LIFTINGS OF JORDAN AND SUPER JORDAN PLANES

NICOLÁS ANDRUSKIEWITSCH¹*, IVÁN ANGIONO¹ AND ISTVÁN HECKENBERGER²

¹ FaMAF-CIEM (CONICET), Universidad Nacional de Córdoba, Medina Allende s/n, *Ciudad Universitaria, 5000 C´ordoba, Argentina* [\(andrus@famaf.unc.edu.ar;](mailto:andrus@famaf.unc.edu.ar) [angiono@famaf.unc.edu.ar\)](mailto:angiono@famaf.unc.edu.ar)

²Philipps-Universität Marburg, Fachbereich Mathematik und Informatik, *Hans-Meerwein-Strasse, D-35032 Marburg, Germany* [\(heckenberger@mathematik.uni-marburg.de\)](mailto:heckenberger@mathematik.uni-marburg.de)

(Received 18 January 2017)

Abstract We classify pointed Hopf algebras with finite Gelfand–Kirillov dimension whose infinitesimal braiding has dimension 2 but is not of diagonal type, or equivalently is a block. These Hopf algebras are new and turn out to be liftings of either a Jordan or a super Jordan plane over a nilpotent-by-finite group.

Keywords: Hopf algebras; Gelfand–Kirillov dimension; Jordan plane

2010 *Mathematics subject classification:* Primary 16T05

1. Introduction

Let $k = \overline{k}$ be a field, char $k = 0$. Let H be a pointed Hopf algebra, $G = G(H)$, gr H the graded Hopf algebra associated with its coradical filtration, $R = \bigoplus_{n \geq 0} R^n$ the graded Hopf algebra in the category kG VD of Vetter-Dripfeld modules such that $\sigma r H \sim R H$ kG Hopf algebra in the category ${}_{\text{KG}}^{\text{kG}}$ \mathcal{YD} of Yetter–Drinfeld modules such that gr $H \simeq R \# \text{kG}$
and $V = R^1$ the infinitesimal braiding of H. The classification of Hopf algebras with and $V = R¹$ the infinitesimal braiding of H. The classification of Hopf algebras with finite Gelfand–Kirillov dimension (GKdim for short) has attracted considerable interest recently (see [**[9](#page-10-0)**]). Hopf algebras with trivial coradical and finite GKdim are quantum deformations of algebraic unipotent groups [**[11](#page-10-1)**, Theorem 4.2]. Also, there are several results in low GKdim; see [**[10](#page-10-2)**, **[13](#page-11-0)**, **[18](#page-11-1)**] and references therein. Further, the classification is known assuming that H is a domain, G is abelian and V is of diagonal type $\left[1, 6\right]$ $\left[1, 6\right]$ $\left[1, 6\right]$ $\left[1, 6\right]$ $\left[1, 6\right]$. Here, we contribute to this question.

Let $\ell \in \mathbb{N}_{\geq 2}$ and $\mathbb{I}_{\ell} = \{1, 2, ..., \ell\}$. Let $\epsilon \in \mathbb{k}^{\times}$. Let $\mathcal{V}(\epsilon, \ell)$ be the braided vector space
th basis $(x_i)_{i \leq x}$ and braiding $c \in \text{Aut}(V \otimes V)$ such that with basis $(x_i)_{i \in \mathbb{I}_\ell}$ and braiding $c \in \text{Aut}(V \otimes V)$ such that

$$
c(x_i \otimes x_1) = \epsilon x_1 \otimes x_i, \quad c(x_i \otimes x_j) = (\epsilon x_j + x_{j-1}) \otimes x_i, \quad i, j \in \mathbb{I}_{\ell}.
$$
 (1.1)

∗ Corresponding author.

C 2018 The Edinburgh Mathematical Society 1

We say that a braided vector space is a *block* if it is isomorphic to $\mathcal{V}(\epsilon, \ell)$ for some $\epsilon \in \mathbb{k}^{\times}$, $\ell \in \mathbb{N}_{>0}$ $\ell \in \mathbb{N}_{\geqslant 2}.$

Theorem 1.1 ([\[3](#page-10-5), **Theorem 1.2**]). The GKdim of the Nichols algebra $\mathcal{B}(\mathcal{V}(\epsilon, \ell))$ is
its if and only if $\ell = 2$ and $\epsilon^2 = 1$ *finite if and only if* $\ell = 2$ *and* $\epsilon^2 = 1$ *.*

Here is our main result.

Theorem 1.2. Let H be a pointed Hopf algebra, $G = G(H)$ and V its infinitesimal *braiding. Then the following are equivalent:*

- (1) GKdim $H < \infty$ and V is a block.
- (2) GKdim $H < \infty$, dim $V = 2$ and V is not of diagonal type.
- (3) G *is nilpotent-by-finite and there exists a Jordanian or super Jordanian YDtriple* $\mathcal{D} = (g, \chi, \eta)$ *and* $\lambda \in \mathbb{k}$, $\lambda = 0$ *when* $\chi^2 \neq \varepsilon$ *, such that* $V = \mathcal{V}_q(\chi, \eta)$ *and* $H \simeq \mathfrak{U}(\mathcal{D}, \lambda)$ *, cf.* §§ [4.1](#page-7-0) and [4.2.](#page-8-0)

We refer to Subsection [2.3](#page-3-0) for the definition of Yetter-Drinfeld triple, YD-triple for short.

Proof. (1)⇒(2): by Theorem [1.1,](#page-1-0) $V \simeq \mathcal{V}(\epsilon, 2)$ with $\epsilon^2 = 1$, thus dim $V = 2$ and V is not of diagonal type. (2)⇒(3): by Gromov's theorem, G is nilpotent-by-finite. By Lemma [2.3,](#page-3-1) V is a block, hence Propositions [4.2](#page-7-1) and [4.4](#page-9-0) apply; these Propositions also provide $(1) \leftarrow (3)$. \Box

The isomorphism classes of the Hopf algebras $\mathfrak{U}(\mathcal{D}, \lambda)$ are also determined in Propositions [4.2](#page-7-1) and [4.4.](#page-9-0)

The paper is organized as follows. In $\S 2$, we recall the definitions of the Nichols algebras called the Jordan and super Jordan planes. We then discuss indecomposable Yetter– Drinfeld modules of dimension 2 over groups. Section [3](#page-4-0) is dedicated to a discussion of the problem of generation in degree 1, which is equivalent to the study of post-Nichols algebras with finite GKdim. We show how to reduce (in general) this problem to the study of pre-Nichols algebras with finite GKdim (see the relevant definitions below) and deduce from results in [**[3](#page-10-5)**, § 4] that the only post-Nichols algebra of the Jordan, or super Jordan, plane with finite GKdim is the Nichols algebra itself. Finally, in § [4,](#page-6-0) we describe all possible liftings of the Jordan plane in Proposition [4.2,](#page-7-1) and those of the super Jordan plane in Proposition [4.4.](#page-9-0)

1.1. Notation

We refer to $[5]$ $[5]$ $[5]$ for unexplained terminology and notation. If G is a group, then G-
notes its group of characters denotes its group of characters.

2. Yetter–Drinfeld modules of dimension 2

2.1. The Jordan and super Jordan planes

We assume from now on that $\epsilon^2 = 1$. Keep the notation above and set $x_{21} = ad_c x_2 x_1 =$ $x_2x_1 - \epsilon x_1x_2.$

The Nichols algebra $\mathcal{B}(\mathcal{V}(1, 2))$ is a well-known quadratic algebra, the so-called Jordan plane, related to the quantum Jordan $SL(2)$; it also appears in the classification of ASregular graded algebras of global dimension 2 [**[7](#page-10-7)**].

