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1. Introduction

Let k = k be a field, char k = 0. Let H be a pointed Hopf algebra, G = G(H), grH the
graded Hopf algebra associated with its coradical filtration, R = ⊕n�0R

n the graded
Hopf algebra in the category kG

kGYD of Yetter–Drinfeld modules such that grH � R#kG
and V = R1 the infinitesimal braiding of H. The classification of Hopf algebras with
finite Gelfand–Kirillov dimension (GKdim for short) has attracted considerable interest
recently (see [9]). Hopf algebras with trivial coradical and finite GKdim are quantum
deformations of algebraic unipotent groups [11, Theorem 4.2]. Also, there are several
results in low GKdim; see [10,13,18] and references therein. Further, the classification is
known assuming that H is a domain, G is abelian and V is of diagonal type [1,6]. Here,
we contribute to this question.

Let � ∈ N�2 and I� = {1, 2, . . . , �}. Let ε ∈ k×. Let V(ε, �) be the braided vector space
with basis (xi)i∈I�

and braiding c ∈ Aut(V ⊗ V ) such that

c(xi ⊗ x1) = εx1 ⊗ xi, c(xi ⊗ xj) = (εxj + xj−1) ⊗ xi, i, j ∈ I�. (1.1)
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We say that a braided vector space is a block if it is isomorphic to V(ε, �) for some ε ∈ k×,
� ∈ N�2.

Theorem 1.1 ([3, Theorem 1.2]). The GKdim of the Nichols algebra B(V(ε, �)) is
finite if and only if � = 2 and ε2 = 1.

Here is our main result.

Theorem 1.2. Let H be a pointed Hopf algebra, G = G(H) and V its infinitesimal
braiding. Then the following are equivalent:

(1) GKdimH <∞ and V is a block.

(2) GKdimH <∞, dimV = 2 and V is not of diagonal type.

(3) G is nilpotent-by-finite and there exists a Jordanian or super Jordanian YD-
triple D = (g, χ, η) and λ ∈ k, λ = 0 when χ2 �= ε, such that V = Vg(χ, η) and
H � U(D, λ), cf. §§ 4.1 and 4.2.

We refer to Subsection 2.3 for the definition of Yetter-Drinfeld triple, YD-triple for
short.

Proof. (1)⇒(2): by Theorem 1.1, V � V(ε, 2) with ε2 = 1, thus dimV = 2 and V
is not of diagonal type. (2)⇒(3): by Gromov’s theorem, G is nilpotent-by-finite. By
Lemma 2.3, V is a block, hence Propositions 4.2 and 4.4 apply; these Propositions also
provide (1)⇐(3). �

The isomorphism classes of the Hopf algebras U(D, λ) are also determined in Proposi-
tions 4.2 and 4.4.

The paper is organized as follows. In § 2, we recall the definitions of the Nichols algebras
called the Jordan and super Jordan planes. We then discuss indecomposable Yetter–
Drinfeld modules of dimension 2 over groups. Section 3 is dedicated to a discussion of
the problem of generation in degree 1, which is equivalent to the study of post-Nichols
algebras with finite GKdim. We show how to reduce (in general) this problem to the
study of pre-Nichols algebras with finite GKdim (see the relevant definitions below) and
deduce from results in [3, § 4] that the only post-Nichols algebra of the Jordan, or super
Jordan, plane with finite GKdim is the Nichols algebra itself. Finally, in § 4, we describe
all possible liftings of the Jordan plane in Proposition 4.2, and those of the super Jordan
plane in Proposition 4.4.

1.1. Notation

We refer to [5] for unexplained terminology and notation. If G is a group, then Ĝ
denotes its group of characters.
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2. Yetter–Drinfeld modules of dimension 2

2.1. The Jordan and super Jordan planes

We assume from now on that ε2 = 1. Keep the notation above and set x21 = adc x2 x1 =
x2x1 − εx1x2.

