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Second-order and higher-order
multivariate calibration methods
applied to non-multilinear data
using different algorithms
A.C. Olivieri, G.M. Escandar, A. Muñoz de la Peña

We discuss and evaluate the current state of second-order and higher-order multivariate calibration methods devoted to the

determination of compounds in non-multilinear data systems. We examine possible causes of multilinearity deviations:

(1) a non-linear relationship between signal and analyte concentration;

(2) a signal for a given sample that is non-multilinear; and,

(3) component profiles that are not constant across the different samples.

We discuss the advantages and the limitations of the algorithms available to cope with these different situations.

The review covers relevant analytical problems found in samples of environmental and biological interest, highlighting some

significant examples, and evaluating the advantages and the limitations of the different algorithms available.
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1. Introduction

Chemometric analysis has gained wide-
spread acceptance over the past two
decades, responding to the need to study
increasingly complex samples by improv-
ing existing analytical protocols. There is
intensive research devoted to the devel-
opment and the testing of multivariate
algorithms applied to progressively more
difficult chemical scenarios [1,2]. The
main reason for this continuing interest is
that second-order and higher-order data
are able to deal with potential interfer-
ences in real samples, in contrast to both
zero-order and first-order calibrations [3].
Potential interferences not included in the
calibration set can be modeled, allowing
us to quantify accurately the calibrated
analytes, even in the presence of unknown
constituents. The chemometric literature
has coined the expression ‘‘second-order
advantage’’ to describe the latter property
[4], whose potential in multi-component
analysis cannot be overestimated.

For the proper application of the avail-
able multivariate algorithms to second-
order data, it is important to know whether
specific relations exist between the profiles
for the sample components along both data
dimensions. In this context, a relevant
property of the data is their multilinearity,
because this property is assumed by the
underlying models of some of the algo-
rithms available. It may be briefly defined
as the possibility of expressing a multi-way
data array for a set of samples as a linear
function of component concentrations and
profiles in the various data dimensions.
Second-order data complying with these
requirements are called trilinear, third-
order data are called quadrilinear, etc.

Models with trilinear structure are:
� parallel factor analysis (PARAFAC) [5];
� several versions of alternating trilinear

decomposition (ATLD) [6] e.g.:
n self-weighted ATLD (SWATLD) [7];
n penalized ATLD (PATLD) [8];
n generalized rank annihilation

(GRAM) [9]; and,
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n direct trilinear decomposition (DTLD) [10]; and,

� bilinear least-squares combined with residual bilinea-
rization (BLLS/RBL) [11,12].

For third-order data, suitable quadrilinear models are:
� PARAFAC;
� trilinear least-squares (TLLS) with residual trilineari-

zation (RTL) [13]; and,
� alternating penalty quadrilinear decomposition

(APQLD) [14].
However, models allowing for deviations of multilin-

earity in one way or another are:
� PARAFAC2 (a variant of PARAFAC that allows

profile variations in one of the data dimensions from
sample to sample) [15];

� PARALIND (PARAFAC for linearly dependent
systems) [16];

� multivariate curve resolution coupled to ALS (MCR-
ALS) [17];

� non-bilinear rank annihilation (NBRA) [18];
� BLLS extended to linearly dependent systems [19];
� unfolded partial least-squares (U-PLS) [20];
� multi-way PLS (N-PLS) [21];
� non-linear kernel-PLS [22]; and,
� artificial neural networks (ANN) [23,24].

To achieve the second-order advantage, BLLS, PLS
and ANN should be combined with RBL [25–30] or with
RTL [13], if they are to be applied to third-order data.

Independent component analysis (ICA) is able to process
unfolded second-order data, whether they are trilinear or
deviate from trilinearity (e.g., the Rayleigh dispersion,
which is observed in fluorescence matrix spectroscopy,
and may thus be considered in this group) [31].

In the next section, we explain the concept of multi-
linearity, and detail possible causes of deviations from
the multilinear situation, with emphasis on the specific
algorithms that can be applied in each case.

The sections thereafter discuss examples in the litera-
ture where these deviations have been detected and
solved.

Finally, we devote a section to the special case of linear
dependency in component profiles, whose status
regarding multilinearity is somewhat controversial.

2. Multilinear systems

In this discussion, we focus on second-order data, which
are the employed most in analytical applications to date,
although the considerations can be extended to higher
data dimensions. When second-order data are processed
for a set of samples, it is important whether the three-
dimensional array built with these data complies or not
with the so-called trilinearity condition. The latter
establishes that the three-way data array built with a set
of second-order signals can be modeled through the
following expression:

Xijk ¼
XN

i¼1

ainbjnckn þ Eijk ð1Þ

where N is the total number of chemical constituents
generating the measured signal, ain is the relative con-
centration or score of component n in the i-th sample,
and bjn and ckn are the intensities in the instrumental
channels (or data dimensions) j and k, respectively. The
values of Eijk are the elements of the three-dimensional
array E, representing the residual error, and having the
same dimensions as X. The column vector an is collected
in the scores matrix A, while vectors bn and cn are col-
lected in the loading matrices B and C (usually bn and cn

are normalized to unit length).
The above principle can be formulated in a less

mathematical way. A three-dimensional array will be
trilinear provided the following requirements are veri-
fied:
(1) the signal is linearly related to the analyte concen-

tration;
(2) the signal for a given sample is bilinear; and,
(3) the component profiles are constant across the dif-

ferent samples.
The first point simply means that the maximum

signal, measured for a pure component at selected values
of the sensors in each of the two data dimensions, is
directly proportional to the component concentration.