In turn, we call $\mathcal{B}(\mathcal{V}(-1, 2))$ the *super Jordan plane*.

Proposition 2.1 ([\[3,](#page-10-5) Propositions 3.4 and 3.5]). The algebras $\mathcal{B}(\mathcal{V}(\epsilon, 2))$ have GKdim 2 and are presented by generators x_1 and x_2 with defining relations

$$
x_2 x_1 - x_1 x_2 + \frac{1}{2} x_1^2, \quad \text{if } \epsilon = 1; \tag{2.1}
$$

$$
x_2 x_{21} - x_{21} x_2 - x_1 x_{21}, \quad x_1^2, \quad \text{if } \epsilon = -1. \tag{2.2}
$$

Further, $\{x_1^a x_2^b : a, b \in \mathbb{N}_0\}$, respectively $\{x_1^a x_2^b : a \in \{0,1\}, b, c \in \mathbb{N}_0\}$, is a basis of $\mathcal{B}(\mathcal{V}(1, 2))$ respectively $\mathcal{B}(\mathcal{V}(-1, 2))$ $\mathcal{B}(\mathcal{V}(1,2))$ *, respectively* $\mathcal{B}(\mathcal{V}(-1,2))$ *.*

2.2. Indecomposable modules over abelian groups

Let Γ be an abelian group. Let $g \in \Gamma$, $\chi \in \Gamma$ and $\eta : \Gamma \to \mathbb{k}$ a (χ, χ) -derivation, i.e.

$$
\eta(ht) = \chi(h)\eta(t) + \eta(h)\chi(t), \quad h, t \in \Gamma.
$$

Let $V_g(\chi, \eta) \in \frac{k\Gamma}{k}$ \mathcal{YD} be a vector space of dimension 2, homogeneous of degree g and with action of Γ given in a basis $(x_i)_{i\in\mathbb{I}_2}$ by

$$
h \cdot x_1 = \chi(h)x_1, \quad h \cdot x_2 = \chi(h)x_2 + \eta(h)x_1,\tag{2.3}
$$

for all $h \in \Gamma$. Then $\mathcal{V}_g(\chi, \eta)$ is indecomposable in $\frac{k\Gamma}{k} \mathcal{YD} \iff \eta \neq 0$. As a braided vector space, $\mathcal{V}_g(\chi, \eta)$ is either of diagonal type, when $\eta(g) = 0$, or else isomorphic to $\mathcal{V}(\epsilon, 2)$, $\epsilon = \chi(g)$ (note that indecomposability as Yetter–Drinfeld module is not the same as indecomposability as braided vector space).

Lemma 2.2. *Let* $V \in \mathbb{R}^n$ $V \mathcal{D}$, dim $V = 2$. Then either *V* is of diagonal type or else $V \simeq V_q(\chi, \eta)$ for unique g, χ and η with $\eta(q)=1$.

Proof. Assume that V is not of diagonal type; then V is indecomposable. Since $\mathbb{k}\Gamma$ is cosemisimple, there exists $g \in \Gamma$ such that V is homogeneous of degree g. Moreover, $k = \overline{k}$ implies that V is not simple. Hence there exist $\chi_1, \chi_2 \in \widehat{\Gamma}$ such that soc $V \simeq k_3^{\chi_1}$
and $V/\operatorname{soc} V \sim k^{\chi_2}$. Pick $x_1 \in \operatorname{soc} V = 0$ and $x_2 \in V = \operatorname{soc} V$; then $h, x_2 = \chi_2(h)x_2 +$ and $V/\operatorname{soc} V \simeq \mathbb{R}_{g}^{32}$. Pick $x_1 \in \operatorname{soc} V - 0$ and $x_2 \in V_{g_2} - \operatorname{soc} V$; then $h \cdot x_2 = \chi_2(h)x_2 +$
 $x(h)x_1$ for all $h \in \Gamma$ where *n* is a (x_1, x_2) -derivation. Since *V* is not of diagonal type $\eta(h)x_1$ for all $h \in \Gamma$, where η is a (χ_1, χ_2) -derivation. Since V is not of diagonal type, $\chi_1(g) = \chi_2(g)$ and $\eta(g) \neq 0$. Now

$$
\chi_1(h)\eta(g) + \eta(h)\chi_2(g) = \eta(hg) = \chi_1(g)\eta(h) + \eta(g)\chi_2(h) \Rightarrow \chi_1(h) = \chi_2(h)
$$

for all $h \in \Gamma$. Finally, up to changing x_1 , we may assume that $\eta(g) = 1$.

2.3. Indecomposable modules over Hopf algebras

Let K be a Hopf algebra with bijective antipode. A *YD-pair* [[2](#page-10-8)] for K is a pair $(q, \chi) \in$ $G(K) \times \text{Hom}_{\text{alg}}(K,\mathbb{k})$ such that

$$
\chi(h) g = \chi(h_{(2)}) h_{(1)} g \mathcal{S}(h_{(3)}), \quad h \in K.
$$
\n(2.4)

If (g, χ) is a YD-pair, then the one-dimensional vector space \mathbb{k}_g^{χ} , with action and coaction
given by χ and a nonportively is in $K(Y)$. Convergely, any $V \subset K(Y)$ with dim $V = 1$ is given by χ and g respectively, is in $K^{\mathcal{Y}}\mathcal{YD}$. Conversely, any $V \in K^{\mathcal{Y}}\mathcal{YD}$ with dim $V = 1$ is like this for unique g and χ . If (a, χ) is a VD-pair, then $a \in Z(G(K))$ like this, for unique g and χ . If (g, χ) is a YD-pair, then $g \in Z(G(K))$.

If $\chi_1, \chi_2 \in \text{Hom}_{\text{alg}}(K, \mathbb{k})$, then the space of (χ_1, χ_2) -derivations is

$$
\mathrm{Der}_{\chi_1,\chi_2}(K,\Bbbk) = \{ \eta \in K^* : \eta(ht) = \chi_1(h)\eta(t) + \chi_2(t)\eta(h) \,\forall h, t \in K \}.
$$

A *YD-triple* for K is a collection (q, χ, η) where (q, χ) , is a YD-pair for K, cf. [\(2.4\)](#page-3-2), $\eta \in \text{Der}_{\chi,\chi}(K,\mathbb{k}), \eta(g) = 1$ and

$$
\eta(h)g_1 = \eta(h_{(2)})h_{(1)}g_2\mathcal{S}(h_{(3)}), \quad h \in K.
$$
\n(2.5)

If $K = \mathbb{k}G$ is a group algebra, then we can think of the collection (g, χ, η) as in G, G , $Der_{Y,Y}(G,\Bbbk).$

Let (g, χ, η) be a YD-triple for K. Let $\mathcal{V}_g(\chi, \eta)$ be a vector space with a basis $(x_i)_{i \in \mathbb{I}_2}$, where action and coaction are given by

$$
h \cdot x_1 = \chi(h)x_1, \qquad h \cdot x_2 = \chi(h)x_2 + \eta(h)x_1, \qquad \delta(x_i) = g \otimes x_i,
$$

 $h \in K$, $i \in \mathbb{I}_2$. Then $\mathcal{V}_g(\chi, \eta) \in \frac{K}{K} \mathcal{YD}$, the compatibility being granted by [\(2.4\)](#page-3-2) and [\(2.5\)](#page-3-3).
Since $g(a) \neq 0$, then $\mathcal{V}_g(\chi, \eta)$ is indecomposable in $K \mathcal{YD}$. Since $\eta(g) \neq 0$, then $\mathcal{V}_g(\chi, \eta)$ is indecomposable in $K^{\mathcal{Y}}\mathcal{YD}$.

