Madelung equations [14,15], it is
clear that a solution of Schrödinger equation is also a solution of
the two coupled Eqs. (5) and (6). Thus, these equations represent
a different way of addressing the same problem than Eq. (4). When
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we see the problem under this light, we notice that Eq. (5) is clearly
a continuity equation, where the square of the amplitude is a den-
sity, and the gradient of the phase divided by the mass is a velocity.
On the other hand, Eq. (6) is the very well known Euler equation for
the movement of a fluid of non-interacting particles of mass m
under a potential VðrÞ, except that now it is affected by a pressure
tensor Pij of quantum origin. So, here we have all the elementary
entities for describing a vortex in a simple quantum system. Basi-
cally, a fluid and a velocity field.

5. Quantum vortices

Since the velocity field of a quantum system, as defined in Eq.
(8), is the gradient of a scalar function, namely the action S, then
the corresponding vorticity, defined as the curl of this velocity, is
equal to zero. In other words, the velocity field of a quantum sys-
tem is irrotational. Therefore, the only vortices that can appear in a
quantum system are irrotational.

Going back to the example of an irrotational vortex, as
described at the end of Section 2, it is easy to demonstrate that it
can be achieved by a quantum systemwhose action S is linear with
the angle # around a certain axis. In cylindrical coordinates ðq; #; zÞ
we write S ¼ �hm#. Note that, since the wave function is single val-
ued, the quantitym has to be a whole number. This action produces
a velocity field that diverges on the line q ¼ 0, namely
u ¼ �hm #̂=mq. The circulation is zero everywhere, except if the cir-
cuit encircles the line q ¼ 0, where it reads C ¼ 2p�hm=m. The vor-
ticity diverges at q ¼ 0 and is zero everywhere else. Therefore, the
line q ¼ 0 corresponds to an irrotational vortex. Thus, we see that a
simple quantum system with ‘‘magnetic quantum number” m pro-
vides a trivial example of an irrotational vortex.

The vortex in this simple example is located upon a straight
line. But in general, quantum vortices can have complex shapes.
Furthermore, in Section 8 we will demonstrate that vortices can
even have different dimensions, depending on the configuration
space of the problem at hand. Finally, as we will explain in the fol-
lowing section, a vortex can evolve in time, stretching and twisting,
and even collapse onto itself or with another vortex of opposite
circulation.

Thus we can generalize the result obtained for the simple exam-
ple described previously, and write for a set of canonical coordi-
nates and a circuit C encircling the vortex

C ¼
I
C
p � dq ¼ 2p�hm; ð10Þ

where m 2 Z represents a ‘‘magnetic quantum number” associated
to the angular momentum carried by the vortex. Let us note that
the main controversy regarding the equivalence between the
Schrödinger and Madelung equations is related to this quantization
condition [14,15].

Finally it is very important to stress that the action S is unde-
fined at a quantum vortex. And this is possible only if the wave
function is zero on this same locus. This can also be demonstrated
by means of the continuity Eq. (5), by taking into account that the
velocity diverges at the vortex. Thus quantum vortices are nodes of
the wave function.

6. Vortices in ionization collisions

By numerically solving the Schrödinger equation, Macek and
co-workers [16] exemplified the appearance and evolution of
quantum vortices in the ionization of hydrogen atoms by the
impact of protons of 5 keV. In particular, their example shows
some different scenarios for the creation and destruction of quan-
tum vortices [8]. For instance, they showed how a vortex line
ization collisions, Nucl. Instr. Meth. B (2015), http://dx.doi.org/10.1016/j.
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reaches a vortex ring and partially collapses with one of its sides of
opposite circulation in order to form a single structure, as shown in
Fig. 1. Interesting as it is, this example does not represent a practi-
cal way of experimentally observing quantum vortices in ioniza-
tion collisions, since it does not seem very easy (even when it
might not be impossible) to measure the time evolution of such
a process. But it is right here where we can rely on the ‘‘Imaging
Theorem” demonstrated by John Dollard in 1971 [17–19]. For the
case at hand, the final electron momentum distribution PðkÞ is
shown to be proportional to the probability density gðr; tÞ evalu-
ated at the ballistic trajectory r ¼ kt=m
PðkÞd3k ¼ g
t
m

k; t
� �

m
t

� �3
d3r; ð11Þ
for t ! 1. Thus, in the limit of very large times, the spatial distribu-
tion of the electrons emitted in the ionization process leads to the
corresponding momentum distribution, where the impulse is
related to position and time in a ballistic way. This result tells us
that if a vortex appears during the collision, and if this vortex does
not collapse during the evolution of the system, then we might be
able to observe it as a zero of the transition matrix element, with
a non-zero circulation around it.
Fig. 1. A vortex line merges with a vortex ring along their sides of opposite
circulation, becoming a single structure.
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7. Evidence of quantum vortices in ionization collisions