The second requirement implies that a single compo-
nent data matrix can be decomposed into the product of
two vectors, each containing the component profile in
one of the two data dimensions. A familiar example of
bilinear data is an excitation-emission fluorescence ma-
trix, which decomposes into the excitation and the
emission spectrum for a given fluorescent component. By
contrast, tandem mass-spectrometric (MS2) data are not
bilinear, because each fragment of a single compound
has a specific MS pattern in the second MS dimension,
making it impossible to describe the MS2 data in terms of
one MS profile in each dimension.

Finally, the third requirement implies that the shape of
the profiles in all dimensions for a given component must
be the same, with intensity variations being due only to
different concentrations in different samples.

When the three-way array of second-order data is
trilinear, trilinear models PARAFAC, ATLD (and its
variants), GRAM and DTLD can be conveniently applied,
since their internal structure is that of Equation (1).
Usually, the component profiles are amenable to physical
interpretation, since they correspond to spectra, chro-
matograms or kinetic evolutions of pure components,
depending on the type of second-order data registered.

In going from second-order to third-order data, the
requisites for quadrilinearity are analogous to those
commented upon above, except that the signal for a
single sample in requisite No. 2 should be trilinear in-
stead of bilinear. More complex data arrays can of course
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be imagined, for which data multilinearity can be de-
fined by generalizing the above considerations.

3. Non-multilinear systems

When a three-way data array deviates from the multi-
linearity condition, because one (or more) of the three
requirements is (or are) violated, other non-multilinear
algorithms should be applied. The selection of the proper
algorithm, in turn, depends on the specific cause pro-
voking loss of multilinearity. Table 1 provides a conve-
nient summary, although we discuss full details below.

3.1. Non-linear relationship between signal and
analyte concentration
This phenomenon occurs in certain kinetic-spectroscopic
systems. In this case, various analytical procedures are
possible. One of them involves applying any of the tri-
linear models commented upon in Section 2.

Usually, the analytical results from the trilinear
models are obtained by interpolation of the analyte
score in the test sample into the calibration graph ob-
tained by regressing the analyte scores in the calibra-
tion samples against their nominal concentrations, the
result being called the pseudo-univariate analyte cali-
bration graph.

In non-linear cases, a non-linear pseudo-univariate
calibration graph will be obtained, because the non-
linearity will be transmitted to the relation between
scores and concentrations. If an appropriate non-linear
expression can be found (e.g., a polynomial expression)
to model this relation, the analyte calibration and the
prediction can be carried out with the calibration graph
fitted to the non-linear expression. This resource was
employed to determine malonaldehide in olive-oil
samples, in the presence of the background signal of the
olive oil, processing with PARAFAC third-order data [the
temporal evolution of excitation-emission fluorescence
matrices (EEFMs) during the reaction of the analyte with

dimethylamine] [32]. The reaction product, 1,4-disub-
stituted-1,4-dihydropyridine-3,5-dicarbaldehyde, is a
highly fluorescent compound, whose emission intensity
bears a non-linear relationship to the analyte concen-
tration. The calibration graph of PARAFAC scores versus
malonaldehide concentration could be modeled by
means of a second-degree polynomial expression. This
allowed the prediction of the analyte concentration in a
complex background, in spite of the non-linear behavior
and in the presence of uncalibrated interferences. The
latter data were also processed using several ANN
models, based on the combination of unfolded principal
component analysis (U-PCA), RTL and radial basis
functions, with similar analytical results [32].

Second-order data for the same reaction (in the form of
EEFMs collected at a fixed reaction time) were recently
processed by a non-linear PLS model (kernel-PLS) com-
bined with RBL [30]. Neural-network models or kernel
projections are more flexible than those that employ
simple non-linear expressions to fit the response-
concentration curve. They constitute universal non-linear
approximators, and are useful when it is impossible to
find an equation modeling the non-linearity present in a
given system.

Three additional experimental systems were studied by
resorting to the combination of ANNs with post-training
residual bilinearization, including:
(1) the determination of two pharmaceuticals, lorata-

dine and pseudoephedrine, in the presence of unex-
pected excipients, by absorbance-pH matrix
measurements;

(2) the quantitation of iron(II) by its catalytic effect on
the kinetics of the bromate oxidation of a colorant
in the presence of bromocresol blue, a second inter-
fering organic dye; and,

(3) the analysis of the antibiotic amoxicillin by photo-
induced EEFMs in the presence of the fluorescent
anti-inflammatory salicylate as interference
[33,34]; non-linear kernel-PLS/RBL [30] was also
recently applied to this system.