Lemma 2.3. *Let* G *be a group. Let* $V \in \mathbb{E}^R_G \mathcal{YD}$, $\dim V = 2$. Then either V is of diagonal
ne as a braided vector space or else $V \approx V(\chi, n)$ for a unique YD-triple (a, χ, n) *type as a braided vector space or else* $V \simeq \mathcal{V}_q(\chi, \eta)$ *for a unique YD-triple* (g, χ, η) *.*

Proof. Assume first that $V = V_{g_1} + V_{g_2}$ as kG-comodule, with $g_1 \neq g_2 \in G$. Now g_2 . $V_{g_2} = V_{g_2}$, hence $g_2 \cdot V_{g_1} = V_{g_1}$ and similarly $g_1 \cdot V_{g_2} = V_{g_2}$. Thus V is of diagonal type, a contradiction. Thus, we may assume that $V - V$ for some $g \in G$ and Lemma 2.2 applies contradiction. Thus, we may assume that $V = V_g$ for some $g \in G$, and Lemma [2.2](#page-2-1) applies with $\Gamma = \langle g \rangle$, so that $V \simeq \mathcal{V}_g(\tilde{\chi}, \tilde{\eta})$ for some $\tilde{\chi} \in \Gamma$ and $\tilde{\eta}$ a $(\tilde{\chi}, \tilde{\chi})$ -derivation. Then there is a basis $(x_i)_{i \in \mathbb{Z}}$ where g acts by $A = \ell^{(n-1)}$. However, $g \in Z(G)$ hence any $h \in G$ ac is a basis $(x_i)_{i\in\mathbb{I}_2}$ where g acts by $A = \begin{pmatrix} 6 & 1 \ 1 & 0 & 1 \end{pmatrix}$. However, $g \in Z(G)$, hence any $h \in G$ acts by a matrix in the centralizer of $A = I(a, b) \cdot a \in \mathbb{R}^\times$, $h \in \mathbb{R}$. In other words $V \sim V(\chi, n)$ a matrix in the centralizer of $A = \{(\begin{smallmatrix} a & b \\ 0 & a \end{smallmatrix}) : a \in \mathbb{k}^{\times}, b \in \mathbb{k}\}.$ In other words, $V \simeq \mathcal{V}_g(\chi, \eta)$ for a unique VD-triple (g, χ, η) for a unique YD-triple (g, χ, η) .

Let $\mathcal{D} = (g, \chi, \eta)$ be a YD-triple and $\epsilon := \chi(g)$. If $\epsilon = 1$, respectively -1 , then we say that D is a *Jordanian*, respectively *super Jordanian*, YD-triple.

Remark 2.4. Let $f \in \text{Aut}_{\text{Hopf}} H$, $g^f = f(g)$, $\chi^f = \chi \circ f^{-1}$, $\eta^f = \eta \circ f^{-1}$. Then $\mathcal{D}^f = f(\chi^f, \eta^f)$ is a VD-triple and $\chi^f(g^f) = \chi(g)$, $\eta^f(g^f) = \eta(g)$. Thus if \mathcal{D} is Iordanian (g^f, χ^f, η^f) is a YD-triple and $\chi^f(g^f) = \chi(g)$, $\eta^f(g^f) = \eta(g)$. Thus, if $\mathcal D$ is Jordanian,
respectively super Jordanian, then so is $\mathcal D^f$. Let $V^f = \mathcal V$, (χ^f, η^f) with basis χ' , χ' , respectively super Jordanian, then so is \mathcal{D}^f . Let $V^f = \mathcal{V}_{gt}(\chi^f, \eta^f)$, with basis x'_1, x'_2 . Then f extends to a Hopf algebra isomorphism $\tilde{f}: T(V)\#H \to T(V^f)\#H$ such that $f(x_1) = x'$. Let $f(x_i) = x'_i$. Let

$$
Aut\mathcal{D} := \{f \in Aut_{Hopf} H : \mathcal{D}^f = \mathcal{D}\}.
$$

Then we have a morphism of groups $\text{Aut}\,\mathcal{D}\to\text{Aut}_{\text{Hom}}(T(V)\#H)$.

3. Generation in degree 1

3.1. A block plus a point

We shall need a result from [**[3](#page-10-5)**] on some braided vector spaces of dimension 3. Let $\epsilon \in \{\pm 1\}, q_{12}, q_{21}, q_{22} \in \mathbb{k}^\times$ and $a \in \mathbb{k}$. Let V be the braided vector space with basis x_i , $i \in \mathbb{I}_3$, and braiding

$$
(c(x_i \otimes x_j))_{i,j \in \mathbb{I}_3} = \begin{pmatrix} \epsilon x_1 \otimes x_1 & (\epsilon x_2 + x_1) \otimes x_1 & q_{12}x_3 \otimes x_1 \\ \epsilon x_1 \otimes x_2 & (\epsilon x_2 + x_1) \otimes x_2 & q_{12}x_3 \otimes x_2 \\ q_{21}x_1 \otimes x_3 & q_{21}(x_2 + ax_1) \otimes x_3 & q_{22}x_3 \otimes x_3 \end{pmatrix}.
$$
 (3.1)

The ghost is $\mathscr{G} =$ $\begin{cases} -2a, & \epsilon = 1, \end{cases}$ $\begin{cases}\n\frac{1}{\epsilon} & \text{if } \mathscr{G} \in \mathbb{N}, \text{ then the ghost is discrete.} \\
\epsilon = -1.\n\end{cases}$

Theorem 3.1 ([\[3,](#page-10-5) Theorem 4.1]). *If* GKdim $\mathcal{B}(V) < \infty$, then *V* is as in Table [1.](#page-4-1)

$q_{12}q_{21}$	ϵ	q_{22}	Ġ	GKdim
	± 1	1 or $\notin \mathbb{G}_{\infty}$	\cup	3
		$\in \mathbb{G}_{\infty} - \{1\}$	Discrete	$\overline{2}$ $\mathscr{G}+3$
		-1	Discrete	$\overline{2}$
	-1	$\in \mathbb{G}'_3$	Discrete	$\mathcal{D}_{\mathcal{L}}$ $\mathscr{G}+3$
		-1	Discrete	$\mathscr{G}+2$
-1		-1		$\mathcal{D}_{\mathcal{L}}$

Table 1. *Nichols algebras of a block and a point with finite GKdim.*

3.2. Pre-Nichols versus post-Nichols

Let $V \in K^{\mathcal{X}} \mathcal{D} \mathcal{D}$ finite-dimensional. A *post-Nichols algebra* of V is a coradically graded
connected Hopf algebra $\mathcal{E} = \bigoplus_{n \geq 0} \mathcal{E}^n$ in $K^{\mathcal{Y}} \mathcal{D}$ such that $\mathcal{E}^1 \simeq V$ [[4](#page-10-9)]. A fundamental in the classification of pointed Hopf algebras with finite GKdim is the following.

Question 3.2. Assume that $K = \mathbb{k}G$, with G nilpotent-by-finite. If $V \in K^2 \mathcal{YD}$
s. CKdim $\mathcal{B}(V) \leq \infty$ then determine all post-Nichols algebras \mathcal{S} of V such that has GKdim $\mathcal{B}(V) < \infty$, then determine all post-Nichols algebras $\mathcal E$ of V such that GKdim $\mathcal{E} < \infty$.

