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Manipulation of the phenotypic appearance of individuals in groups of
laying hens: effects on stress and immune-related variables
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Abstract

This study evaluated whether phenotypic appearance (PA) alteration during two developmen-
tal phases in laying hens, reared in two different group sizes, affects stress and immune
responses. After hatching, 750 chicks were randomly assigned to 30 pens at a group size of
either 10 or 40 birds. Then, the appearance of 0, 30, 50, 70 or 100% of the chicks in each pen
was altered by blackdyeing their head feathers (marked); remaining chicks were unmarked. At
32 weeks, basal and postacute stress plasma corticosterone concentration, leukocyte counts,
phytohemagglutinin-p lymphoproliferative and primary antibody responses were measured in
six birds/pen. Analysis of variances (ANOVAs) showed no differences among treatment
combinations. In a second phase, birds within initially homogeneous pens were sequentially
either marked or had dye bleached to alter PA of 70% of hens in each flock (¼group in a pen).
Hens within initially heterogeneous pens remained unaltered as controls. The above variables
were remeasured. Hens in phenotypically manipulated pens showed modified leukocyte counts
compared to hens in control pens, indicating a chronic stress reaction in all penmates (whether
individual PA was altered or not). Social isolation increased plasma corticosterone concentra-
tion. However, within groups of n¼ 40, phenotypically unaltered hens had lower responses
than their altered penmate counterparts, suggesting that remaining in a stable PA group aids
better coping with challenges. Although all hens in manipulated pens showed modified
leukocyte counts, their antibody and lymphoproliferative responses did not differ from controls
suggesting that all groupmates were able to immunologically cope with the challenges
presented, within the timeframe evaluated.
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Introduction

Stressors comprise a variety of conditions or forces that may

be external to the body and disturb homeostasis, inducing a

state of stress (Kuenzel & Jurkevich, 2010; Siegel, 1995).

This state usually involves activation of the hypothalamo–

pituitary–adrenal (HPA) axis, and in the final stage, the

release of glucocorticoids (corticosterone) from the adrenal

glands (Hazard et al., 2008; Kuenzel & Jurkevich, 2010;

Siegel, 1995). One of the main systems affected by this stress

response is the immune system (Dhabhar, 2009; Nazar et al.,

2012; Shini et al., 2009), which provides individuals with

rapid and efficient responses. These reflect a diverse reper-

toire of recognition and effector molecules and a certain

flexibility to match the changing internal and external

environment (Degen et al., 2005; Du Pasquier, 2005).

Failure to accomplish this objective at different stages along

rearing and production leads to various detrimental health-

and welfare-related consequences in poultry (Dohms & Metz,

1991; Ruff, 1999; Wigley & Barrow, 2014). When Q4stressors

are repeated or their consequences are prolonged and

sustained in time immune depression may ensue, and this is

mainly attributed to the immunosuppressive effects of

corticosterone (Shini & Kaiser, 2009; Shini et al., 2010).

Both social interactions and social environment and its

instability may frequently result in an important source of

physiological and behavioral stressful situations (Bilcı́k &

Keeling, 1999; Dennis et al., 2008; Guzman et al., 2009).

How a particular individual should interact with a conspe-

cific in a group (or flock) relies on the capacity of the

individual bird to readily access information about the

bird that it is encountering (e.g., individual identity,

gender, social and reproductive status, kinship, familiarity)

(Gobbini & Haxby, 2007). Therefore, recognition, or the lack
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thereof, is an important factor with demonstrated relevance in

the group dynamics of poultry species, including the domestic

fowl (Guzman & Marin, 2008; Lindberg & Nicol, 1996;

Marin et al., 2001)Q4 . Phenotypic appearance (PA) character-

istics, such as body mass, comb size and feather coloring,

allow individual birds to be recognized, and the establishment

of social structures is usually adjusted through different social

interactions ranging from neutral to even aggressive encoun-

ters. Additionally, it is observed that birds are phenotypically

different from their conspecifics, due to natural variation or

artificial manipulation, are at higher risk of being pecked and

possibly cannibalized (Dennis et al., 2008; Estevez et al.,

2003). Moreover, the inclusion of marks on the birds was

found to alter not only behavioral responses but also stress-

related hormonal responses, body weight and egg production

(Dennis et al., 2008; Hostetler & Ryabinin, 2013; Liste et al.,

2015).