Table 1. Characteristics of three-dimensional arrays

Linear signal-concentration
analyte relationship

Signal bilinearity Profile constancy Applicable algorithm

Trilinear systems Yes Yes Yes PARAFAC, ATLD variants,
GRAM, DTLD

Non-trilinear systems No Yes Yes Non-linear PARAFAC
Non-linear
PLS/RBL
ANN/RBL

Yes Yes No MCR-ALS
PARAFAC2
PLS/RBL

Yes No Yes PLS
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A few other applications of neural networks to non-
linear second-order data are known, but, in none of
them was the second-order advantage exploited. They
are:
(1) the kinetic spectrophotometric determination of

carbamate pesticides [35];
(2) the correlation of two-dimensional nuclear mag-

netic resonance spectra to the composition and
properties of oil samples [36]; and,

(3) the monitoring of fermentation processes [37].

3.2. Non-multilinear signal for a single sample
In this case, the requirement of ‘‘equal profiles in all
dimensions and all samples for a given component’’ is
not fulfilled. This phenomenon occurs in the case of data
that are not intrinsically trilinear (e.g., MS2 matrices).
This is because the mass spectra of the fragments (ob-
tained in the second MS dimension) depend on the po-
sition (and therefore the structure) of the fragment in the
mass spectrum of the mother compound (obtained in the
first MS dimension). In this way, a given component will
display various different profiles in one of the data
dimensions, violating the above-mentioned principle. To
process this type of second-order data successfully, flex-
ible non-trilinear algorithms are required (e.g., U-PLS or
N-PLS).

A pertinent example is the simultaneous determina-
tion of the three isomers, 2-ethyl, 3-ethyl and 4-ethyl
pyridine, through MS2 data processed with both U-PLS
and N-PLS [38]. No reports appear to have been pub-
lished using MS2 second-order data achieving the sec-
ond-order advantage. This would require, in principle,
the corresponding PLS approach to be coupled to RBL to
quantify an analyte successfully in the presence of
uncalibrated interferences.

3.3. Non-constant component profiles
Another case of violation of the multilinearity is when
component profiles are not constant in one (or more)
dimension modes from sample to sample. There are
several different cases of this common phenomenon,
which we discus below in the following sub-sections.

3.3.1. One of the dimensions is the retention time
The most prolific area of interest in which non-constant
profiles have been observed is chromatography. Reten-
tion times usually vary from run to run due to changes
in the temperature profile, the flow, the sample matrix
and the injection. An indication of the growing interest
in this field is the recent publication of several reviews
on multi-dimensional chromatographic analysis and
their chemometric processing {e.g., quantitative chro-
matographic determinations based on N-way calibra-
tion strategies were reviewed by Ortiz and Sarabia
[39]}.

Stoll et al. [40] have reviewed systems resolved by
two-dimensional liquid chromatography (LC), including
considerations related to the use of diode-array detection
(DAD) or MS detectors and appropriate chemometric
data analysis.

Skov et al. described the advantages of multi-dimen-
sional chromatography (i.e. the importance of multi-
channel detectors to solve overlapping issues). They
discuss how to solve common problems (e.g., retention-
time shifts) [41,42].

Wasim and Brereton described methods for decom-
posing two-dimensional LC-DAD and LC-nuclear mag-
netic resonance (NMR) chromatograms [43].

There are basically two strategies for dealing with the
phenomenon of varying retention times:
(1) One alternative for processing multi-dimensional

chromatographic data is to restore the multilinear-
ity, removing the effect introduced by sample-
to-sample retention-time shifts. This activity is gen-
erally known as chromatographic alignment, and
some effort has been made in the recent years to im-
prove methods for properly aligning chromato-
grams.

(2) A second alternative is to process the multi-
dimensional chromatograms with algorithms
allowing for varying retention-time profiles across
samples (e.g., MCR-ALS and PARAFAC2). In some
cases, PLS/RBL has also been found to be useful
in this regard, although its general applicability is
still in doubt.

3.3.1.1. Use of aligned chromatograms. There are
numerous alignment algorithms that have been applied
in different systems [44–48]. Synchronization methods
for multi-dimensional chromatographic data [49] and
for complex, highly variable LC-MS data sets were re-
cently reviewed [50].

Prazen et al. introduced rank alignment to correct the
time shift in bidimensional chromatography based on
PCA of an augmented data matrix [51,52].

Nielsen et al. introduced the correlation optimized
warping (COW) algorithm for the alignment of two
chromatographic profiles by piecewise linear stretching
and compression of the time axis of one of the profiles [44].

Bylund et al. applied a modified COW algorithm for
time alignment of LC-MS data before successful PARA-
FAC modeling of both simulated data and a real standard
mixture of peptides [46].

Retention-time shifts in two-dimensional separations
can occur in both chromatographic dimensions, creating
the need for new methods to align the data [53,54].