A *pre-Nichols algebra* of *V* is a graded connected Hopf algebra $B = \bigoplus_{n \geq 0} B^n$ in $K^2 \mathcal{YD}$
ch that $\mathcal{B}^1 \sim V$ generates \mathcal{B} as algebra [15] If \mathcal{E} is a post-Nichols algebra of *V* than such that $\mathcal{B}^1 \simeq V$ generates \mathcal{B} as algebra [[15](#page-11-2)]. If \mathcal{E} is a post-Nichols algebra of V, then there is an inclusion $\mathcal{B}(V) \hookrightarrow \mathcal{E}$ of graded Hopf algebras in $K \mathcal{YD}$ and the graded dual \mathcal{E}^d
is a pre-Nichols algebra of V^* and vice versa is a pre-Nichols algebra of V^* , and vice versa.

Lemma 3.3. Let B be a pre-Nichols algebra of V, $\mathcal{E} = \mathcal{B}^d$ (recall that dim $V < \infty$). *Then* GKdim $\mathcal{E} \leq$ GKdim \mathcal{B} *. If* \mathcal{E} *is finitely generated, then* GKdim $\mathcal{E} =$ GKdim \mathcal{B} *.*

Proof. Let W be a finite-dimensional vector subspace of \mathcal{E} ; without loss of generality, we may assume that W is graded. Let $\mathcal{E}_n = \sum_{0 \leq j \leq n} W^j$. Now there exists $m \in \mathbb{N}$ such that $W \subseteq \mathbb{R}$. that $W \subseteq \bigoplus_{0 \leq i \leq m} \mathcal{E}^j$; hence

$$
\log_n \dim \mathcal{E}_n \leq \log_n \dim \oplus_{0 \leq j \leq m} \mathcal{E}^j = \log_n \dim \oplus_{0 \leq j \leq m} \mathcal{B}^j
$$

$$
\stackrel{\clubsuit}{=} \log_n \dim (\oplus_{0 \leq j \leq m} \mathcal{B}^j)^n \stackrel{\heartsuit}{\Rightarrow} \text{GKdim }\mathcal{E} \leq \text{GKdim }\mathcal{B}.
$$

Here, $\bigoplus_{0\leq i\leq mn}B^j=(\bigoplus_{0\leq i\leq m}B^j)^n$ because V generates B, hence \clubsuit ; while \heartsuit follows by the independence of the generators in the definition of GKdim.

Conversely, assume that W is a finite-dimensional graded vector subspace generating E. We claim that $\mathcal{E}_n \supseteq \bigoplus_{0 \leq j \leq n} \mathcal{E}^j$. Indeed, it suffices to show that $\mathcal{E}_n \supseteq \mathcal{E}^n$. For, take $x \in \mathcal{E}^n$; then $x = \sum w_{j_1} \dots w_{j_k}$ with $w_{j_h} \in W$, and

$$
n = \deg w_{j_1} + \dots + \deg w_{j_k} \geqslant k \Rightarrow x \in \mathcal{E}_n.
$$

Hence $\log_n \dim \mathcal{E}_n \geqslant \log_n \dim \oplus_{0 \leqslant j \leqslant n} \mathcal{E}^j = \log_n \dim \oplus_{0 \leqslant j \leqslant n} \mathcal{B}^j$, therefore GKdim $\mathcal{E} \geqslant \Box$ $GK\dim\mathcal{B}$.

Remark 3.4. The inequality in Lemma [3.3](#page-4-2) might be strict: if $\mathcal{B} = \mathbf{k}[T]$ a polynomial ring with char $k > 0$, then $\mathcal E$ is the divided power algebra that has $GK\dim \mathcal E = 0 < 1$ GKdim **^k**[T].

Question 3.5. If $V \in K^{\infty}$ has $GK \dim \mathcal{B}(V) < \infty$, then determine all pre-Nichols rebras \mathcal{B} of V such that $GK \dim \mathcal{B} < \infty$ algebras β of V such that GKdim $\beta < \infty$.

To solve Question [3.5](#page-5-0) for V is a first approximation to solve Question [3.2](#page-4-3) for V^* , since it is open whether GKdim $\mathcal{E} < \infty$ implies GKdim $\mathcal{E}^d < \infty$ for a post-Nichols algebra \mathcal{E} . However, the next particular case is useful. Consider the partially ordered set of pre-Nichols algebras $\mathfrak{Pre}(V) = \{T(V)/I : I \in \mathfrak{S}\}\$ with ordering given by the surjections. We say that V is *pre-bounded* if every chain

$$
\cdots < \mathcal{B}[3] < \mathcal{B}[2] < \mathcal{B}[1] < \mathcal{B}[0] = \mathcal{B}(V),\tag{3.2}
$$

of pre-Nichols algebras over V with finite GKdim, is finite.

Lemma 3.6. *Let* K *be a Hopf algebra,* $V \text{ } \in K^{\mathcal{Y}}\mathcal{D}$ *finite-dimensional and* $\mathcal{E} \in K^{\mathcal{Y}}\mathcal{D}$ *a st*-*Nichols algebra* of *V* with CKdim $\mathcal{E} \leq \infty$ *HV*^{*} *is pre-bounded* than \mathcal{E} *is fi post-Nichols algebra of* V *with* GKdim $\mathcal{E} < \infty$. If V^* *is pre-bounded, then* \mathcal{E} *is finitely generated and* GKdim $\mathcal{E} = GK\dim \mathcal{E}^d$. In particular, if the only pre-Nichols algebra of V^* with finite GKdim is $\mathcal{B}(V^*)$, then $\mathcal{E} = \mathcal{B}(V)$ *.*

Proof. First, we construct a chain $\mathcal{E}[0] = \mathcal{B}(V) \subsetneq \mathcal{E}[1] \cdots \subsetneq \mathcal{E}$ of finitely generated striking algebras of V. Suppose we have built $\mathcal{E}[n]$ and that $\mathcal{E} \supseteq \mathcal{E}[n]$ (otherwise post-Nichols algebras of V. Suppose we have built $\mathcal{E}[n]$ and that $\mathcal{E} \supseteq \mathcal{E}[n]$ (otherwise, we are done by Lemma [3.3\)](#page-4-2). Pick $x \in \mathcal{E} - \mathcal{E}[n]$ homogeneous of minimal degree m. Let W be the Yetter–Drinfeld submodule of \mathcal{E}^m generated by x and let $\mathcal{E}[n+1]$ be the subalgebra of $\mathcal E$ generated by $\mathcal E[n] + W$. Clearly $\mathcal E[n+1]$ is a Yetter-Drinfeld submodule of \mathcal{E} , hence $\mathcal{E}[n+1]\otimes \mathcal{E}[n+1]$ is a subalgebra of $\mathcal{E}\otimes \mathcal{E}$. By minimality of m, $\Delta(\mathcal{E}[n+1])$ $\subseteq \mathcal{E}[n+1] \otimes \mathcal{E}[n+1]$. That is, $\mathcal{E}[n+1]$ is a finitely generated post-Nichols algebra of V with GKdim $\mathcal{E}[n+1] < \infty$. Thus we have a chain [\(3.2\)](#page-5-1) of pre-Nichols algebras with $\mathcal{B}[n] =$ $\mathcal{E}[n]^d$, and GKdim $\mathcal{B}[n] < \infty$ for all n by Lemma [3.3.](#page-4-2) By hypothesis, there is n such that $\mathcal{E}[n] - \mathcal{E}$ and we are done. Finally, if the only pre-Nichols algebra of V^* with finite GKdim $\mathcal{E}[n] = \mathcal{E}$ and we are done. Finally, if the only pre-Nichols algebra of V^* with finite GKdim is $\mathcal{B}(V^*)$, then $\mathcal{E} = \mathcal{B}(V)$, because there is only one chain (3.2) for V^* . is $\mathcal{B}(V^*)$, then $\mathcal{E} = \mathcal{B}(V)$, because there is only one chain [\(3.2\)](#page-5-1) for V^* .

