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Wheat is one of the most important cereals worldwide for human nutrition. Tetraploid wheat (Triticum
turgidum L. ssp. durum, 2n = 28, genomes AABB) is mainly used to produce pasta. The main objective of
durum wheat breeding programs is to develop varieties with good quality and high yields. Yield is a very
complex trait, and depends on different yield components that are genetically controlled and affected by
environmental constraints. In this context, machine learning constitutes an excellent alternative for the
analysis of a high number of traits in order to extract the most relevant ones as confident predictors of the
performance of this crop, allowing a better agricultural planning. Thus, we propose the use of machine
learning algorithms for the classification of yield components and for the search of new rules to infer high
yields at harvest of durum wheat. The main objective of this work was to obtain rules for predicting
durum wheat yield through different machine learning algorithms, and compare them to detect the
one that best fits the model. In order to achieve this goal, One-R, J48, Ibk and A priori algorithms were
run with data collected by our research group of a RIL (recombinant inbreed lines) population growing
in six different environments from the Province of Buenos Aires in Argentina. The results indicate that
the A priori method obtains the best performance for all locations, and the classificators generated using
the different algorithms share a common set of selected traits. Moreover, comparing these results with
the previous ones obtained using different techniques, mainly QTL mapping, the traits indicated to be
the most significant ones were the same. The analysis of the resulting rules shows the soundness in
the agronomic relevance of the extracted knowledge.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

An expert system is a computer program that simulates the
judgment and behavior of a human that has expert knowledge
and experience in a particular field. In this context, some classifica-
tion algorithms from artificial intelligence try to extract expert
knowledge, given a sufficient quantity and quality of data together
with an adequate statistical and domain validation. In particular,
the main objective within machine learning is to develop tech-
niques that allow computers to automatically ‘‘learn’’ by means
of generalizing behaviors from unstructured information provided
in the form of examples that will be useful to create these general-
izations/associations.

The software WEKA (Hall Mark, 2003) contains multiple ma-
chine learning algorithms for the implementation of supervised
and unsupervised techniques. It is platform free (can be run on
any operating system) and contains an extensive collection of
methods for data preprocessing and modeling. Using these types
of software systems with the appropriate data allows the finding
of patterns that are able to predict association rules among differ-
ent variables.

In agriculture, yield is one of the most important goals, and
early assessment of yield reductions can prevent a disastrous situ-
ation and help in strategic planning to meet demands. Wheat is a
major renewable resource for food, feed and industrial raw mate-
rials, and is among the major crops grown on the largest area
worldwide. It is also one of the earliest crops to have grown on
large scale, due to its high yields and to the possibility of long-term
storage. The actual rate of wheat production increase (0.54% per
year between 1997 and 2007) is less than half of that required in
the next future (1.32% annual increase). As the area cropped with
wheat may only marginally increase, further production must be
mainly achieved by increasing yield (Reynolds et al., 2009). Durum
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wheat (Triticum turgidum) or pasta wheat compared with common
bread wheat (Triticum aestivum) is known for its hardness, protein
content, intense yellow colour, nutty flavor and excellent cooking
qualities. For these reasons it constitutes an excellent option for
pasta production. This crop has also great importance in grain-pro-
ducing areas of the Mediterranean and North America. The annual
area planted worldwide is estimated at 13.5 million hectares, has
shown a downward trend since 1970, since 18 million (Belaid,
2000). According to the ‘‘Integrated System of Agricultural Infor-
mation’’ (SIIA),1 Argentina increased the cultivated area with durum
wheat from 52,420 ha in the period 2010/11 to 64,200 ha in 2011/
12. The main area dedicated to this crop is the Province of Buenos
Aires.

Globally, the main objective of durum wheat breeding pro-
grams is to develop varieties with high yields. Yield potential has
been defined as ‘‘the yield of a cultivar when grown in environ-
ments to which it is adapted; with nutrients and water non-limit-
ing; and with pests, diseases, weeds, lodging, and other stresses
effectively controlled’’ (Evans and Fischer, 1999). However, in nat-
ural conditions different situations affect crop yields and it is
important to have an idea of the performance of a variety in multi-
ple environments to learn basic rules about it. Generally, grain
yield is considered as a combination of the number and weight
of the grains (Kuchel et al., 2007). Wheat grain yield can also be
separated into its components, including spike components (thou-
sand grain weight Tgw, grain number per year Gne, grain weight
per year Gwe, spikelets number per year Sne and spike fertility
SF) and can be correlated with agronomic (plant height Ph and har-
vest index HI) and morphological traits (peduncle length Pd).
According to Cuthbert Janice et al. (2008), the analysis of these
components along the growing period would allow to get knowl-
edge about the genetic control and the relationship between yield
and its components.