The developed theoretical framework emphasizes the fact

that management of birds in productive systems now implies

an increasing number of factors that need to be considered

and controlled to maximize both poultry welfare and

production. When not properly taken care of, these aspects

may lead to stressful situations with detrimental behavioral

and physiological consequences. In particular, factors such

as PA composition, social group size (GS), previous social

experience, environmental familiarity and stability of social

group might play an important role in modulating adaptative

responses of birds, and hence, their performance and welfare

(Bilcı́k & Keeling, 1999; Estevez et al., 2003; Jones, 1996;

Sossidou & Elson, 2009). We hypothesized that manipula-

tion of the PA of Hy-line Brown laying hens along ontogeny

may have long-lasting effects on stress- and immune-

response parameters. We proposed that those effects may

depend on the GS they are reared at. Specifically, in a first

phase, the phenotypic composition of the groups was

changed on day one and stress and immune parameters

were assessed when birds had reached full maturity and peak

egg production. Groups evaluated included homogeneous or

heterogeneous PA compositions. In a second phase, the PA

of homogeneous groups was partially and sequentially

altered to determine whether changes during this ontogeny

stage may impact later stress and immune responses.

Heterogeneous PA groups remained stable and were used

as controls.

Methods

Animals and rearing conditions

This study is part of a larger project that evaluated the effects

of changes in PA and GS on behavioral and productive

variables. Newly hatched one-day-old Hy-line brown female

chicks were obtained from Avigán Terralta and transported to

the experimental poultry facility at the Neiker-Tecnalia

research center (Vitoria-Gasteiz, Spain). Immediately upon

arrival, 750 chicks were randomly assigned to one of the 30

pens and housed in groups of 10 or 40 birds (GS 10 and 40,

respectively; 15 pens per GS). Birds were kept at the same

density (8 birds/m2), management and housing/environmental

conditions described elsewhere (Marin et al., 2014). The

dimension of the pens housing 10 birds was 0.75� 1.78 m

(1.25 m2) and 2.00� 2.50 m (5.00 m2) for groups of 40 birds.

At two days of age, all birds were individually identified with

two white-laminated paper tags on each wing side (Cornetto

& Estevez, 2001; Liste et al., 2015). Tags included a pen

number and the individual bird number identification (Dennis

et al., 2008). Before the laying period started, pens were also

provided with nest space of 26.5� 35 cm and 106� 35 cm

(width� depth) for GS 10 and 40, respectively. Animal care

was provided in adherence with Institutional animal Care and

Use Committee guidelines.

The experiment was approved by the ethical committee at

Neiker-Tecnalia in compliance with the Spanish legislation

regarding the use of animals for experimental and other

scientific purposes (Real Decreto 1201/2005).

Experimental design phase I: same phenotypic
appearance throughout

Upon arrival, the PA was either maintained unaltered

(unmarked) or artificially altered (marked) by placing a

black mark with a nontoxic dye on the back of the head

(Dennis et al., 2008; Liste et al., 2015). Pens from each GS

were assigned to one of the following five PA conditions:

0, 30, 50, 70 or 100% of the birds with marks, yielding

three pens for each PA option and within each GS

Table 1. Experimental design for phase I and II regarding phenotypic appearance (PA) assignment within groups (flocks) for each
group size (10 or 40 birds per pen, flock).