The Nichols algebra B(V(1, 2)) is a well-known quadratic algebra, the so-called Jordan
plane, related to the quantum Jordan SL(2); it also appears in the classification of AS-
regular graded algebras of global dimension 2 [7].

In turn, we call B(V(−1, 2)) the super Jordan plane.

Proposition 2.1 ([3, Propositions 3.4 and 3.5]). The algebras B(V(ε, 2)) have
GKdim 2 and are presented by generators x1 and x2 with defining relations

x2x1 − x1x2 + 1
2x

2
1, if ε = 1; (2.1)

x2x21 − x21x2 − x1x21, x2
1, if ε = −1. (2.2)

Further, {xa
1x

b
2 : a, b ∈ N0}, respectively {xa

1x
b
21x

c
2 : a ∈ {0, 1}, b, c ∈ N0}, is a basis of

B(V(1, 2)), respectively B(V(−1, 2)).

2.2. Indecomposable modules over abelian groups

Let Γ be an abelian group. Let g ∈ Γ, χ ∈ Γ̂ and η : Γ → k a (χ, χ)-derivation, i.e.

η(ht) = χ(h)η(t) + η(h)χ(t), h, t ∈ Γ.

Let Vg(χ, η) ∈ kΓ
kΓYD be a vector space of dimension 2, homogeneous of degree g and with

action of Γ given in a basis (xi)i∈I2 by

h · x1 = χ(h)x1, h · x2 = χ(h)x2 + η(h)x1, (2.3)

for all h ∈ Γ. Then Vg(χ, η) is indecomposable in kΓ
kΓYD ⇐⇒ η �= 0. As a braided vector

space, Vg(χ, η) is either of diagonal type, when η(g) = 0, or else isomorphic to V(ε, 2),
ε = χ(g) (note that indecomposability as Yetter–Drinfeld module is not the same as
indecomposability as braided vector space).

Lemma 2.2. Let V ∈ kΓ
kΓYD, dimV = 2. Then either V is of diagonal type or else

V � Vg(χ, η) for unique g, χ and η with η(g) = 1.

Proof. Assume that V is not of diagonal type; then V is indecomposable. Since kΓ
is cosemisimple, there exists g ∈ Γ such that V is homogeneous of degree g. Moreover,
k = k implies that V is not simple. Hence there exist χ1, χ2 ∈ Γ̂ such that socV � kχ1

g

and V/ socV � kχ2
g . Pick x1 ∈ socV − 0 and x2 ∈ Vg2 − socV ; then h · x2 = χ2(h)x2 +

η(h)x1 for all h ∈ Γ, where η is a (χ1, χ2)-derivation. Since V is not of diagonal type,
χ1(g) = χ2(g) and η(g) �= 0. Now

χ1(h)η(g) + η(h)χ2(g) = η(hg) = χ1(g)η(h) + η(g)χ2(h) ⇒ χ1(h) = χ2(h)

for all h ∈ Γ. Finally, up to changing x1, we may assume that η(g) = 1. �
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2.3. Indecomposable modules over Hopf algebras

Let K be a Hopf algebra with bijective antipode. A YD-pair [2] for K is a pair (g, χ) ∈
G(K) × Homalg(K,k) such that

χ(h) g = χ(h(2))h(1) g S(h(3)), h ∈ K. (2.4)

If (g, χ) is a YD-pair, then the one-dimensional vector space kχ
g , with action and coaction

given by χ and g respectively, is in K
KYD. Conversely, any V ∈ K

KYD with dimV = 1 is
like this, for unique g and χ. If (g, χ) is a YD-pair, then g ∈ Z(G(K)).