Quantitative analysis using two-dimensional gas
chromatography (GC) with a flame-ionization detector
was reported for six essential oil markers in full perfumes
[55]. The results of conventional integration with those
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obtained using PARAFAC, PARAFAC2 and N-PLS were
compared.

To solve retention-time shifts, Wasim and Brereton
employed a correlation-optimized shifting based on the
so-called inner-product correlation to the local selections
[44]. Although traditional integration produced slightly
better results with respect to accuracy and precision,
multi-way analysis methods were far superior in terms of
speed and possibilities for automation.

Fraga developed a chemometric approach to the
quantification, in environmental samples, of unresolved
target-analyte signals (triethyl phosphate and 1,4-
dithiacyclohexane) in a GC-selected ion monitoring (GC-
SIM) mass spectrometer [56]. While an unskewing
algorithm was used to correct the retention-time differ-
ences within a single GC-SIM data matrix caused by
using a scanning mass spectrometer, rank alignment
corrected the run-to-run retention-time difference be-
tween a sample GC-SIM data matrix and a standard
addition GC-SIM data matrix. GRAM was then applied to
quantify the target analytes.

PARAFAC was applied to LC-ESI-MS (ESI = electro-
spray ionization) data for screening unknown metabo-
lites of citalopram, an antidepressant drug, in urine
samples [57]. Curve resolution was used for deconvolu-
tion of the LC-MS data followed by peak alignment, and
the preprocessed data were then used for metabolite-
pattern recognition using PARAFAC. A combination of
data from positive and negative ionization enhanced the
identification of metabolites and new unreported
metabolites were found and characterized by LC-MS2

and accurate mass measurements.
GC-GC-time-of-flight (TOF)-MS coupled with chemo-

metric analysis (PCA followed by PARAFAC) were used
to identify chemical differences in metabolite extracts
isolated from yeast cells either metabolizing glucose by
fermentation or metabolizing ethanol by respiration,
providing a reliable ratio of the metabolite concentra-
tions [58]. In cases where it was necessary, a high-speed
peak-matching algorithm for retention-time alignment
was applied [59].

Recently, U-PLS and N-PLS combined with RBL were
applied to the determination of the polycyclic aromatic
hydrocarbons (PAHs) benzo[b]fluoranthene and benzo
[k]fluoranthene in the presence of benzo[j]fluoranthene
as interference, based on LC fluorescence emission
matrices [60]. A new alignment procedure, which is able
to take into account the presence of potential interfer-
ences, was developed, based on the decomposition of a
three-way array composed of a test and a reference-data
matrix using a suitably initialized and constrained
PARAFAC model [60].

Resorcinol and phenol, and pesticides oxamyl and
methomyl were determined in river-water and waste-
water samples by coupling HPLC with DAD and the
algorithms GRAM, PARAFAC and MCR-ALS [61]. Before

data processing with GRAM and PARAFAC, a time-shift
correction aligned the peaks using iterative target
transformation factor analysis (ITTFA) [46]. Although
the three algorithms provided similar mean predictions,
MCR-ALS was the most robust to cope with the time
shift.

PARAFAC was used for the analysis of HPLC-DAD
data for binary mixtures of two anesthetic drugs, lido-
caine and prilocaine, with both zero and low chro-
matographic resolution [62]. DAD data from three
different cases were studied. In one experiment, the
analysis was carried out without a chromatographic
column; instead, a back-pressure tube connected be-
tween the autosampler and the detector provided pres-
sure for the pump to work against. In the remaining
cases, a chromatographic column was employed, and a
varying amount of acetonitrile in the mobile phase
provided the different separations. In the first case, small
shifts in the retention time of the single peak were ob-
served in all samples, and thus corrections were made to
the shifts for a successful prediction.

Three synthetic mixtures (p-chlorobenzoic acid/ben-
zoic acid, uracil/pyruvic acid, and fumaric acid/maleic
acid/phenyl phosphoric acid), each containing a differ-
ent target analyte (p-chlorobenzoic acid, uracil, and
fumaric acid, respectively) were analyzed by two-
dimensional LC data using an in-house LC·LC analyzer
that coupled an anion-exchange column with a re-
versed-phase column connected to a UV-absorbance
detector [63]. The resulting unresolved target-analyte
signals were then analyzed by standard addition with
GRAM and PARAFAC. GRAM followed by PARAFAC
refinement was shown to produce better results than
using each method separately. Because, in some cases,
rank alignment did not correct the run-to-run retention-
time shifts of the LC·LC data, the authors introduced a
new alignment method. It involved incrementally
applying a time-shift correction to the LC·LC data fol-
lowed by GRAM and then PARAFAC analysis. The right
shift provided the best data fit between the PARAFAC
data and the raw data.