PA composition phase II (34–46 weeks of age)

Original marking
condition (%)

PA composition Phase I
(1–34 weeks of age)

30% changed
(34 weeks of age)

50% changed
(38 weeks of age)

70% changed
(44 weeks of age)

0 100 UM 30 M and 70 UM 50 M and 50 UM 70 M and 30 UM

30 30 M and 70 UM

50 50 M and 50 UM

70 70 M and 30 UM

100 100 M 30 UM and 70 M 50 UM and 50 M 70 UM and 30 M

UM¼ unmarked; M¼marked. 750 chicks were randomly assigned among 30 pens and housed in groups of 10 or 40 birds (15
pens per group size, 3 pens per original marking condition). Number of birds sampled per group/phenotype condition¼ 9; total
number of birds studied¼ 180. Data were analyzed by mixed-model ANOVA.

2 F. N. Nazar et al. Stress, Early Online: 1–8
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(Table 1; Marin et al., 2014). According to the birds’ PA, the

following five conditions were studied in each of the two GS:

homogeneous groups with 100% individuals unmarked,

homogeneous groups with 100% individuals marked, hetero-

geneous groups with 30% individuals marked and 70%

unmarked, heterogeneous groups with 50% individuals

marked and 50% unmarked and heterogeneous groups with

70% individuals marked and 30% unmarked. This summarizes

10 PA condition combinations in phase I of the study. All

groups (flocks) remained with the same assigned PA until

34 weeks of age (Table 1).

Experimental design phase II: changing phenotypic
appearance in 70% of hens in a group (flock)
through time

The same birds used in phase I of the study were also

evaluated during phase II. After 34 weeks of age, groups with

initially homogeneous PA (100% marked or 100% unmarked)

of each GS were altered by changing PA of 70% of the hens of

these groups. The PA changes were accomplished by either

randomly marking the birds’ head (or unmarking them by

applying an H2O2 solution to the dyed feathers (Liste et al.,

2015; Marin et al., 2014) (Table 1; Marin et al., 2014) until

the following distribution was reached in the originally

homogeneous groups: 30% marked and 70% unmarked, or

70% marked and 30% unmarked. The groups with initially

heterogeneous PA in each GS (30% marked and 70%

unmarked, and 70% marked and 30% unmarked) remained

with the same originally assigned phenotype composition

until the end of this study and served as controls for the phase-

II PA changes. A total of four control conditions and four

phenotypically altered conditions were evaluated.

Variables measured and sampling time schedule

Variables were analyzed at 29 weeks of age and at 46 weeks

of age. A total of 180 birds were evaluated in phase I: six

randomly chosen birds from each pen were designated for

analysis of the condition of their immune system: three

marked and three unmarked birds from the heterogeneous

condition and six marked or six unmarked birds from each

homogeneous condition. Similarly, in phase II, three marked

and three unmarked birds from each condition were evaluated,

totaling in this case 144 birds.

The complete sampling procedure, both in phase I and

phase II, took 3 days within a period of one week. On day one,

each bird was captured, and the brachial vein of the left wing

was punctured in order to obtain 1 ml of ethylenediamine

tetraacetic acid (EDTA)-anticoagulated blood for smears and

for quantifying basal plasma corticosterone concentration. At

the same time, the phytohemagglutinin-p (PHA-P) lympho-

proliferative response was induced. To ensure a reliable

corticosterone value, the sampling procedure took no longer

than 80 s from the moment the bird was initially captured.

A blood smear was made on a slide for each sample, which

was placed on ice prior to centrifugation of the samples.

Immediately after, birds were intraperitoneally injected with

0.5 ml of a 10% sheep red blood cell (SRBC) suspension in

order to induce a humoral immune response. One week later,

the corticosterone response to an acute social isolation

stressor was evaluated by placing each hen in isolation for

5 min in a dark cardboard box (Cheng et al., 2002; Jones,

1996; Richard et al., 2008). Therefore, the stressor combined

the effects of a novel environment and isolation from

conspecifics. After 5 min, blood was immediately withdrawn

from a brachial vein, on the right side, for the assessment of

plasma corticosterone concentration and primary antibody

response against SRBC. Plasma was obtained by blood

centrifugation at 2500 g during 15 min and it was immediately

stored at �20 �C until further analyses.