If χ1, χ2 ∈ Homalg(K,k), then the space of (χ1, χ2)-derivations is

Derχ1,χ2(K,k) = {η ∈ K∗ : η(ht) = χ1(h)η(t) + χ2(t)η(h)∀h, t ∈ K}.
A YD-triple for K is a collection (g, χ, η) where (g, χ), is a YD-pair for K, cf. (2.4),

η ∈ Derχ,χ(K,k), η(g) = 1 and

η(h)g1 = η(h(2))h(1)g2S(h(3)), h ∈ K. (2.5)

If K = kG is a group algebra, then we can think of the collection (g, χ, η) as in G, Ĝ,
Derχ,χ(G,k).

Let (g, χ, η) be a YD-triple for K. Let Vg(χ, η) be a vector space with a basis (xi)i∈I2 ,
where action and coaction are given by

h · x1 = χ(h)x1, h · x2 = χ(h)x2 + η(h)x1, δ(xi) = g ⊗ xi,

h ∈ K, i ∈ I2. Then Vg(χ, η) ∈ K
KYD, the compatibility being granted by (2.4) and (2.5).

Since η(g) �= 0, then Vg(χ, η) is indecomposable in K
KYD.

Lemma 2.3. LetG be a group. Let V ∈ kG
kGYD, dimV = 2. Then either V is of diagonal

type as a braided vector space or else V � Vg(χ, η) for a unique YD-triple (g, χ, η).

Proof. Assume first that V = Vg1 + Vg2 as kG-comodule, with g1 �= g2 ∈ G. Now g2 ·
Vg2 = Vg2 , hence g2 · Vg1 = Vg1 and similarly g1 · Vg2 = Vg2 . Thus V is of diagonal type, a
contradiction. Thus, we may assume that V = Vg for some g ∈ G, and Lemma 2.2 applies
with Γ = 〈g〉, so that V � Vg(χ̃, η̃) for some χ̃ ∈ Γ̂ and η̃ a (χ̃, χ̃)-derivation. Then there
is a basis (xi)i∈I2 where g acts by A = ( ε 1

0 ε ). However, g ∈ Z(G), hence any h ∈ G acts by
a matrix in the centralizer of A = {( a b

0 a ) : a ∈ k×, b ∈ k}. In other words, V � Vg(χ, η)
for a unique YD-triple (g, χ, η). �

Let D = (g, χ, η) be a YD-triple and ε := χ(g). If ε = 1, respectively −1, then we say
that D is a Jordanian, respectively super Jordanian, YD-triple.

Remark 2.4. Let f ∈ AutHopfH, gf = f(g), χf = χ ◦ f−1, ηf = η ◦ f−1. Then Df =
(gf , χf , ηf ) is a YD-triple and χf (gf ) = χ(g), ηf (gf ) = η(g). Thus, if D is Jordanian,
respectively super Jordanian, then so is Df . Let V f = Vgf (χf , ηf ), with basis x′1, x

′
2.

Then f extends to a Hopf algebra isomorphism f̃ : T (V )#H → T (V f )#H such that
f(xi) = x′i. Let

AutD := {f ∈ AutHopfH : Df = D}.
Then we have a morphism of groups AutD → AutHopf(T (V )#H).
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3. Generation in degree 1

3.1. A block plus a point

We shall need a result from [3] on some braided vector spaces of dimension 3. Let
ε ∈ {±1}, q12, q21, q22 ∈ k× and a ∈ k. Let V be the braided vector space with basis xi,
i ∈ I3, and braiding

(c(xi ⊗ xj))i,j∈I3 =

⎛⎝ εx1 ⊗ x1 (εx2 + x1) ⊗ x1 q12x3 ⊗ x1

εx1 ⊗ x2 (εx2 + x1) ⊗ x2 q12x3 ⊗ x2

q21x1 ⊗ x3 q21(x2 + ax1) ⊗ x3 q22x3 ⊗ x3

⎞⎠ . (3.1)

The ghost is G =

{
−2a, ε = 1,
a, ε = −1.

If G ∈ N, then the ghost is discrete.

Theorem 3.1 ([3, Theorem 4.1]). If GKdimB(V ) <∞, then V is as in Table 1.