PARAFAC and BLLS were applied to the determina-
tion of five pesticides (simazine, carbaryl, carbendazim,
methyl thiophanate and dimethoate) and two metabo-
lites (phthalimide and 3,5-dichloroaniline) in wine
samples by HPLC-DAD [64]. Rank alignment was em-
ployed to correct the effects of time shifts. Use of con-
straints or choice of an appropriate initialization
procedure for PARAFAC was necessary in some situa-
tions to provide better results, and, although these tools
are very useful, they should be optimized. However, al-
though BLLS presents the advantages of not requiring
initialization and constraints, the knowledge of all
components in the calibration samples is required for
application of this method. In the cases analyzed, BLLS
presented results that were of the same quality as
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PARAFAC in five cases, but, in two other situations, only
PARAFAC enabled analyte quantitation.

HPLC-DAD coupled with the ATLD algorithm deter-
mined levodopa, carbidopa and methyldopa simulta-
neously in human plasma samples [65]. While selection
of the retention-time domain for each analyte avoided
collinearity problems, the second-order chromatographic
standardization [51] was applied to align the data sets
and to obtain better analytical figures of merit.

HPLC-DAD and PARAFAC were applied for the simul-
taneous determination of four aflatoxins in a set of spiked
and naturally-contaminated pistachio nuts in the pres-
ence of matrix interferences [66]. The effect of retention-
time shifts was corrected by rank alignment [51].

3.3.1.2. Use of unaligned chromatograms. In this sub-
section, we review papers where raw chromatographic
data were directly processed by suitable algorithms,
which allowed for varying retention-time profiles in dif-
ferent experiments. However, in some cases, minor time
shifts in selected chromatographic regions allowed direct
trilinear analysis of the multi-dimensional chromato-
grams. For example, metabolomic analysis was carried
out from third-order LC-LC-DAD data processed by
PARAFAC, including quantitative analysis of selected
compounds [67]. The entire chromatogram was parti-
tioned into small sections, in which the data were
apparently quadrilinear.

Also, in the quantification of sulfamethoxypyridazine,
sulfamethoxazole and sulfadimethoxine in porcine kid-
ney by HPLC-DAD and PARAFAC [68], no significant
retention-time shifts were observed.

Agrochemicals in both synthetic and spiked environ-
mental wastewaters and sediment samples were evalu-
ated by LC-DAD data recorded using two types of
columns [69], with promising (although not ideal) re-
sults when applying MCR-ALS, due to co-elution prob-
lems and matrix interferences. In a subsequent work, the
authors improved results by coupling the chromato-
graphic run to an MS detector in scan mode [70]. Fi-
nally, using coupled LC-DAD-MS data, all problems were
successfully resolved by MCR-ALS and quantitation er-
rors were below 12% [71].

LC with DAD detection and MCR-ALS was also applied
for the quantitation of:
(1) nine phenolic acids in synthetic samples and straw-

berry samples [72];
(2) three synthetic dyes in non-alcoholic beverages

[73];
(3) seven non-steroidal anti-inflammatory drugs and

anticonvulsant carbamazepine in river water and
wastewater [74];

(4) nine b-blockers and two analgesics (paracetamol
and phenazone) in river water [74];

(5) pesticides in water samples [76]; and,
(6) four phenolic acids in olive oil [77].

In some of these cases, MCR-ALS showed better pre-
dictive ability than U-PLS/RBL [73] and PARAFAC2 [77].

U-PLS/RBL was applied to LC-DAD data for the
simultaneous determination of eight tetracyclines in
wastewaters [78]. The use of a latent variable structure
provided predictive results that were comparable to
MCR-ALS.

Six sulfamides were extracted from kidney and ana-
lyzed by HPLC-DAD and PARAFAC2 [79], and nine
components of reserpine (a common antihypertensive)
tablets were determined by MCR-ALS applied to capillary
electrophoresis-DAD data [80].

MCR-ALS and PLS were compared for the resolution of
co-eluted peaks of pyrocatechol, dopamine and epi-
nephrine in LC with electrochemical detection [81].
Voltammetric detection coupled to MCR-ALS was pre-
ferred for high analyte concentrations, whereas amper-
ometric detection combined with PLS was more
adequate at lower levels.

HPLC with attenuated total reflection-FTIR detection
was implemented for the determination of carbohy-
drates, alcohols and organic acids in red wine. Where
co-elution was detected, MCR-ALS was successfully
employed for quantitative analysis [82].

István et al. analyzed the capabilities of some che-
mometric algorithms for the eluent-elimination problem
in HPLC-IR spectroscopy [83]. When the elution pro-
files of the eluent were not the same from sample to
sample, the simple use of MCR-ALS, PARAFAC or
PARAFAC2 did not yield acceptable results. A method
named objective subtraction of solvent spectrum with
iterative use of PARAFAC2 (OSSS-IU-PARAFAC2) was
therefore introduced and adequately retrieved the
analyte profiles in both simulated and real HPLC-IR
data sets.

Ten PAHs were determined in aqueous samples, six of
which correspond to heavy PAHs, in the presence of two
interferences, processing second-order data from LC-
fluorescence detection [84]. The second-order data were
obtained in a short time with a chromatographic system
operating in isocratic mode. Although both MCR-ALS
and PARAFAC2 were able to overcome the problem of
the presence of unexpected interferences, the superiority
of MCR-ALS to resolve this complex system successfully
was demonstrated.