Lymphoproliferative responses to
phytohemagglutinin-p (PHA-P; inflammation)

To determine cell-mediated immunity, the responses to PHA-

P (a lectin from Phaseolus vulgaris (Sigma Chemical, St.

Louis, MO)), was measured in the wing web following the

methods described elsewhere (Nazar & Marin, 2011; Roberts

et al., 2009). Briefly, on day 1, a 0.05 ml of a solution of

PHA-P in phosphate saline buffer (1 mg/ml) was injected

intradermally in the wing web of each bird. The dermal

swelling response was measured as the percentage increase in

wing web thickness at the injection site 24-h post-PHA-P

injection (day 2). Measurements were recorded to the nearest

0.01 mm using a mechanical digital micrometer.

Heterophil/lymphocyte and innate/acquired ratio

Leukocyte counts were performed on blood smears stained

with the May–Grünwald–Giemsa method. Differential counts

of 100 white cells per blood smear were made (Huff et al.,

2005; Fair et al., 1999; Nazar & Marin, 2011). The INN/ACQ

(used to compare the subpopulations of cells involved in the

two main branches of the immune response) cell and

heterophil/lymphocyte (H/L) ratios (commonly used as a

hematological indicator of chronic stress) were calculated

using the following formulae: INN/ACQ¼ (number of

basophils + number of heterophils + number of monocytes) /

(number of eosinophils + number of lymphocytes); H / L¼
(number of heterophils) / (number of lymphocytes).

Primary antibody response against sheep red blood
cells (SRBC)

To evaluate the induced humoral immune response, the

antibody titer was assessed with a microagglutination assay in

serum (Nazar & Marin, 2011; Smits & Baos, 2005) obtained

from blood samples taken one week after the intraperitoneal

administration of the SRBC suspension. Briefly, 20 ml of

complement-inactivated (through heating to 56�C) plasma

was serially diluted in 20 ml of phosphate-buffered saline

(PBS; 1:2, 1:4, 1:8, . . ., 1:512). Next, 20 ml of a 2% suspension

of SRBC in PBS was added to all wells. Microplates were

incubated at 40�C for 1 h, and hemagglutination by the test

plasma samples was compared to the blanks (PBS only) and

negative controls (wells with no SRBC suspension). Antibody

titers were reported as the Log2 of the highest dilution

yielding significant agglutination.

Corticosterone determinations

Plasma corticosterone (ng/ml) was quantified using a

validated specific corticosterone enzyme-linked
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immunosorbent assay (ELISA) kit (ENZO Life Sciences –

ADI-901-097) (Davies et al., 2013) and following the

procedure specified by the manufacturer. The reactivity with

corticosterone was 100% with a sensitivity of 27.0 pg/ml,

detecting concentrations ranging from 32 to 20,000 pg/ml.

The cross reactivity with other molecules was: deoxycortico-

sterone (21.3%), desoxycorticosterone (21.0%), progesterone

(0.46%), testosterone (0.31%), tetrahydrocorticosterone

(0.28%), aldosterone (0.18%), cortisol (0.046%) and

50.03%: pregnenolone, estradiol, cortisone, 11-dehydrocorti-

costerone acetate. Intra- and interassay variations were 3.1%

and 5.8%, respectively. All samples were assessed together.

Statistical analysis

Data analyses were conducted following general procedures

described by Dennis et al. (2008) and Marin et al. (2014).