Table 1. Nichols algebras of a block and a point with finite GKdim.

q12q21 ε q22 G GKdim

1 ±1 1 or /∈ G∞ 0 3
∈ G∞ − {1} 2

1 1 Discrete G + 3
−1 Discrete 2
∈ G′

3 1 2
−1 1 Discrete G + 3

−1 Discrete G + 2
−1 −1 −1 1 2

3.2. Pre-Nichols versus post-Nichols

Let V ∈ K
KYD finite-dimensional. A post-Nichols algebra of V is a coradically graded

connected Hopf algebra E = ⊕n�0En in K
KYD such that E1 � V [4]. A fundamental step

in the classification of pointed Hopf algebras with finite GKdim is the following.

Question 3.2. Assume that K = kG, with G nilpotent-by-finite. If V ∈ K
KYD

has GKdimB(V ) <∞, then determine all post-Nichols algebras E of V such that
GKdim E <∞.

A pre-Nichols algebra of V is a graded connected Hopf algebra B = ⊕n�0Bn in K
KYD

such that B1 � V generates B as algebra [15]. If E is a post-Nichols algebra of V , then
there is an inclusion B(V ) ↪→ E of graded Hopf algebras in K

KYD and the graded dual Ed

is a pre-Nichols algebra of V ∗, and vice versa.



6 N. Andruskiewitsch, I. Angiono and I. Heckenberger

Lemma 3.3. Let B be a pre-Nichols algebra of V , E = Bd (recall that dimV <∞).
Then GKdim E � GKdimB. If E is finitely generated, then GKdim E = GKdimB.

Proof. Let W be a finite-dimensional vector subspace of E ; without loss of generality,
we may assume that W is graded. Let En =

∑
0�j�nW

j . Now there exists m ∈ N such
that W ⊆ ⊕0�j�mEj ; hence

logn dim En � logn dim⊕0�j�mnEj = logn dim⊕0�j�mnBj

♣= logn dim(⊕0�j�mBj)n ♥⇒ GKdim E � GKdimB.

Here, ⊕0�j�mnBj = (⊕0�j�mBj)n because V generates B, hence ♣; while ♥ follows by
the independence of the generators in the definition of GKdim.

Conversely, assume that W is a finite-dimensional graded vector subspace generating
E . We claim that En ⊇ ⊕0�j�nEj . Indeed, it suffices to show that En ⊇ En. For, take
x ∈ En; then x =

∑
wj1 . . . wjk

with wjh
∈W , and

n = degwj1 + · · · + degwjk
� k ⇒ x ∈ En.

Hence logn dim En � logn dim⊕0�j�nEj = logn dim⊕0�j�nBj , therefore GKdim E �
GKdimB. �

Remark 3.4. The inequality in Lemma 3.3 might be strict: if B = k[T ] a polynomial
ring with chark > 0, then E is the divided power algebra that has GKdim E = 0 < 1 =
GKdimk[T ].

Question 3.5. If V ∈ K
KYD has GKdimB(V ) <∞, then determine all pre-Nichols

algebras B of V such that GKdimB <∞.

To solve Question 3.5 for V is a first approximation to solve Question 3.2 for V ∗, since
it is open whether GKdim E <∞ implies GKdim Ed <∞ for a post-Nichols algebra E .
However, the next particular case is useful. Consider the partially ordered set of pre-
Nichols algebras Pre(V ) = {T (V )/I : I ∈ S} with ordering given by the surjections. We
say that V is pre-bounded if every chain

· · · < B[3] < B[2] < B[1] < B[0] = B(V ), (3.2)

of pre-Nichols algebras over V with finite GKdim, is finite.

Lemma 3.6. Let K be a Hopf algebra, V ∈ K
KYD finite-dimensional and E ∈ K

KYD a
post-Nichols algebra of V with GKdim E <∞. If V ∗ is pre-bounded, then E is finitely
generated and GKdim E = GKdim Ed. In particular, if the only pre-Nichols algebra of V ∗

with finite GKdim is B(V ∗), then E = B(V ).