Coupling of fluorescence emission-retention-time
matrices with the MCR-ALS algorithm allowed the
determination of the following marker-pteridin patho-
logical urine samples, even in the presence of interfer-
ences: neopterin, biopterin, pterin, xanthopterin and
isoxanthopterin. Baseline correction was applied to
reduce the large drift caused by interferences, but no
time-shift alignments were necessary. The method al-
lowed calculation of pteridine/creatinine ratios in
urine samples from children with different pathologies
[85].
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Retention-time shifts are less likely to occur in multi-
dimensional GC experiments. However, some authors
reported better results with non-trilinear algorithms.
GRAM and MCR-ALS were used in conjunction with GC-
MS data for the quantification of four unsaturated fatty
acids in the presence of interfering components [86].
Unlike MCR-ALS, a retention-time shift correction on GC
profiles was necessary for GRAM [51]. Amigo et al.
showed the potential of PARAFAC2 for solving common
GC-MS problems, using GC-MS data from wine samples
to illustrate the solutions [87].

It was demonstrated that two-dimensional GC coupled
to TOF-MS (GC·GC/TOF-MS) provides retention times on
two chromatographic columns, and a complete mass
spectrum for each component within an environmental
mixture. These are trilinear data compatible with che-
mometric calibration techniques (e.g., TLD and PARA-
FAC) [88]. It was determined that PARAFAC performed
a better deconvolution than TLD. A standard-addition
method was performed on one of the deconvoluted
analytes of interest to demonstrate the utility of PARA-
FAC for quantification without the need for retention-
time alignment between sample and standard data sets.
This approach also eliminated the need for fully selective
mass channel ions for deconvolution; however, some
selectivity is required in each dimension for the algo-
rithm to be successful.

Both aligned and unaligned emission fluorescence-LC
retention-time data matrices were probed for the deter-
mination of eight fluoroquinolones in samples with and
without interferences [89]. PARAFAC and N-PLS/RBL
yielded good results for all the investigated systems,
provided they were fed with suitably pre-processed data,
particularly in what concerns the alignment of the
chromatographic profiles in the retention-time dimen-
sion. MCR-ALS also produced reasonably accurate re-
sults, even if raw data were processed. However,
extensive spectral overlapping seriously affected the
MCR-ALS predictions in one of the systems.

3.3.2. One of the dimensions is pH or reaction
time. In experiments in which one of the data
dimensions is a pH gradient or a reaction time for kinetic
data, the pH or temporal profiles may vary from sample
to sample due to a variety of reasons (e.g., irreproduc-
ibility in the pH gradient generation, and temperature
changes between runs). This type of data can be there-
fore conveniently handled by MCR-ALS or PARAFAC2,
two multivariate algorithms allowing for varying com-
ponent profiles along one of the data dimensions (pH or
reaction time). However, PLS or RBL strategies would
also cope with such multilinearity deviations.

An enzymatic reaction, carried out in a reverse stop-
ped-flow-injection system and monitored by UV-vis
spectroscopy, was proposed for the determination of

levodopa and carbidopa in pharmaceuticals, using MCR-
ALS as the chemometric tool [90].

A flow-injection chemiluminescent method, based on
the different rates of the reaction of codeine and nosca-
pine in an Ru(bpy)3

2+-Ce(IV) system, was developed for
the simultaneous determination of these compounds in
pharmaceutical preparations [91]. Because the concen-
tration of sulfuric acid has a different influence on the
chemiluminescent intensity of the compounds, a three-
way data structure given by sulfuric-acid concentration,
time and samples was constructed and followed by
N-PLS regression, which does not strictly require the
trilinearity condition.

Carneiro et al. carried out the quantitation of ascorbic
and acetylsalicylic acids in pharmaceutical samples
using a flow-injection analysis system with pH gradient,
a DAD detector and MCR-ALS [92].

Antihypertensor nifedipine was determined in phar-
maceutical formulations by acquiring UV-vis spectra as
function of the time of the alkaline hydrolysis reaction in
dimethylsulfoxide [93]. The fact that a better model fit of
the three-way data structures obtained was found with
PARAFAC2 with respect to PARAFAC suggested that
the experimental data sets had deviations from trilin-
earity. Applying a kinetic spectrophotometric method,
the same authors quantified other antihypertensor, dil-
tiazem, in pharmaceuticals applying both PARAFAC2
and MCR-ALS [94].

3.3.3. Analyte-background interactions. In the
presence of analyte-background interactions, analytical
spectral changes occur from sample to sample (e.g., in
second-order EEFM data). U-PLS/RBL has been used for
the determination of antibiotic tetracycline and anti-
inflammatory salicylate, in both cases in the presence of
human serum, where significant analyte background
interactions occurred, as the interaction of the analyte
with the serum proteins modified their spectral fluores-
cence properties [28], and in the presence of other
usually co-administered drugs as interferences.