Data within each condition combination replicate were

averaged before statistical analysis. Phase-I immunological

data were analyzed using mixed-model ANOVAs with five

PA conditions at hatch (100% marked, 100% unmarked, 30%

marked and 70 % unmarked, 50% marked and 50% unmarked,

70% marked and 30% unmarked), and two GS (10 and 40

hens) as fixed effects and pen as a random effect. H/L ratio

data were subjected to a square root transformation before

analysis to fit the analysis assumptions. Transformations were

not required for the other variables. Phase-II immunological

data were analyzed using mixed-model ANOVAs with PA

change (70% marked-30% unmarked and 70% unmarked-30%

marked from flocks with unchanged PA during adulthood,

and 70% marked-30% unmarked and 70% unmarked-30%

marked from flocks with PA changed during adulthood) and

GS (10 and 40 hens) as fixed effects and pen as a random

effect.

For both phases I and II, corticosterone data analyses also

incorporated in the model stress treatment (basal and stressed)

as a within-subject factor and the three-level interactions

(PA�GS� stress treatment) were also evaluated. Whenever

significant effects were detected, least square means were

determined and contrasts were used for means comparisons.

Post hoc treatment group comparisons were conducted using

the Fisher least significant difference test. A p value of50.05

was considered to represent significant differences.

Results

Phase I: same PA throughout

Plasma corticosterone concentrations under basal conditions

and after acute stress in adult hens reared from day one in

homogeneous and heterogeneous PA groups are shown in

Figure 1. Analyses revealed a main effect (F(1,32)¼ 340,

p50.001) of acute stress exposure with no effects of the PA

assigned on day one, the GS in which birds were reared, or

interactions among treatments (p40.26 in all cases) at the

end of phase I (29 weeks of age).

The effects of PA and GS on immune-related variables are

shown in Table 2. Analyses of inflammation (PHA-P) and

antibody titer responses, and H/L and INN/ACQ ratios,

showed no effects of the PA assigned, GS or their interaction

(p40.17 in all cases; Table 2 for further details) on any of the

cellular or humoral variables evaluated.

Phase II: changing PA proportions after age 34 weeks

Results of the effects of PA alteration and GS during

adulthood, after 34 weeks, on the basal and acute stress

response corticosterone concentrations, after changing the PA

of 70% hens in flocks initially homogeneous for marked or

unmarked hens are shown in Figure 2. Analyses revealed a

significant interaction between PA, GS and acute stress

response (F(7,32)¼ 2.34, p¼ 0.047). Mean group compari-

sons showed that basal corticosterone concentration was

similar among all groups. After the acute stressor exposure,

every hen showed increased corticosterone concentration.

Within GS 10 hens, both groups of flockmates (with their PA

Figure 1. Plasma corticosterone concentra-
tions in adult hens with different artificial
phenotypic appearance (PA) from day one of
age. Basal¼ birds reared in regular hus-
bandry conditions; Stressed¼ same birds
submitted to 5 min acute stress consisting of
individual isolation in a novel environment.
Bars represent the mean ± SE (number of
birds per homogeneous or heterogeneous
group/phenotype condition¼ 9, total number
of birds in the study¼ 180). Data were
analyzed by mixed-model ANOVA;
p¼ 0.001, stressed4basal; no significant
effects of PA or GS. M¼marked;
UM¼ unmarked; 100, 30, 50 and 70¼ 100,
30, 50 and 70% of the birds within a flock
either marked or unmarked. Group size
10¼ birds reared in groups of 10 individuals.
Group size 40¼ birds reared in groups of 40
individuals.

4 F. N. Nazar et al. Stress, Early Online: 1–8
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changed and unchanged) showed similar corticosterone

increases after the acute stress challenge. However, within

the flocks of 40 hens that were submitted to a PA alteration,

those hens that remained with their PA unchanged from hatch

showed a minor acute stress increment in their corticosterone

response compared to their flockmate counterparts with

changed PA (p50.01 in both cases; Figure 2).