Proof. First, we construct a chain E [0] = B(V ) � E [1] · · · ⊆ E of finitely generated
post-Nichols algebras of V . Suppose we have built E [n] and that E � E [n] (otherwise,
we are done by Lemma 3.3). Pick x ∈ E − E [n] homogeneous of minimal degree m. Let
W be the Yetter–Drinfeld submodule of Em generated by x and let E [n+ 1] be the
subalgebra of E generated by E [n] +W . Clearly E [n+ 1] is a Yetter–Drinfeld submodule
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of E , hence E [n+ 1]⊗E [n+ 1] is a subalgebra of E⊗E . By minimality of m, Δ(E [n+ 1])
⊆ E [n+ 1]⊗E [n+ 1]. That is, E [n+ 1] is a finitely generated post-Nichols algebra of V
with GKdim E [n+ 1] <∞. Thus we have a chain (3.2) of pre-Nichols algebras with B[n] =
E [n]d, and GKdimB[n] <∞ for all n by Lemma 3.3. By hypothesis, there is n such that
E [n] = E and we are done. Finally, if the only pre-Nichols algebra of V ∗ with finite GKdim
is B(V ∗), then E = B(V ), because there is only one chain (3.2) for V ∗. �

3.3. Post-Nichols algebras of the Jordan and super Jordan planes

Lemma 3.7. Assume that V is associated with either a Jordanian or a super Jordanian
YD-triple D = (g, χ, η) The only post-Nichols algebra of V in K

KYD with finite GKdim is
B(V ).

Proof. The dual V ∗ corresponds to the YD-triple D′ = (g−1, χ−1, η ◦ S); by
Lemma 3.6, it is enough to solve the analogous problem for pre-Nichols algebras. Let
B be a pre-Nichols algebra of V such that GKdimB <∞. We have canonical projections
T (V ) � B � B(V ). We shall prove that the defining relations of B(V ) hold in B.

Jordan case. Suppose that y = x2x1 − x1x2 + (1/2)x2
1 �= 0 in B; note that y is primitive

and y ∈ Bg2 . Let W ∈ K
KYD be spanned by the linearly independent primitive elements

x1, x2 and y. Then B(W ) is a quotient of B, so GKdimB(W ) <∞. Notice thatW satisfies
(3.1) for y = x3, ε = 1, q12 = q21 = q22 = 1, a = 2. By Theorem 3.1, GKdimB(W ) = ∞,
a contradiction. Then y = 0 and B = B(V ).

Super Jordan case. Suppose first that x2
1 �= 0 in B; note that x2

1 is primitive and x2
1 ∈

Bg2 . Let W ∈ K
KYD be spanned by the linearly independent primitives x1, x2 and x2

1.
Then B(W ) is a quotient of B, so GKdimB(W ) <∞. However, W satisfies (3.1) for
ε = −1, x3 = x2

1, q12 = q21 = q22 = 1, a = −2. By Theorem 3.1, GKdimB(W ) = ∞, a
contradiction, so x2

1 = 0 in B. Let r = x2x21 − x21x2 − x1x21. In T (V )#K we have

Δ(r) = r ⊗ 1 + g3 ⊗ r + x1g
2 ⊗ x2

1 − 2x2
1g ⊗ x2. (3.3)

Assume that r �= 0 in B. By the preceding and (3.3), r is primitive, and r ∈ Bg3 . Let
W ′ be the space spanned the linearly independent primitives x1, x2, r. Since B(W ′)
is a quotient of B, GKdimB(W ′) <∞. However, W ′ satisfies (3.1) for ε = −1, x3 = y,
q12 = q21 = q22 = −1, a = −3, so GKdimB(W ′) = ∞ by Theorem 3.1, a contradiction.
Therefore, B = B(V ). �

4. Liftings

Let G be a nilpotent-by-finite group. If V ∈ kG
kGYD, then T (V ) is a Hopf algebra in

kG
kGYD and we denote T (V ) = T (V )#kG. We compute all liftings of the Jordan and super
Jordan planes V(ε, 2) over kG. We follow partly the strategy from [2], as the coradical
is assumed to be finite-dimensional in [2]; instead we use [14, Theorem 8] being in the
pointed context.