3.3.4. Inner-filter effect. In luminescence spectros-
copy, the inner-filter phenomenon may occur when a
sample component significantly absorbs radiation from
the light source of the instrument or the emission of an
analyte. Reflection on the inner-filter effect leads to the
conclusion that, in a given set of samples, emission and
excitation profiles for the affected analytes vary from
sample to sample, in not only intensity but also shape.
This is usually because the spectral overlapping (be-
tween the absorption of the component producing the
inner-filter effect and the emission/excitation peaks of
the analyte) varies across the analyte band. It is this
property that makes conventional second-order multi-
variate methodologies inapplicable to this particular
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case, because most of them are designed to recover un-
ique component profiles (excitation and emission).

MCR-ALS cannot be applied to augmented data
matrices with these properties, because this algorithm
can take into account only changes in spectral or time
profiles in one of the data dimensions. In these situa-
tions, only U-PLS/RBL (and presumably also N-PLS/RBL)
can be applied if the second-order advantage is to be
achieved, as was recently demonstrated with mixtures of
pesticides [95] and PAHs [96], in the latter case con-
taining chrysene (the analyte of interest) and benzo[a]-
pyrene (which produced a strong inner-filter effect across
the useful wavelength range).

4. Linearly dependent profiles

We discuss the question of profiles that are linearly
dependent in this section, because their multilinearity is
somewhat uncertain, as discussed below.

4.1. Kinetic or pH profiles
Linear dependency occurs when one or more sample
components obey a certain closure relationship, imply-
ing that they are mutually correlated. For example, if
two species are components of an acid-base pair, or are
the reagent and the product of a chemical reaction, then
the sum of their concentrations will be constant in the
corresponding dimension (pH or reaction time, respec-
tively). These correlated profiles are known are linearly
dependent. Correlations of this type may produce data
matrices with a rank lower than the number of chemi-
cally responsive components {i.e. a rank-deficient ma-
trix, a situation also known as ‘‘rank overlap’’ [97,98]}.

These linearly dependent profiles pose special chal-
lenges to trilinear algorithms, because three-dimensional
arrays may not be uniquely resolved by the trilinear
models. This led some authors to consider this phe-
nomenon as an additional cause of trilinearity loss. In
fact, an algorithm named non-bilinear rank annihilation
was developed for handling cases of second-order ana-
lytical problems in which one of the data dimensions was
the pH [18]. The name of the algorithm itself implies that
the authors believed the signal to be non-bilinear, and
hence a set of samples to be non-trilinear.

In these cases, each of the species separately fulfils the
trilinearity condition, and, although the overall signal
follows Equation (1), the uniqueness property of the
model is lost. As a result, PARAFAC (and other trilinear
models as well) will present a problem associated with a
multiplicity of local minima during the least-squares
fitting phase, with many different solutions lacking
physical interpretability.

However, the problem can be solved by subjecting
PARAFAC to restrictions, e.g.:

(1) initialization with values as close as possible to the
global minimum; and,

(2) forcing the elements of the scores and the loadings
to be non-negative (or unimodal and non-negative,
if they are of chromatographic origin).

Others are to employ:
(1) PARALIND, which operates in a similar way to

PARAFAC, but incorporates in the model the linear
dependency among profiles; or,

(2) MCR-ALS, which regularly includes initialization
and restrictions of the type discussed above.

Flexible models based on the PLS/RBL philosophy
are still more convenient, as they can be applied
without any modification with respect to the original
algorithm.

Recent examples are the determinations of antibiotics
in human-urine samples, in which the second-order
advantage was achieved in the presence of the fluores-
cent signal of the biological background, processing with
U-PLS/RBL kinetic spectrophotometric data [99] and pH-
gradient data [100]. In the first case, the kinetic evolu-
tion of UV-vis absorption spectra of amoxicillin in the
presence of copper(II) was used as the analytical signal
[99], and, in the second case, several fluoroquinolones,
ciprofloxacin, norfloxacin and ofloxacin were determined
in human-urine samples based on flow-injection pH-
modulated synchronous fluorescence data matrices
[100].

An additional experimental set was also analyzed, by
resorting to PLS/RBL, in a case in which linear depen-
dency was due to pH equilibria [27]. The analytes were
sodium benzoate and sodium sorbate in fruit-juice
samples, and each analyte has two species that are re-
lated by proton-transfer reactions. The U-PLS/RBL
method allowed circumvention of some of the challenges
posed by this linearly dependent system on second-order
multivariate calibration.

BLLS was modified to take into account acid-base
species, and was applied to the analysis of ascorbic acid
in fruit juices by spectral-pH data [19]. Subsequently, the
algorithm was employed for the quantification of four
dyes in juices via a flow system [101]. Linear depen-
dencies in the pH dimension and strong spectral over-
lapping made it impossible to analyze these data using
MCR-ALS and PARAFAC.