3.3. Post-Nichols algebras of the Jordan and super Jordan planes

Lemma 3.7. *Assume that* V *is associated with either a Jordanian or a super Jordanian YD-triple* $\mathcal{D} = (g, \chi, \eta)$ *The only post-Nichols algebra of V in* $_K^K \mathcal{YD}$ *with finite* GKdim *is* $R(V)$ $\mathcal{B}(V)$.

Proof. The dual V^{*} corresponds to the YD-triple $\mathcal{D}' = (g^{-1}, \chi^{-1}, \eta \circ \mathcal{S})$; by Lemma [3.6,](#page-5-2) it is enough to solve the analogous problem for pre-Nichols algebras. Let B be a pre-Nichols algebra of V such that $GK\dim \mathcal{B} < \infty$. We have canonical projections $T(V) \rightarrow \mathcal{B} \rightarrow \mathcal{B}(V)$. We shall prove that the defining relations of $\mathcal{B}(V)$ hold in \mathcal{B} .

Jordan case. Suppose that $y = x_2x_1 - x_1x_2 + (1/2)x_1^2 \neq 0$ in B; note that y is primitive d $y \in \mathcal{B}$ a Let $W \in K$ \mathcal{D} be spanned by the linearly independent primitive elements and $y \in \mathcal{B}_{g^2}$. Let $W \in {}^K_K \mathcal{YD}$ be spanned by the linearly independent primitive elements x_i , x_2 and y_i . Then $\mathcal{B}(W)$ is a quotient of \mathcal{B} , so $GKdim \mathcal{B}(W) \leq \infty$. Notice that W satisfies x_1, x_2 and y. Then $\mathcal{B}(W)$ is a quotient of \mathcal{B} , so GKdim $\mathcal{B}(W) < \infty$. Notice that W satisfies [\(3.1\)](#page-4-4) for $y = x_3$, $\epsilon = 1$, $q_{12} = q_{21} = q_{22} = 1$, $a = 2$. By Theorem [3.1,](#page-4-5) GKdim $\mathcal{B}(W) = \infty$, a contradiction. Then $y = 0$ and $\mathcal{B} = \mathcal{B}(V)$.

Super Jordan case. Suppose first that $x_1^2 \neq 0$ in B; note that x_1^2 is primitive and $x_1^2 \in$
2. Let $W \in K$ \mathcal{V} be spanned by the linearly independent primitives x_1, x_2 and x_1^2 \mathcal{B}_{g^2} . Let $W \in K^{\infty}$ be spanned by the linearly independent primitives x_1, x_2 and x_1^2 .
Then $\mathcal{B}(W)$ is a quotient of \mathcal{B} so $GK \dim \mathcal{B}(W) \leq \infty$. However, W satisfies (3.1) for Then $\mathcal{B}(W)$ is a quotient of \mathcal{B} , so GKdim $\mathcal{B}(W) < \infty$. However, W satisfies [\(3.1\)](#page-4-4) for $\epsilon = -1, x_3 = x_1^2, q_{12} = q_{21} = q_{22} = 1, a = -2$. By Theorem [3.1,](#page-4-5) GKdim $\mathcal{B}(W) = \infty$, a contradiction so $x^2 - 0$ in \mathcal{B} . Let $x - x_2x_3 = x_3x_2 - x_4x_3$. In $T(V)+K$ we have contradiction, so $x_1^2 = 0$ in \mathcal{B} . Let $r = x_2 x_{21} - x_{21} x_2 - x_1 x_{21}$. In $T(V) \# K$ we have

$$
\Delta(r) = r \otimes 1 + g^3 \otimes r + x_1 g^2 \otimes x_1^2 - 2x_1^2 g \otimes x_2. \tag{3.3}
$$

Assume that $r \neq 0$ in B. By the preceding and [\(3.3\)](#page-6-1), r is primitive, and $r \in \mathcal{B}_{q^3}$. Let W' be the space spanned the linearly independent primitives x_1, x_2, r . Since $\mathcal{B}(W')$
is a quotient of \mathcal{B} CKdim $\mathcal{B}(W') < \infty$. However, W' satisfies (3.1) for $\epsilon = -1$, $x_2 - y_1$ is a quotient of B, GKdim $\mathcal{B}(W') < \infty$. However, W' satisfies [\(3.1\)](#page-4-4) for $\epsilon = -1$, $x_3 = y$,
 $g_{12} = g_{21} = g_{22} = -1$, $g = -3$, so GKdim $\mathcal{B}(W') = \infty$ by Theorem 3.1, a contradiction $q_{12} = q_{21} = q_{22} = -1, a = -3$, so GKdim $\mathcal{B}(W') = \infty$ by Theorem [3.1,](#page-4-5) a contradiction.
Therefore $\mathcal{B} = \mathcal{B}(V)$ Therefore, $\mathcal{B} = \mathcal{B}(V)$.

4. Liftings

Let G be a nilpotent-by-finite group. If $V \in \mathbb{R}^{\text{G}}$ \mathcal{YD} , then $T(V)$ is a Hopf algebra in \mathbb{R}^{G} \mathcal{YD} and we denote $T(V) - T(V) + \mathbb{R}$ G We compute all liftings of the Jordan and super k_G^R and we denote $\mathcal{T}(V) = T(V) \# kG$. We compute all liftings of the Jordan and super
Lordan planes $\mathcal{Y}(\epsilon, 2)$ over kG . We follow partly the strategy from [2], as the coradical Jordan planes $\mathcal{V}(\epsilon, 2)$ $\mathcal{V}(\epsilon, 2)$ $\mathcal{V}(\epsilon, 2)$ over kG. We follow partly the strategy from [2], as the coradical is assumed to be finite-dimensional in [**[2](#page-10-8)**]; instead we use [**[14](#page-11-3)**, Theorem 8] being in the pointed context.

Remark 4.1. If $\mathcal{D} = (g, \chi, \eta)$ is a Jordanian or super Jordanian YD-triple, then $g^2 \neq 1$, since $g^2 \cdot x_2 = x_2 + 2\epsilon x_1$.

4.1. Liftings of Jordan planes

Let $\mathcal{D} = (g, \chi, \eta)$ be a Jordanian YD-triple for kG and $V = \mathcal{V}_g(\chi, \eta)$. Let $\lambda \in \mathbb{R}$ be such that

$$
\lambda = 0, \quad \text{if } \chi^2 \neq \varepsilon. \tag{4.1}
$$

Let $\mathfrak{U} = \mathfrak{U}(\mathcal{D}, \lambda)$ be the quotient of $\mathcal{T}(V)$ by the relation

$$
x_2x_1 - x_1x_2 + \frac{1}{2}x_1^2 = \lambda(1 - g^2). \tag{4.2}
$$

Clearly, $\mathfrak U$ is a Hopf algebra quotient of $\mathcal T(V)$. We now show that any lifting of a Jordan plane over $\mathbb{k}G$ is $\mathfrak{U}(\mathcal{D}, \lambda)$ for some \mathcal{D}, λ .

Proposition 4.2. It is a pointed Hopf algebra, and a cocycle deformation of $\text{gr } \mathfrak{U} \simeq$ $\mathcal{B}(V) \# \Bbbk G$; it has GKdim $\mathfrak{U} = \mathrm{GKdim} \, \Bbbk G + 2$.