Remark 4.1. If D = (g, χ, η) is a Jordanian or super Jordanian YD-triple, then g2 �= 1,
since g2 · x2 = x2 + 2εx1.
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4.1. Liftings of Jordan planes

Let D = (g, χ, η) be a Jordanian YD-triple for kG and V = Vg(χ, η). Let λ ∈ k be such
that

λ = 0, if χ2 �= ε. (4.1)

Let U = U(D, λ) be the quotient of T (V ) by the relation

x2x1 − x1x2 + 1
2x

2
1 = λ(1 − g2). (4.2)

Clearly, U is a Hopf algebra quotient of T (V ). We now show that any lifting of a Jordan
plane over kG is U(D, λ) for some D, λ.

Proposition 4.2. U is a pointed Hopf algebra, and a cocycle deformation of gr U �
B(V )#kG; it has GKdimU = GKdim kG+ 2.

Conversely, let H be a pointed Hopf algebra with finite GKdim such that G(H) � G
and the infinitesimal braiding of H is isomorphic to V(1, 2). Then H � U(D, λ) for some
YD-triple D and λ ∈ k satisfying (4.1).

Moreover, U(D, λ) � U(D′, λ′) if and only if there exist a Hopf algebra automorphism
f of kG and c ∈ k× such that D′ = f(D) and λ = cλ′.

Proof. First, we claim that there exists a (U,B(V )#kG)-biGalois object A, so that U
is a cocycle deformation of B(V )#kG. Let T = T (V ).

Let X be the subalgebra of T generated by t = (x2x1 − x1x2 + 1
2x

2
1)g

−2, which is a
polynomial algebra in t. Set A = T . The algebra map f : X → A determined by f(t) =
t− λg−2 is T -colinear. Note that x2x1 − x1x2 + 1

2x
2
1 − λ is stable by the action of kG

because of (4.1). By [2, Remark 5.6 (b)],

A := A/〈f(X+)〉 =
T

〈x2x1 − x1x2 + (1/2)x2
1 − λ〉

�
(

T (V )
〈x2x1 − x1x2 + (1/2)x2

1 − λ〉

)
#kG.

We claim that A �= 0, which reduces to prove that

E = E(D, λ) :=
T (V )

〈x2x1 − x1x2 + (1/2)x2
1 − λ〉 �= 0.

The algebra map T (V ) → k, x1 �→ c, x2 �→ 1, where c2 = 2λ, applies x2x1 − x1x2 +
(1/2)x2

1 − λ to 0, so it factors through E , and thus E is non-trivial. Now [14, Theorem
8] applies and A is a B(V )#kG-Galois object. Now there exists a unique (up to iso-
morphism) Hopf algebra L = L(A,B(V )#kG) such that A is a (L,B(V )#kG)-biGalois
object. However, L � U by a computation as in [2, Corollary 5.12], and the claim follows.

Moreover, idT : T → T = A is a section that, restricted to kG, is an algebra map.
Arguing as in [2, Proposition 5.8 (b)] and applying [17, Theorem 4.2, Corollary 4.3],
we conclude that there exists a section γ : B(V )#kG→ A that, restricted to kG, is an
algebra map. Then [2, Proposition 4.14 (b), (c)] applies and grU � B(V )#kG, so its
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infinitesimal braiding is Jordanian. Also, GKdimU = GKdim grU = GKdim kG+ 2 by
[19, Theorem 5.4].