In 1991 Brauner and Briggs [20] employed a three Coulomb (3C)
approximation [21,22] to evaluate the differential cross section for
the ionization of hydrogen by the impact of positrons. At an impact
energy of 10 keV, they found a deep minimum in the electron
momentum distribution in a collinear geometry, i.e. with the elec-
tron and positron traveling in the same direction. This sharp min-
imum was observed on the low-energy side of the electron capture
to the continuum (ECC) peak and at an emission angle of 45�.
Because of this, it was attributed to an interference effect between
two double-binary (Thomas) collision amplitudes. More that two
decades later, it was demonstrated that this minimumwas actually
a vortex, and that it could be also observed at more realistic impact
energies in the range of 270 eV [23].

In 1993 Murray and Read [24] experimentally found a very
pronounced minimum in the differential cross section for a
(e, 2e) process in Helium at incident energies from 44.6 to
74.6 eV. They employed the symmetric geometry introduced in
1965 by Gottschalk it et al. [25], where both electrons emerge with
the same energy and polar angle w. For w ¼ 67:5� the differential
cross section showed a deep minimum when the angle between
the electrons’ momenta was approximately 140� within the range
of energies studied. At that time, the minimum was attributed to
an interference between the forward- and backward-scattering
amplitudes. By means of a Dynamically screened three Coulomb
(DS3C) approximation [26], Macek and co-workers [27] managed
to reproduce this deep minimum, and recognized it as a quantum
vortex.

Since these early evidences by Brauner and Briggs [20] and
Murray and Read [24], vortices have also been observed in the pho-
toionization of atoms, and in ionization collisions by the impact of
ions and antiprotons (see [28,30] and references therein). These
examples show that quantum vortices might be more ubiquitous
than originally thought but, as it is explained in the following
sections, not necessarily easy to find.
8. Quantum vortices as submanifolds of codimension 2

When considering single ionization collisions, we are dealing
with a transition matrix element which depends on the momenta
of the three particles in the final state. By energy and momentum
conservation, the number of relevant scalar variables of T is
reduced from nine to five. Furthermore, since the collision is
symmetrical about the initial velocity v; the number of relevant
variables is further reduced to four. Thus vortices are regions in
this multidimensional space where the wave function vanishes
and the vorticity diverges. But, what is the dimensionality of these
submanifolds?

As we have already seen, the transition matrix element T is zero
at a vortex. Now, since T is complex, we end up with two real con-
ditions; i.e. both the real and imaginary parts of T have to be zero
simultaneously. The loci of these conditions are submanifolds of
codimension 1, and the region where they intersect, i.e. the vortex,
would be a submanifold of codimension 2. In other words, the
dimensionality of a vortex is lower by two than that of the space
where T is defined.

When we consider a restrictive geometry, as the symmetric and
collinear ones described in the previous section, we are arbitrarily
reducing the dimensionality of the problem in order to solve the
conundrum of picturing a multidimensional object in our three
dimensional space. However, a given vortex will go unnoticed
unless the subspace defined by any of these geometries intersects
the corresponding submanifold in the configuration space of T. On
the other hand, if both submanifolds intersect, the vortex would
ization collisions, Nucl. Instr. Meth. B (2015), http://dx.doi.org/10.1016/j.
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appear as an isolated zero of T, as explained in the following
section.

9. Quantum vortices in ionization collisions with collinear
geometry

Fig. 2 shows a 3C calculation of the velocity field associated to
the transition matrix element T in the ionization of hydrogen by
275 eV positrons. We compute T in terms of the components of
the electron final momentum k, parallel (kk) and perpendicular
(k?) to the positrons’ initial direction. Details of the theoretical
model are provided in previous articles, together with a description
of its scopes and limitations [23,28]. We are employing an energy
sharing or collinear geometry, where the electron and the positron
are traveling in the same direction.

The representation in Fig. 2 shows all the information we can
seek from the transition matrix element. Its modulus is repre-
sented by the density plot and its phase is related to the velocity
field. We observe three isolated zeroes. The velocity field around
them clearly shows that they correspond to quantum vortices.
Besides, it can be shown that the circulation around each one of
these three vortices is equal to �2p�h, in accordance with the quan-
tization rule for the magnetic quantum number.