Conversely, let H *be a pointed Hopf algebra with finite* GKdim *such that* $G(H) \simeq G$ *and the infinitesimal braiding of* H is isomorphic to $V(1, 2)$. Then $H \simeq \mathfrak{U}(D, \lambda)$ for some *YD-triple* D *and* $\lambda \in \mathbb{k}$ *satisfying* [\(4.1\)](#page-7-2)*.*

Moreover, $\mathfrak{U}(\mathcal{D}, \lambda) \simeq \mathfrak{U}(\mathcal{D}', \lambda')$ *if and only if there exist a Hopf algebra automorphism* of $\mathbb{K}G$ and $c \in \mathbb{K}^{\times}$ such that $\mathcal{D}' = f(D)$ and $\lambda = c\lambda'$ f of $\mathbb{k}G$ and $c \in \mathbb{k}^\times$ such that $\mathcal{D}' = f(D)$ and $\lambda = c\lambda'$.

Proof. First, we claim that there exists a $(\mathfrak{U}, \mathcal{B}(V) \# \mathbb{k}G)$ -biGalois object \mathcal{A} , so that \mathfrak{U} is a cocycle deformation of $\mathcal{B}(V) \# \Bbbk G$. Let $\mathcal{T} = \mathcal{T}(V)$.

Let X be the subalgebra of T generated by $t = (x_2x_1 - x_1x_2 + \frac{1}{2}x_1^2)g^{-2}$, which is a
submomial algebra in t Set $A - T$. The algebra map $f: X \to A$ determined by $f(t)$ Let A be the subalgebra of T generated by $t = (x_2x_1 - x_1x_2 + \frac{1}{2}x_1)y$, which is a
polynomial algebra in t. Set $A = T$. The algebra map $f : X \to A$ determined by $f(t) =$
 $t = \lambda e^{-2}$ is \mathcal{F}_c colinear. Note that $x_2x_1 = x_1$ $t - \lambda g^{-2}$ is T-colinear. Note that $x_2x_1 - x_1x_2 + \frac{1}{2}x_1^2 - \lambda$ is stable by the action of kG because of (4.1) By [2 Bemark 5.6 (b)] because of [\(4.1\)](#page-7-2). By [**[2](#page-10-8)**, Remark 5.6 (b)],

$$
\mathcal{A} := A/\langle f(X^+) \rangle = \frac{\mathcal{T}}{\langle x_2 x_1 - x_1 x_2 + (1/2)x_1^2 - \lambda \rangle}
$$

$$
\simeq \left(\frac{\mathcal{T}(V)}{\langle x_2 x_1 - x_1 x_2 + (1/2)x_1^2 - \lambda \rangle} \right) \# \mathbb{k} G.
$$

We claim that $A \neq 0$, which reduces to prove that

$$
\mathcal{E} = \mathcal{E}(\mathcal{D}, \lambda) := \frac{T(V)}{\langle x_2 x_1 - x_1 x_2 + (1/2)x_1^2 - \lambda \rangle} \neq 0.
$$

The algebra map $T(V) \to \mathbb{k}$, $x_1 \mapsto c$, $x_2 \mapsto 1$, where $c^2 = 2\lambda$, applies $x_2x_1 - x_1x_2 +$ $(1/2)x_1^2 - \lambda$ to 0, so it factors through \mathcal{E} , and thus \mathcal{E} is non-trivial. Now [[14](#page-11-3), Theorem 8] applies and A is a $\mathcal{B}(V) \# \Bbbk G$ -Galois object. Now there exists a unique (up to iso-8] applies and A is a $\mathcal{B}(V) \# \mathbb{k}$ G-Galois object. Now there exists a unique (up to isomorphism) Hopf algebra $L = L(\mathcal{A}, \mathcal{B}(V)) \# \mathbb{K}G$ such that $\mathcal A$ is a $(L, \mathcal{B}(V)) \# \mathbb{K}G$ -biGalois object. However, $L \approx \mathfrak{U}$ by a computation as in [[2](#page-10-8), Corollary 5.12], and the claim follows.

Moreover, $id_{\mathcal{T}} : \mathcal{T} \to \mathcal{T} = A$ is a section that, restricted to kG, is an algebra map. Arguing as in [**[2](#page-10-8)**, Proposition 5.8 (b)] and applying [**[17](#page-11-4)**, Theorem 4.2, Corollary 4.3], we conclude that there exists a section $\gamma : \mathcal{B}(V) \# \mathbb{K} \mathbb{G} \to \mathcal{A}$ that, restricted to $\mathbb{K} \mathbb{G}$, is an algebra map. Then [[2](#page-10-8), Proposition 4.14 (b), (c)] applies and $gr \mathfrak{U} \simeq \mathcal{B}(V) \# \mathbb{k}G$, so its infinitesimal braiding is Jordanian. Also, $GK\dim \mathfrak{U} = GK\dim \operatorname{gr} \mathfrak{U} = GK\dim \operatorname{K} G + 2$ by [**[19](#page-11-5)**, Theorem 5.4].

Conversely, let H be a pointed Hopf algebra with finite GKdim such that $G(H) \simeq G$ and the infinitesimal braiding of H is $V \simeq \mathcal{V}(1, 2)$. By Lemma [2.3,](#page-3-1) there is a Jordanian YDtriple $\mathcal{D} = (g, \chi, \eta)$ such that $V = \mathcal{V}_g(\chi, \eta)$. Then $g \colon H \simeq \mathcal{B} \# \mathbb{K}G$ for some post-Nichols algebra over V such that GKdim $\mathcal{B} < \infty$. By Lemma [3.7,](#page-6-2) $\mathcal{B} = \mathcal{B}(V)$. In particular H is generated by $H_0 = \mathbb{k}G$ and H_1 as an algebra. Moreover, $H_1/H_0 \simeq V \# \mathbb{k}G$, so there exists a surjective Hopf algebra map $\pi : \mathcal{T} \to H$ that identifies kG and applies x_i to a $(g, 1)$ -primitive element $a_i \in H_1 \setminus H_0$. As $x_2x_1 - x_1x_2 + (1/2)x_1^2$ is a $(g^2, 1)$ -primitive
element $\pi(rx_1, x_2, \dots, x_n) \in [1/2] \times [1 - a^2]$ so there exists $\lambda \in \mathbb{k}$ satisfying $(A, 1)$ such element, $\pi(x_2x_1 - x_1x_2 + (1/2)x_1^2) \in \mathbb{k}(1 - g^2)$, so there exists $\lambda \in \mathbb{k}$ satisfying [\(4.1\)](#page-7-2) such
that $g_2g_1 - g_1g_2 + (1/2)g^2 - \lambda(1 - g^2)$. Then π factors through $((\mathcal{D}, \lambda))$ and this man that $a_2a_1 - a_1a_2 + (1/2)a_1^2 = \lambda(1 - g^2)$. Then π factors through $\mathfrak{U}(\mathcal{D}, \lambda)$, and this map $\mathfrak{U}(\mathcal{D}, \lambda) \to H$ is an isomorphism since their associated coradically graded Hopf algebras $\mathfrak{U}(\mathcal{D}, \lambda) \to H$ is an isomorphism since their associated coradically graded Hopf algebras coincide.