Conversely, letH be a pointed Hopf algebra with finite GKdim such thatG(H) � G and
the infinitesimal braiding of H is V � V(1, 2). By Lemma 2.3, there is a Jordanian YD-
triple D = (g, χ, η) such that V = Vg(χ, η). Then grH � B#kG for some post-Nichols
algebra over V such that GKdimB <∞. By Lemma 3.7, B = B(V ). In particular H
is generated by H0 = kG and H1 as an algebra. Moreover, H1/H0 � V#kG, so there
exists a surjective Hopf algebra map π : T � H that identifies kG and applies xi to
a (g, 1)-primitive element ai ∈ H1 \H0. As x2x1 − x1x2 + (1/2)x2

1 is a (g2, 1)-primitive
element, π(x2x1 − x1x2 + (1/2)x2

1) ∈ k(1 − g2), so there exists λ ∈ k satisfying (4.1) such
that a2a1 − a1a2 + (1/2)a2

1 = λ(1 − g2). Then π factors through U(D, λ), and this map
U(D, λ) → H is an isomorphism since their associated coradically graded Hopf algebras
coincide.

It remains to show the last statement. Let F : U(D, λ) → U(D′, λ′) be an isomorphism
of Hopf algebras. Then F |kG is an isomorphism of Hopf algebras since kG is the coradical.
We may assume that F|kG = idkG by Remark 2.4. Now g = g′ since dimPg,1(U(D, λ)) = 3,
dimPh,1(U(D, λ)) = 1 for all h ∈ G(kG), h �= g, and the same for U(D′, λ′). As F (xi) ∈
Pg,1(U(D′, λ′)),

F (xi) = aix
′
1 + bix

′
2 + ci(1 − g) for some ai, bi, ci ∈ k, i = 1, 2.

As F (hxih
−1) = hF (xi)h−1 for all h ∈ G(kG), we deduce that b1 = c1 = 0, c2 = 0 if

χ �= ε, b2 = a1, χ = χ′ and η = η′. Also,

0 = F
(
x2x1 − x1x2 + 1

2x
2
1 − λ(1 − g)

)
= (a2

1λ
′ − λ)(1 − g),

so a2
1λ

′ = λ. The other implication is direct. �

Remark 4.3. Recall that G is nilpotent-by-finite. If G is torsion-free, then H =
U(D, λ) is a domain. Indeed, kG is a domain by [8,12,16], hence grH � B(V )#kG
is a domain, and so is H. To see that B(V )#kG is a domain, filter by giving degree 0
to x1 and G and degree 1 to x2; the associated graded algebra is S(V ) ⊗ kG, clearly a
domain.

4.2. Liftings of super Jordan planes

Let D = (g, χ, η) be a super Jordanian YD-triple for kG and V = Vg(χ, η). Let λ ∈ k

be such that

λ = 0, if χ2 �= ε. (4.3)

Let U = U(D, λ) be the quotient of T (V ) by the relations

x2
1 = λ(1 − g2), x2x21 − x21x2 − x1x21 + 2λx2 + λx1g

2 = 0. (4.4)

We will prove that all liftings of super Jordan planes are the algebras U(D, λ). The proof
follows the same steps as for Jordan planes.
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Proposition 4.4. U is a pointed Hopf algebra, a cocycle deformation of grU �
B(V )#kG; GKdimU = GKdim kG+ 2. Conversely, let H be a pointed Hopf algebra with
finite GKdim such that G(H) � G and the infinitesimal braiding of H is � V(−1, 2).

Then H � U(D, λ) for some YD-triple D and λ ∈ k satisfying (4.3).
Moreover, U(D, λ) � U(D′, λ′) if and only if there exist a Hopf algebra automorphism

f of kG and c ∈ k× such that D′ = f(D) and λ = cλ′.

Proof. First, we claim that there exists a (U,B(V )#kG)-biGalois object A, so U is a
cocycle deformation of B(V )#kG. We proceed in two steps.