Table 3 summarizes the results for the immune-related

variables evaluated after the PA of 70% of the previously

homogeneous flocks was changed during adulthood. Analyses

revealed a main effect of the PA treatment on H/L ratio

(F(3,32)¼ 3.22, p¼ 0.01) and INN/ACQ ratio (F(7,32)¼
2.35, p¼ 0.04). No significant main effect of the GS or

interaction between PA and GS were detected. Therefore,

both altered and nonaltered hens in manipulated pens showed

increased H/L and INN/ACQ ratios compared to hens in

control pens (where all hens remained with their PA unaltered

from hatch). Antibody titer and inflammation were not

affected by PA, GS or their combined effects (p40.05 in

all cases; Table 3).

Discussion

The present study evaluated whether a phenotypic manipu-

lation at two stages (posthatching and adulthood) in the

ontogeny of Hy-line Brown laying hens, may have long-

lasting effects on stress and immune responses, and whether

those effects may depend on the size of groups (flocks) in

which birds are reared. Our results support the contention that

diverse stress- and immune-related parameters are differen-

tially influenced by the manipulation of PA depending on the

age when the PA manipulation was applied and the GS in

which the hens were reared.

The results of phase I (PA changes applied on day 1

without later alteration throughout) showed no individual no

combined PA and GS effects. All hens showed similar basal

plasma corticosterone concentrations and responded to an

acute social isolation stressor as expected and described in the

literature (Grissom et al., 2008; Hazard et al., 2008; Malisch

et al., 2010; Marin et al., 2002). Regarding immune-related

variables, all hens showed responses within the expected

physiological range for healthy birds. Interestingly, the PA

Table 2. Immune-related variables measured (mean ± SE) in adult laying hens with different artificial phenotypic appearance (PA) from day one of
age.

Phenotypic appearance

p values

Variables 100 M 100UM 30 M 70UM 50 M 50UM 70 M 30UM PA GS PA�GS

H/L ratio 1.54 ± 0.25 1.69 ± 0.24 1.59 ± 0.28 1.81 ± 0.45 1.34 ± 0.32 2.21 ± 0.42 1.44 ± 0.36 1.33 ± 0.16 0.21 0.65 0.17
Innate/adaptive 1.57 ± 0.24 1.82 ± 0.24 1.61 ± 0.31 1.98 ± 0.54 1.48 ± 0.30 2.33 ± 0.46 1.58 ± 0.37 1.44 ± 0.16 0.24 0.50 0.22
Antibody titer 5.58 ± 0.91 5.79 ± 0.80 6.33 ± 0.84 6.25 ± 1.10 5.86 ± 0.86 6.37 ± 1.11 5.28 ± 0.82 5.67 ± 0.61 0.89 0.36 0.59
Inflammation 46.0 ± 11.7 45.7 ± 11.1 36.9 ± 6.1 33.7 ± 13.7 42.4 ± 10.2 32.8 ± 12.1 44.3 ± 8.7 44.3 ± 15.3 0.81 0.51 0.41

UM¼ unmarked; M¼marked; GS¼ group size; 100, 30, 50 and 70¼ percentage of birds within a flock (group) either marked or unmarked; H/L:
heterophil/lymphocyte; innate/adaptive: (number of basophils + number of heterophils + number of monocytes) / (number of eosinophils + number of
lymphocytes). Antibody titer: primary antibody response against sheep red blood cells using a microagglutination assay; Inflammation: percentage of
change in the wing web thickness 24-h postlocal injection of phytohemagglutinin-p (PHA-P). Data from GS 10 and 40 birds were pooled together to
facilitate visualization within each PA condition. Number of birds per homogeneous or heterogeneous group / phenotype condition¼ 18 (9 from each
group size). Data were analyzed by mixed-model ANOVA.