Tetracycline, chlortetracycline and oxytetracycline
were determined in surface-water samples from photo-
chemical-induced fluorescence excitation emission
matrices, modeled with BLLS and PARAFAC [102]. In
addition to significant overlapping of the analyte spectra,
strong collinearity in tetracycline and oxytetracycline
excitation spectra was detected. It was confirmed that
BLLS yielded better predictions than PARAFAC, indi-
cating the ability of BLLS to take into account high
collinearities in the data.
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4.2. Equal profiles in one of the data dimensions
Finally, the problem presented by the high (or even
complete) overlapping of profiles in one of the data
dimensions can be regarded as a special case of linear
dependency. However, it is more serious than the linear
dependency discussed above, for reasons discussed be-
low. It occurs when the spectral or temporal profiles are
virtually identical in all samples, reducing the selectivity
in the affected dimension to zero.

It is worth distinguishing two main cases of this type
of extreme overlapping in one dimension:
(1) when it occurs between calibrated analytes; and,
(2) when it takes place between a calibrated analyte

and an interference.
PARAFAC and other trilinear models cannot be ap-

plied to any of these two cases, even after imposing
suitable initialization and restriction conditions. The first
case could be conveniently solved by U-PLS/RBL,
exploiting the selectivity in one of the data dimensions,
in order to distinguish the analytes. However, in the
second case, PLS/RBL will fail, because the RBL tech-
nique will be unable to distinguish between analyte and
interference. Nevertheless, this second case is the most
interesting from the analytical point of view, since it
constitutes the field of activity of the second-order
advantage, one of the central objectives of the second-
order multivariate work. Hence, this special case of
linear dependency poses more severe challenges to sec-
ond-order multivariate algorithms, whether they are
trilinear (e.g., PARAFAC) or not (PLS/RBL).

Among the algorithms capable of achieving the
second-order advantage, the only two that can solve this
interesting problem are MCR-ALS and PARALIND. The

MCR-ALS model does so by decomposing an augmented
data matrix, built by placing matrices for different
samples adjacent to each other, in such a way that the
augmentation mode is the one affected by the profile
overlapping. As a result, the null selectivity in the af-
fected dimension is recovered in the augmented dimen-
sion. However, in the PARALIND model, the linear
dependency is already incorporated into the structural
model, allowing some components to have identical
profiles in one dimension but different profiles in the
other. None of the remaining algorithms may be able to
solve the problem.

Experimentally, this situation is encountered when a
chemical reaction generates a single responsive product
from a series of analytes. Although the kinetics of each
reaction may differ from analyte to analyte, the spec-
trum of the common product is identical for all analytes
[103].

Another important case under consideration is when
using as an analytical signal channel the time decay of
the luminescent signal of complexes formed by lantha-
nide ions and several sample components. Since the
emission of radiation arises from the complex ion, the
excitation spectra may differ (due to the different struc-
ture of the ligands), but the emission spectra will be
identical, and the decay times will, in general, be very
similar. An example of this case is the determination of
fluoroquinolones in human serum in the presence of the
interferent salicylate using lanthanide-sensitized excita-
tion-time decay luminescence data and MCR-ALS [104].

Very recently, second-order signals presenting this
phenomenon were measured for the time evolution of
chemiluminescence spectra [105]. In this case, the

Table 2. Second-order and third-order experimental data

Data order Experimental dataa Selected references

Second Excitation-emission fluorescence [32–34]
Excitation-emission phosphorescence [106]
Kinetic-DAD or fluorescence [33,35,90,91,93,94,99,103]
pH-DAD or fluorescence [18,33,92,100]
Lanthanide luminescence-time decay [104]
Chemiluminescence-time evolution [105]
Phosphorescence-time decay [107]
HPLC- DAD detection [61–69,71–79]
HPLC- fast-fluorescence detection [60,84,85,89]
HPLC- MS detection [57,58,70,71]
HPLC-electrochemical detection [81]
HPLC-IR detection [82,83]
GC-MS detection [86–88]
CE-DAD detection [80]
CE-MS detection [108]
MS2 [38]

Third Kinetic-excitation-emission fluorescence [32]
Excitation-emission phosphorescence-time decay [109]

aHPLC, High-performance liquid chromatography; CE, Capillary electrophoresis; DAD, Diode-array detection; GC, Gas chromatography;
MS, Mass spectrometry.
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spectra were identical, with the selectivity provided by
the time-evolution dimension. A variant of U-PLS/RBL
was also proposed and compared with MCR-ALS [105].

As a summary of the above information, Table 2 lists
the second-order and higher-order instrumental data
available to the analyst and already employed in differ-
ent analytical applications.
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Goicoechea, Anal. Bioanal. Chem., in press, doi: 10.1007/

s00216-010-4071-3.

[86] M. Vosough, A. Salemi, Talanta 73 (2007) 30.

[87] J.M. Amigo, T. Skov, R. Bro, J. Coello, S. Maspoch, Trends Anal.

Chem. 27 (2008) 714.

[88] A.E. Sinha, C.G. Fraga, B.J. Prazen, R.E. Synovec, J. Chromatogr.,

A 1027 (2004) 269.
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