It remains to show the last statement. Let $F : \mathfrak{U}(\mathcal{D}, \lambda) \to \mathfrak{U}(\mathcal{D}', \lambda')$ be an isomorphism
Hopf algebras. Then $F|_{\lambda, \alpha}$ is an isomorphism of Hopf algebras since $\mathbb{k}G$ is the coradical of Hopf algebras. Then $F|_{kG}$ is an isomorphism of Hopf algebras since kG is the coradical. We may assume that $F_{\vert kG} = id_{\vert kG}$ by Remark [2.4.](#page-3-4) Now $g = g'$ since $\dim \mathcal{P}_{g,1}(\mathfrak{U}(\mathcal{D},\lambda)) = 3$, $\dim \mathcal{P}_{h,1}(\mathfrak{U}(\mathcal{D},\lambda)) = 1$ for all $h \in G(\mathbb{k}G)$, $h \neq g$, and the same for $\mathfrak{U}(\mathcal{D}',\lambda')$. As $F(x_i) \in \mathcal{P}_{h,1}(\mathfrak{U}(\mathcal{D}',\lambda'))$ $\mathcal{P}_{g,1}(\mathfrak{U}(\mathcal{D}',\lambda')),$

$$
F(x_i) = a_i x'_1 + b_i x'_2 + c_i (1 - g) \text{ for some } a_i, b_i, c_i \in \mathbb{k}, i = 1, 2.
$$

As $F(hx_ih^{-1}) = hF(x_i)h^{-1}$ for all $h \in G(\mathbb{K}G)$, we deduce that $b_1 = c_1 = 0$, $c_2 = 0$ if $\chi \neq \varepsilon$, $b_2 = a_1$, $\chi = \chi'$ and $\eta = \eta'$. Also,

$$
0 = F(x_2x_1 - x_1x_2 + \frac{1}{2}x_1^2 - \lambda(1 - g)) = (a_1^2\lambda' - \lambda)(1 - g),
$$

so $a_1^2 \lambda' = \lambda$. The other implication is direct. \square

Remark 4.3. Recall that G is nilpotent-by-finite. If G is torsion-free, then $H =$ $\mathfrak{U}(\mathcal{D}, \lambda)$ is a domain. Indeed, kG is a domain by [[8](#page-10-10), [12](#page-10-11), [16](#page-11-6)], hence gr $H \simeq \mathcal{B}(V) \# kG$ is a domain, and so is H. To see that $\mathcal{B}(V) \# \mathbb{K}G$ is a domain, filter by giving degree 0 to x_1 and G and degree 1 to x_2 ; the associated graded algebra is $S(V) \otimes \mathbb{k}G$, clearly a domain.

4.2. Liftings of super Jordan planes

Let $\mathcal{D} = (g, \chi, \eta)$ be a super Jordanian YD-triple for kG and $V = \mathcal{V}_g(\chi, \eta)$. Let $\lambda \in \mathbb{R}$ be such that

$$
\lambda = 0, \quad \text{if } \chi^2 \neq \varepsilon. \tag{4.3}
$$

Let $\mathfrak{U} = \mathfrak{U}(\mathcal{D}, \lambda)$ be the quotient of $\mathcal{T}(V)$ by the relations

$$
x_1^2 = \lambda (1 - g^2), \qquad x_2 x_{21} - x_{21} x_2 - x_1 x_{21} + 2\lambda x_2 + \lambda x_1 g^2 = 0. \tag{4.4}
$$

We will prove that all liftings of super Jordan planes are the algebras $\mathfrak{U}(\mathcal{D}, \lambda)$. The proof follows the same steps as for Jordan planes.

Proposition 4.4. It is a pointed Hopf algebra, a cocycle deformation of $\text{gr } \mathfrak{U} \simeq$ $\mathcal{B}(V) \# \Bbbk G$; GKdim $\mathfrak{U} = \mathcal{G}$ Kdim $\Bbbk G + 2$ *. Conversely, let H be a pointed Hopf algebra with finite* GKdim *such that* $G(H) \simeq G$ *and the infinitesimal braiding of* H is $\simeq \mathcal{V}(-1, 2)$ *.*

Then $H \simeq \mathfrak{U}(\mathcal{D}, \lambda)$ *for some YD-triple* \mathcal{D} *and* $\lambda \in \mathbb{k}$ *satisfying [\(4.3\)](#page-8-1).*

Moreover, $\mathfrak{U}(\mathcal{D}, \lambda) \simeq \mathfrak{U}(\mathcal{D}', \lambda')$ *if and only if there exist a Hopf algebra automorphism* of $\mathbb{K}G$ and $c \in \mathbb{K}^{\times}$ such that $\mathcal{D}' = f(D)$ and $\lambda = c\lambda'$ f of $\mathbb{k}G$ and $c \in \mathbb{k}^\times$ such that $\mathcal{D}' = f(D)$ and $\lambda = c\lambda'$.

Proof. First, we claim that there exists a $(\mathfrak{U}, \mathcal{B}(V)) \# \mathbb{k}G$ -biGalois object A, so \mathfrak{U} is a cocycle deformation of $\mathcal{B}(V) \# \& G$. We proceed in two steps.

Let X_1 be the subalgebra of T generated by $t_1 = x_1^2 g^{-2}$, which is a polynomial alge-
a in t_1 . Set $A - T$. The algebra map $f: X_1 \to A$ determined by $f(t_1) - t_1 = \lambda a^{-2}$ bra in t_1 . Set $A = \mathcal{T}$. The algebra map $f: X_1 \to A$ determined by $f(t_1) = t_1 - \lambda g^{-2}$ is T-colinear. Note that $x_1^2 - \lambda$ is stable by the action of kG because of [\(4.3\)](#page-8-1). By [**[2](#page-10-8)**, Remark 5.6],

$$
\mathcal{A}_1 := A/\langle f(X_1^+) \rangle = \mathcal{T}/\langle x_1^2 - \lambda \rangle \simeq \big(\mathcal{T}(V)/\langle x_1^2 - \lambda \rangle\big) \# \mathbb{k} G.
$$

We claim that $\mathcal{A}_1 \neq 0$, which reduces to prove that $\mathcal{E}_1 = T(V)/\langle x_1^2 - \lambda \rangle \neq 0$. The algebra
map $\psi: T(V) \to \mathbb{R}$, $x_1 \mapsto c_1 x_2 \mapsto 0$, where $c^2 = \lambda$ satisfies $\psi(x^2) = \lambda$, $\psi(x_2 x_2 - x_2 x_1^2 - \lambda)$ map $\psi: T(V) \to \mathbb{k}$, $x_1 \mapsto c$, $x_2 \mapsto 0$, where $c^2 = \lambda$, satisfies $\psi(x_1^2) = \lambda$, $\psi(x_2 x_{21} - x_{21} x_2 - x_1 x_2 + 2\lambda x_2) = 0$. It induces an algebra map $x_1x_{21} + 2\lambda x_2 = 0$. It induces an algebra map

$$
\mathcal{E} = \mathcal{E}(\mathcal{D}, \lambda) = T(V)/\langle x_1^2 - \lambda, x_2x_{21} - x_{21}x_2 - x_1x_{21} + 2\lambda x_2 \rangle \rightarrow \mathbb{k}.
$$

Thus \mathcal{E} is non-trivial, which implies that \mathcal{E}_1 is also non-trivial. Therefore [[14](#page-11-3), Theorem 8] applies and \mathcal{A}_1 is a $(T(V)/\langle x_1^2 \rangle) \# \mathbb{K} G$ -Galois object.
In the second step, we consider the subalgebra J

In the second step, we consider the subalgebra X_2 of $(T(V)/\langle x_1^2 \rangle) \# \mathbb{K}G$ generated by
 $=(x_2x_3-x_2x_3-x_3x_3)(a^{-3}$, a polynomial algebra in to The algebra map $f: X_2 \to$ $t_2 = (x_2x_{21} - x_{21}x_2 - x_1x_{21})g^{-3}$, a polynomial algebra in t_2 . The algebra map $f: X_2 \rightarrow$ A determined by

$$
f(t_2) = (x_2x_{21} - x_{21}x_2 - x_1x_{21} + 2\lambda x_2)g^{-3}
$$

is T-colinear. By [[2](#page-10-8), Remark 5.6], $A := A_1/\langle f(X_2^+) \rangle = \mathcal{E} \# \mathbb{k}G$, so A is non-trivial. Then
[14] Theorem 8] applies again and A is a $\mathcal{B}(V) \# \mathbb{k}G$ -Calois object. Now there exists [[14](#page-11-3), Theorem 8] applies again and A is a $\mathcal{B}(V)\# \mathbb{k}G$ -Galois object. Now there exists a unique (up to isomorphism) Hopf algebra $L = L(\mathcal{A}, \mathcal{B}(V) \# \mathbb{K}G)$ such that $\mathcal A$ is a $(L, \mathcal{B}(V) \# \mathbb{k}G)$ -biGalois object. However, $L \simeq \mathfrak{U}$ by a computation as in [[2](#page-10-8), Cor. 5.12], and the claim follows. Moreover, $gr \mathfrak{U} \simeq \mathcal{B}(V) \# \mathbb{k}G$ and $GKdim \mathfrak{U} = GKdim \mathbb{k}G + 2$ by [**[19](#page-11-5)**, Theorem 5.4].