Figure 2. Plasma corticosterone concentra-
tions after changing the phenotypic appear-
ance (PA) of 70% of a flock during
adulthood. Basal¼ birds reared in regular
husbandry conditions; Stressed¼ same birds
submitted to 5 min acute stress consisting of
individual isolation in a novel environment.
Bars represent the mean ± SE (number of
birds per treatment¼ 9, total number of birds
in the study¼ 144). Data were analyzed by
mixed-model ANOVA. M¼marked;
UM¼ unmarked; 30 and 70¼ 30% and 70%
of the birds within the flock (i.e., group/pen)
either marked or unmarked. Flocks with
nonaltered PA: PA of all birds within the
flock remained unchanged from day 1 of age.
Flocks with altered PA¼ PA of birds was
either changed during adulthood or remained
unchanged from day 1 of age. Group size
10¼ birds reared in groups of 10; Group size
40¼ birds reared in groups of 40. a,c Stressed
groups with no common letters differ sig-
nificantly (p50.05; Fisher least significant
difference test).
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changes applied at hatching did not influence these outcomes

nor appeared to interact with the size of groups (flocks) the

birds were reared in. As found in complementary studies with

these same birds (Liste et al., 2015; Marin et al., 2014), the

described lack of differences across groups is not unexpected

as the PA and GS conditions were applied soon after hatching,

when early filial learning processes are established (Bolhuis

& Bateson, 1990; Bolhuis & Honey, 1998). Thus, flockmate

recognition despite their PA and degree of group PA

heterogeneity would be established during this early-study

phase, and potential negative behavioral interactions due to

differences in PA would not be strong enough to induce a

chronic stress state that could compromise immune responses

of the birds.

After changing PA in 70% of hens (46 weeks of age) in

flocks with homogeneous PA since hatching, all groups

(either PA altered or not, Figure 1) showed similar basal

corticosterone concentration. After exposure to acute social

isolation, all groups also responded with an increased

corticosterone responses as expected from this type of

stressor (Hazard et al., 2008; Malisch et al., 2010; Marin

et al., 2001). However, within altered flocks of GS 40 hens

during this second phase, hens that remained with their PA

unaltered showed significantly lower corticosterone responses

than their PA altered group-mates. This difference in

corticosterone responses indicates that in GS 40, unaltered

hens within a pen with altered hens (independently of whether

they belonged to the 100% marked or 100% unmarked initial

groups) were able to better cope with a new social challenging

situation of isolation in a novel environment. This result may

be explained via previous experience in dealing with new

situations, possibly learned after each phenotypical alteration

was carried out with successful and detrimental outcomes

from unaltered and altered PA hens, respectively. Such a

phenomenon would have enhanced social plasticity in the

unaltered group of hens making them, as above, better

adapted to new social challenging situations. Hence, the

phenotypical alteration in adulthood of the flock-mates may

have initiated a process leading to better coping or habituation

for the unaltered hens, and perhaps an opposite scenario for

the altered ones.

The analyses of the immune parameters showed that the

variables affected by the PA alteration were the H/L and the

INN/ACQ ratios. The increased heterophil population (as well

as the decrease in lymphocytes) showed that in all flockmates

where a proportion of its members had undergone PA

alteration in adulthood this change induced hematological

changes consistent with an underlying chronic stress process

(Gross & Siegel, 1985; Nazar & Marin, 2011; Siegel, 1980;

Huff et al., 2005). This suggests that the appearance of new

phenotypes in a previously homogeneous flock triggered a

chronic social reaction, physiologically evidenced in all pen

members whether their PA was in particular altered or

unaltered. This phenomenon seems to be independent of the

flock size because 10 and 40 hen groups manifested the same

described response. The elevation of the INN/ACQ ratio may

indicate, based on the functionality of the cells in each

population, different potential responses. When encountering

an actual immune challenge such as bacteria, viruses or

parasites, hens in altered flocks would manifest higher innate

and diminished acquired responses. Remarkably, despite the

finding that all birds in pens with hens with altered adult

phenotype showed modified blood cells numbers, their

induced antibody (acquired) and lymphoproliferative

(innate) responses did not differ from their respective control

counterparts. This suggests that all groupmates were able to

equally cope at the immunological level with the chronic

social challenge induced, at least within the time frame

evaluated.