Let X1 be the subalgebra of T generated by t1 = x2
1g

−2, which is a polynomial alge-
bra in t1. Set A = T . The algebra map f : X1 → A determined by f(t1) = t1 − λg−2

is T -colinear. Note that x2
1 − λ is stable by the action of kG because of (4.3). By

[2, Remark 5.6],

A1 := A/〈f(X+
1 )〉 = T /〈x2

1 − λ〉 �
(
T (V )/〈x2

1 − λ〉
)
#kG.

We claim that A1 �= 0, which reduces to prove that E1 = T (V )/〈x2
1 − λ〉 �= 0. The algebra

map ψ : T (V ) → k, x1 �→ c, x2 �→ 0, where c2 = λ, satisfies ψ(x2
1) = λ, ψ(x2x21 − x21x2 −

x1x21 + 2λx2) = 0. It induces an algebra map

E = E(D, λ) = T (V )/〈x2
1 − λ, x2x21 − x21x2 − x1x21 + 2λx2〉 → k.

Thus E is non-trivial, which implies that E1 is also non-trivial. Therefore [14, Theorem 8]
applies and A1 is a (T (V )/〈x2

1〉)#kG-Galois object.
In the second step, we consider the subalgebra X2 of (T (V )/〈x2

1〉)#kG generated by
t2 = (x2x21 − x21x2 − x1x21)g−3, a polynomial algebra in t2. The algebra map f : X2 →
A determined by

f(t2) = (x2x21 − x21x2 − x1x21 + 2λx2)g−3

is T -colinear. By [2, Remark 5.6], A := A1/〈f(X+
2 )〉 = E#kG, so A is non-trivial. Then

[14, Theorem 8] applies again and A is a B(V )#kG-Galois object. Now there exists
a unique (up to isomorphism) Hopf algebra L = L(A,B(V )#kG) such that A is a
(L,B(V )#kG)-biGalois object. However, L � U by a computation as in [2, Cor. 5.12],
and the claim follows. Moreover, grU � B(V )#kG and GKdimU = GKdim kG+ 2 by
[19, Theorem 5.4].

Conversely, let H be a Hopf algebra such that H0 � kG, GKdimH <∞ and the
infinitesimal braiding of H is � V(−1, 2). By Lemma 2.3, there is a super Jordanian YD-
triple D = (g, χ, η) such that V = Vg(χ, η). Then grH � B#kG for some post-Nichols
algebra over V with GKdimB <∞; by Lemma 3.7, B = B(V ). Arguing as in Proposi-
tion 4.2, there exists a surjective Hopf algebra map π : T � H that induces a surjective
map U(D, λ) → H for some λ as in (4.3), but π is an isomorphism since their associated
coradically graded Hopf algebras coincide.

It remains to prove the last statement. Let F : U(D, λ) → U(D′, λ′) be a Hopf algebra
isomorphism. As in the proof of Proposition 4.2, we may assume that F|kG = idkG, and
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we have that g = g′. As F (xi) ∈ Pg,1(U(D′, λ′)),

F (xi) = a1x
′
1 + bix

′
2 + ci(1 − g), ai, bi, ci ∈ k, i = 1, 2.

Notice that F (gxig
−1) = gF (xi)g−1, so b1 = c1 = c2 = 0, b2 = a1 since χ(g) = χ′(g) =

−1. However, as F (hxih
−1) = hF (xi)h−1 for all h ∈ G(kG), we conclude that χ = χ′

and η = η′. Also,
0 = F

(
x2

1 − λ(1 − g)
)

= (a2
1λ

′ − λ)(1 − g),

so a2
1λ

′ = λ. The other implication is direct. �

Remark 4.5. The algebra H = U(D, λ) is never a domain: ab = 0, where

a =
√
λ (g − 1) + x, b =

√
λ (g + 1) + x.
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