As we explain in a previous section, quantum vortices might be
ubiquitous, but not easy to find. Thus we need a better strategy
than plotting the modulus of the transition matrix element and
looking for zeroes. Thus we plot the conditions Real ðTÞ ¼ 0 and
Im ðTÞ ¼ 0 separately, as shown in Fig. 3. Each of these conditions
defines a line in the plane, and the vortices would be located where
these two lines intersect each other.

At an impact energy of 255 eV, the nodal lines intersect only at
one point. But when this energy is increased to 270 eV, these lines
intersect at two further points. This means that a pair of vortices of
opposite circulation has appeared. If we increase the energy even
further [23], one vortex will migrate towards the origin, while
the other will approach the electron capture to the continuum
(ECC) line at an angle of 45�. Thus, we demonstrate that the
minimum found by Brauner and Briggs in 1991 [20], as explained
in the previous section, did actually represent a quantum vortex.
Furthermore, the reason why they did not observe it at the lower
Fig. 2. Transition matrix element T in atomic units (au) for the ionization of H by
the impact of 275 eV positrons in a collinear geometry. kk and k? are the
components of the electron momentum k parallel and perpendicular to the initial
velocity v of the positron, respectively. These components are normalized to the

maximummomentum kmax ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jvj2 � 2�=m

q
, where � is the first ionization energy

of the hydrogen atom. The density plot displays the modulus of T, while the arrows
represent the directions of the generalized velocity field u ¼ Imrk ln T.

Fig. 3. Lines of zero real (red) and imaginary (green) parts of the transition matrix
element T for the ionization of H by positron impact in a collinear geometry. k and h
are the electron’s momentum and emission angle (with respect to the initial
velocity v of the positron), respectively. The figures correspond to impact energies
of 255 eV (upper figure) and 270 eV (lower figure). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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energy analyzed at that time, is that it collapses with a twin
vortex below 270 eV. But, as we can see in Fig. 3, one vortex is still
present at this impact energy, and it remains at impact energies as
low as 30 eV, making it a prime candidate to be experimentally
observed [28].
10. Vortex lines

Quantum vortices in ionization processes have been primarily
studied as isolated points on 2D constrained regions of the phase
space of a multidimensional transition matrix element T. These
reductions are customarily achieved through restrictive geome-
tries, as for instance the collinear arrangement that we have used
to study the positron impact case in the previous section.

However, since vortices are submanifolds of codimension 2, the
isolated points revealed by restrictive 2D geometries are only
ization collisions, Nucl. Instr. Meth. B (2015), http://dx.doi.org/10.1016/j.



Fig. 4. Vortex line of T for the ionization of H by the impact of 275 eV positrons. kk
and k? are the components of the momentum k of the electron parallel and
perpendicular to the initial velocity v of the positron, respectively. h� and hþ are the
emission angles of the electron and the positron, respectively. The density plot
shows jTj2 in the collinear geometry (h� ¼ hþ).
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providing a limited glimpse of a much more complex structure.
Thus, in Fig. 4 we have tracked the vortices out of the collinear
arrangement. We still keep a coplanar geometry, i.e. with the final
momenta of the electron and the positron in the same plane with
the initial velocity v, but we do not keep the relative emission
angle between the positron and the electron equal to zero any
longer. Note how the isolated vortices observed for the collinear
geometry are in fact part of a single vortex line [29]. They just
appear or disappear depending on how the vortex line turns back
and forth in the configuration space. In other words, the vortices
that we were observing in a collinear geometry turned out to cor-
respond to a planar cut of a single vortex line. In a recent article,
Ward and Macek [30] also evaluated a segment of a vortex line
for the K-shell ionization of carbon by electron impact by employ-
ing a Coulomb-Born approximation.

11. Summary and conclusions

In this article we have analyzed the appearance of quantum
vortices in simple few-body systems. We employed Madelung’s
hydrodynamic formulation of quantum mechanics in order to
explain their main characteristics. Furthermore, by means of the
Imaging theorem it can be shown that a vortex that appears during
the evolution of an ionization collision, might leave its fingerprint
in the corresponding transition matrix element. We briefly
reviewed some previous experimental and theoretical evidences
of quantum vortices in ionization collisions and exemplified their
main characteristics by studying the ionization of an atom by
positron impact. Finally, by avoiding the standard restrictions on
the final-state variables, we demonstrated that three isolated
Please cite this article in press as: F. Navarrete, R.O. Barrachina, Vortices in ion
nimb.2015.09.073
vortices previously observed under a collinear geometry, actually
correspond to a single vortex line that is intersected three times
by the surface defined by the collinear geometry.