Considering all immune-related variables together, we may

infer that there were cellular parameters that seemed to

manifest alterations, and effectors of immunity which were

not modified by the effects of PA alteration combined with

GS. In particular, H/L and INN/ACQ ratios did show effects;

however, it seems that this change did not directly impair

body weight and egg production (Marin et al., 2014) or

immune effectors. Cellular populations were altered in

absolute numbers but their functionality (analyzed via

lymphoproliferation and antibody production) seemed not to

be undergoing any modification. A plausible explanation for

this phenomenon could be based on the time frame evaluated

in the study and the physiology of stress responses considered

Table 3. Immune-related variables measured (mean ± SE) after changing the phenotypic appearance (PA) of 70% of a flock during adulthood.

Flocks with unchanged PA
(from day 1 of age)

Flocks with changed PA
(PA of birds was either changed during

adulthood or remained as changed on day 1 of age) p Values

Variables 70 M 30UM 70UM 30 M
Changed
to 70 M

Unchanged
30UM

Changed to
70UM

Unchanged
30 M PA GS PA�GS

H/L ratio (1.30 ± 0.3 1.37 ± 0.4 1.31 ± 0.2 1.34 ± 0.0)a (2.18 ± 0.5 2.67 ± 0.1 2.27 ± 0.4 2.39 ± 0.6)b 0.01 0.28 0.91
Innate/adaptive (0.38 ± 0.0 0.39 ± 0.1 0.38 ± 0.1 0.39 ± 0.0)a (0.51 ± 0.1 0.55 ± 0.1 0.54 ± 0.1 0.54 ± 0.1)b 0.04 0.22 0.93
Antibody titer 6.38 ± 0.7 6.44 ± 0.7 6.88 ± 0.6 5.83 ± 0.4 6.22 ± 0.6 6.38 ± 0.8 5.97 0.6 5.88 ± 1.0 0.81 0.08 0.54
Inflammation 20.1 ± 4.1 22.3 ± 4.8 20.0 ± 8.2 25.9 ± 11.0 18.6 ± 5.9 23.4 ± 8.5 20.1 4.8 19.9 ± 7.3 0.98 0.13 0.93

M¼marked; UM¼ unmarked; GS¼ group size; 70 and 30¼ percentage of birds within a flock (i.e., group in a pen) either marked or unmarked; H/L
ratio: heterophil/lymphocyte counts; innate/adaptive: (number of basophils + number of heterophils + number of monocytes) / (number of
eosinophils + number of lymphocytes). Antibody titer: primary antibody response against sheep red blood cells using a microagglutination assay;
inflammation: percentage change in the wing web thickness 24-h postinjection of phytohemagglutinin-p (PHA-P). Data from GS 10 and 40 birds were
pooled together to facilitate visualization within each PA condition. Number of birds per heterogeneous group/ phenotype condition¼ 18 (9 per each
group size). Data were analyzed by mixed-model ANOVA.

a,bWithin the same row, grouped data from birds within unaltered pens differed from birds within altered pens at p50.05.
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in the context of prolonged effects on homeostasis. The

possibility exists that a series of adjustments in immune

effectors due to chronic stress would have taken place in

shorter times than those analyzed in our work (Dhabhar, 2009;

Dhabhar & McEwen, 1997; Dohms & Metz, 1991; Shini &

Kaiser, 2009; Shini et al., 2010), as for parameters that were

affected in instances temporarily closer to the first phenotypic

alterations (Marin et al., 2014). In this sense, the birds in our

study might have developed a physiological habituation to

social challenging situations concerning their basal cortico-

sterone response and also immune effector parameters. The

only remaining manifestation of the mentioned alteration

would be the different H/L and INN/ACQ ratios.

In conclusion, phenotypical appearance alterations and

group size are important factors when designing poultry

management schedules to optimize welfare. Repeated alter-

ations taking place over long periods of time should be

analyzed in the context of possible physiological responses to

environmental challenges. This could be of importance

because some phenomena may lead to habituation or to

sensitization depending on the contexts.
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