Conversely, let H be a Hopf algebra such that $H_0 \simeq \mathbb{k}G$, GKdim $H < \infty$ and the infinitesimal braiding of H is $\simeq \mathcal{V}(-1, 2)$. By Lemma [2.3,](#page-3-1) there is a super Jordanian YDtriple $\mathcal{D} = (g, \chi, \eta)$ such that $V = \mathcal{V}_q(\chi, \eta)$. Then gr $H \simeq \mathcal{B} \# \mathbb{k}G$ for some post-Nichols algebra over V with GKdim $\mathcal{B} < \infty$; by Lemma [3.7,](#page-6-2) $\mathcal{B} = \mathcal{B}(V)$. Arguing as in Proposi-tion [4.2,](#page-7-1) there exists a surjective Hopf algebra map $\pi : \mathcal{T} \to H$ that induces a surjective map $\mathfrak{U}(\mathcal{D}, \lambda) \to H$ for some λ as in [\(4.3\)](#page-8-1), but π is an isomorphism since their associated coradically graded Hopf algebras coincide.

It remains to prove the last statement. Let $F : \mathfrak{U}(\mathcal{D}, \lambda) \to \mathfrak{U}(\mathcal{D}', \lambda')$ be a Hopf algebra
morphism. As in the proof of Proposition 4.2, we may assume that $F_{\text{loc}} = id_{\mathcal{L}}$ and isomorphism. As in the proof of Proposition [4.2,](#page-7-1) we may assume that $F_{\parallel kG} = id_{\parallel kG}$, and we have that $g = g'$. As $F(x_i) \in \mathcal{P}_{g,1}(\mathfrak{U}(\mathcal{D}', \lambda')),$

$$
F(x_i) = a_1 x_1' + b_i x_2' + c_i (1 - g), \quad a_i, b_i, c_i \in \mathbb{k}, i = 1, 2.
$$

Notice that $F(gx_i g^{-1}) = gF(x_i)g^{-1}$, so $b_1 = c_1 = c_2 = 0$, $b_2 = a_1$ since $\chi(g) = \chi'(g) = -1$.

However, as $F(hx_i h^{-1}) = hF(x_i)h^{-1}$ for all $h \in G(\mathbb{R}^d)$, we conclude that $\chi = \chi'(g)$ −1. However, as $F(hx_ih^{-1}) = hF(x_i)h^{-1}$ for all $h \in G(\mathbb{K}G)$, we conclude that $\chi = \chi'$ and $\eta = \eta'$. Also,

$$
0 = F(x_1^2 - \lambda(1 - g)) = (a_1^2 \lambda' - \lambda)(1 - g),
$$

so $a_1^2 \lambda' = \lambda$. The other implication is direct. \square

Remark 4.5. The algebra $H = \mathfrak{U}(\mathcal{D}, \lambda)$ is never a domain: $ab = 0$, where

$$
a = \sqrt{\lambda} (g - 1) + x, \quad b = \sqrt{\lambda} (g + 1) + x.
$$

Acknowledgements. The work of N.A. and I.A. was partially supported by CONICET- Consejo Nacional de Investigaciones Científicas y Técnicas, the Fondo para la Investigación Científica y Tecnológica of the Agencia Nacional de Promoción Científica y Tecnológica, the Secretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba, the MathAmSud project GR2HOPF. The work of N.A. was partially done during a visit to the University of Marburg, and that of I.A. during a visit to the Max-Planck Institute (Bonn), both visits supported by the Alexander von Humboldt Foundation.

References

- 1. N. Andruskiewitsch and I. Angiono, On Nichols algebras with generic braiding, in *Modules and comodules* (ed. T. Brzezinski, J. L. G´omez Pardo, I. Shestakov and P. F. Smith), Trends in Mathematics, pp. 47–64 (Birkhäuser, 2008).
- 2. N. ANDRUSKIEWITSCH, I. ANGIONO, A. GARCÍA IGLESIAS, A. MASUOKA AND C. VAY, Lifting via cocycle deformation, *J. Pure Appl. Alg.* **218** (2014), 684–703.
- 3. N. Andruskiewitsch, I. Angiono and I. Heckenberger, On finite GK-dimensional Nichols algebras over abelian groups. arXiv:1606.02521.
- 4. N. Andruskiewitsch, I. Angiono and F. Rossi Bertone, The divided powers algebra of a finite-dimensional Nichols algebra of diagonal type, *Math. Res. Lett*. **24** (2017), 619– 643.
- 5. N. Andruskiewitsch and H.-J. Schneider, *Pointed Hopf algebras*, New Directions in Hopf Algebras, MSRI Series, pp. 1–68 (Cambridge University Press, 2002).
- 6. N. Andruskiewitsch and H.-J. Schneider, A characterization of quantum groups, *J. Reine Angew. Math.* **577** (2004), 81–104.
- 7. M. Artin and W. Schelter, Graded algebras of global dimension 3, *Adv. Math.* **66** (1987), 171–216.
- 8. K. A. Brown, On zero divisors in group rings, *Bull. London Math. Soc.* **8** (1976), 251–256.
- 9. K. Brown, K. Goodearl, T. Lenagan and J. Zhang, Mini-workshop: Infinite dimensional Hopf algebras, *Oberwolfach Rep.* **11** (2014), 1111–1137.
- 10. K. A. Brown and J. J. Zhang, Prime regular Hopf algebras of GK-dimension one, *Proc. London Math. Soc.* **101** (2010), 260–302.
- 11. P. Etingof and S. Gelaki, Quasisymmetric and unipotent tensor categories, *Math. Res. Lett.* **15** (2008), 857–866.
- 12. D. R. Farkas and R. Snider, ^K0 and noetherian group rings, *J. Algebra* **⁴²** (1976), 192–198.

- 13. K. R. Goodearl and J. J. Zhang, Noetherian Hopf algebra domains of Gelfand-Kirillov dimension two, *J. Algebra* **324** (2010), 3131–3168.
- 14. R. GÜNTHER, Crossed products for pointed Hopf algebras, *Comm. Algebra* 27 (1999), 4389–4410.
- 15. A. Masuoka, Abelian and non-abelian second cohomologies of quantized enveloping algebras, *J. Algebra* **320** (2008), 1–47.
- 16. J. A. Moody, *Torsion-free solvable group rings are Ore domains*. Unpublished note (1987).
- 17. H.-J. Schneider, Normal basis and transitivity of crossed products for Hopf algebras, *J. Algebra* **152** (1992), 289–312.
- 18. D.-G. Wang, J. J. Zhang and G. Zhuang, Primitive cohomology of Hopf algebras, *J. Algebra* **464** (2016), 36–96.
- 19. G. Zhuang, Properties of pointed and connected Hopf algebras of finite Gelfand-Kirillov dimension, *J. Lond. Math. Soc.* **87** (2013), 877–898.