The next obvious step in this effort to fully understand the
topology of these quantum structures would be to trace the vor-
tices in the full multidimensional space of the transition matrix
element. Some basic and straightforward generalizations would
be needed in order to study vortices in this multidimensional
space. For instance, since we would no longer be dealing with a
single particle, the concept of velocity field, as employed in
previous sections, should be reviewed. Instead, it could be more
straightforward to define trajectories (pathline) of the quantum
system in a space of generalized coordinates. This analysis would
finally allow to get the first look ever of a vortex surface in
ionization collisions.

Acknowledgement

This work was supported by the Universidad Nacional de Cuyo
(Grant 06/C416) and Consejo Nacional de Investigaciones
Científicas y Técnicas CONICET (Grant PIP 5595), Argentina. FN
and ROB are also members of CONICET.

References

[1] L. Onsager, Nuovo Cimento Suppl. 6 (1949) 249.
[2] A.A. Abrikosov, Sov. Phys. JETP 5 (1957) 1174. and Zh.Eksp.Teor.Fiz 32 1442..
[3] F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71 (1999)

463.
[4] A. Babiano, C. Basdevant, B. Legras, R. Sadourny, J. Fluid Mech. 183 (1987) 379.
[5] M. Brachet, M. Meneguzzi, H. Politano, P. Sulem, J. Fluid Mech. 194 (1988) 333.
[6] J. McWilliams, J. Fluid Mech. 219 (1990) 361.
[7] S.I. Green (Ed.), Fluild Vortices, Kluwer Academic Publishers, 1995.
[8] I. Bialynicki-Birula, Z. Bialynicka-Birula, C. Sliwa, Phys. Rev. A 61 (2000)

032110.
[9] H. von Helmholtz, J. Reine Angew. Math. 55 (1858) 25 (English translation by P.

G. Tait: Phil. Mag. Series 4 33, 485 (1985).
[10] W. Thomson (Lord Kelvin), Trans. R. Soc. Edinburgh 25 (1869) 217.
[11] E. Schrödinger, Ann. Phys. 384 (1926) 273.
[12] E. Madelung, Naturwissenschaften 14 (1926) 1004.
[13] E. Madelung, Z. Phys. 40 (1927) 322.
[14] T.C. Wallstrom, Phys. Rev. A 49 (1994) 1613.
[15] V. Hushwater, 2010. arXiv:1005:2420v4 [quant-ph].
[16] J.H. Macek, J.B. Sternberg, S.Y. Ovchinnikov, Teck-Ghee Lee, D.R. Schultz, Phys.

Rev. Lett. 102 (2009) 143201.
[17] J.D. Dollard, Rocky Mt J. Math. 1 (1971) 5.
[18] J.H. Macek, J. Phys. Conf. Ser. 212 (2010) 012008.
[19] J.H. Macek, Vortices in atomic processes, in: G. Ogurtsov, D. Dowek (Eds.),

Dynamical Processes in Atomic and Molecular Physics, Bentham eBooks, 2012,
pp. 3–28.

[20] M. Brauner, J.S. Briggs, J. Phys. B 24 (1991) 2227.
[21] L. Vainstein, L. Presnyakov, I. Sobelman, Sov. Phys. JEPT 18 (1964) 1383.
[22] C.R. Garibotti, J.E. Miraglia, Phys. Rev. A 21 (1980) 572.
[23] F. Navarrete, R.O. Barrachina, J. Phys. B 48 (2015) 055201.
[24] A.J. Murray, F.H. Read, Phys. Rev. A 47 (1993) 3724.
[25] B. Gottschalk, W.J. Shlaer, K.H. Wang, Phys. Lett. 16 (1965) 294.
[26] J. Barakdar, J.S. Briggs, Phys. Rev. Lett. 72 (1994) 3799.
[27] J.H. Macek, J.B. Sternberg, S.Yu. Ovchinnikov, J.S. Briggs, Phys. Rev. Lett. 104

(2010) 033201.
[28] F. Navarrete et al., J. Phys. B 46 (2013) 115203.
[29] F. Navarrete, R.O. Barrachina, J. Phys. Conf. Ser. 635 (2015) 052014.
[30] S.J. Ward, J.H. Macek, Phys. Rev. A 90 (2014) 062709.
ization collisions, Nucl. Instr. Meth. B (2015), http://dx.doi.org/10.1016/j.