In this context, in order to select the most relevant traits for the
prediction of durum wheat yield, the need of using machine learn-
ing methodologies arouse (Witten et al., 2005). This decision was
made since it has been proven that these methods are robust and
efficient in feature selection problems (Blum and Langley, 1997).
Increasing demands for dimensionality reduction has broadly ex-
panded research on feature selection into many fields, including
pattern recognition, machine learning, data mining, and knowl-
edge discovery. Feature selection, as a preprocessing step to ma-
chine learning, has proven to be very effective in reducing
dimensionality, removing irrelevant data and improving compre-
hensibility (Langley et al., 1994; Liu and Motoda, 1998), and it
has been used in different fields, like mechanics (Casimira et al.,
2006), medicine (Palmerini et al., 2011), chemistry (Meydan and
Sezerman, 2010) or chemioinformatics (Soto et al., 2009a).

In particular, several authors proposed the use of machine
learning in agronomy (Boissard et al., 2008; Niedziela et al., 2012
and Atas et al., 2012). Boissard et al. (2008) remarked that the
greatest challenge in horticulture is based on an early detection
of diseases and on the reduction in the use of pesticides. These
authors were able to create a working prototype that performs fas-
ter than a normal method for disease inspection. Niedziela et al.
(2012) indicated that crop production practices and industrializa-
tion processes may result in acidification of arable soils. Associa-
tions between markers and traits were tested using a multiple
linear model, as well as a statistical machine learning approach.
With the use of this approach they were able to suggest the puta-
tive location of markers responsible for aluminum tolerance. Atas
et al. (2012) used a new approach for aflotaxin detection in chili
pepper. These authors have shown that the use of hyper spectral
1 SIIA: Sistema Integrado de Información Agropecuaria (http://www.siia.gov.ar).
imaging and data mining techniques exhibits higher performance
for aflotaxin detection in chili pepper than traditional methods.
Therefore, the use of machine learning offers great promise to
provide predictive models for processes involving agricultural
systems.

In this paper, the impact of using machine learning techniques
in predicting yield of durum wheat from its components is ex-
plored. The main objective of this work is to obtain rules for pre-
dicting durum wheat yield in early stages of crop development
through different machine learning algorithms, and compare them
according to different performance measures in order to assess the
true potentiality of machine learning in this particular application.
Moreover, we would like to establish a set of correlation-rules spe-
cific for the southeast of Buenos Aires Province, which can contrib-
ute to improve the yield of Durum wheat in the region. The article
is organized as follows: at the beginning of Section 2 the platform
and the algorithms used to carry out the studies are described, and
then details about collection and preparation of the experimental
data are presented, together with the evaluated traits. In Section 3,
the results are presented and discussed. Finally, conclusions and
some proposals are put forward in Section 4.
2. Materials and methods

The tool WEKA (http://www.cs.waikato.ac.nz/~ml/Weka/) was
used for the generation of the predictive models. Weka is an
open-source Java application produced by the University of Waika-
to, New Zealand. This software is available for free on the official
site of the institution and contains multiple algorithms for the
implementation of supervised and unsupervised techniques. The
software also includes an extensive collection of techniques for
data preprocessing and modeling, providing a friendly interface
for training and validation of models (Hall Mark, 2003).
2.1. Algorithms

In this section a brief review about the machine learning algo-
rithms that were used in this work is presented. The algorithms
were selected based on the previous experience of the authors,
and considering their aptitude to solve problems with the follow-
ing features: classification and association of variables in discrete
categories, in terms of the volume of data, so that the different cat-
egories help in the prediction of yield of durum wheat. Table SM1
summarize the main features of the algorithms used to asses yield
and yield components in Durum wheat.

The One-R algorithm, short for ‘‘One Rule’’, is a simple, yet accu-
rate, classification algorithm that generates a one-level decision
tree (Shi, 2007). It creates one rule for each attribute in the training
data, and then selects the rule with the smallest error rate as its
‘‘one rule’’. To create a rule for an attribute, the most frequent class
for each attribute value must be determined. The most frequent
class is the class that appears most often for that attribute value.
A rule is a set of attribute values bound to their majority class. In
WEKA, this algorithm selects the rule with the highest number of
correct instances and not the one with the least error rate
(Mitchell, 1997).

The J48 algorithm (Weka implementation of C4.5) is also part of
the algorithms based on decision trees, like the previous one
(Ronny Kohavi, 2002). The key feature of this algorithm is that it
incorporates a classification tree pruning once it has been induced,
i.e., when the decision tree is built, the branches with less predic-
tive power are pruned. This algorithm is an enhancement of ID3
(Quinlan, 1986), also based in trees, where the criteria chosen to
select the most informative variable are based on the concept of
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amount of mutual information between this variable and the var-
iable class (Witten et al., 2005, pp. 404–410).

The IBK algorithm is based on instances; therefore, it consists
only in storing the data presented. When a new instance is found,
a set of similar related instances is returned from memory, and is
used to classify the consulted instance (Aha et al., 1991). It is,
therefore, a lazy learning algorithm. This learning method is based
on the classification modules that keep in memory a selection of
examples without creating any kind of abstraction in the form of
rules or decision trees (hence the name, lazy) (Kamber, 2006).
Every time a new instance is found, calculate its relation to the
examples previously saved for the purpose of assigning a value
to the objective function for the new instance. The idea is that a
new case should be classified as the most frequent class when it
belongs to its K nearest neighbors, being assigned to the class most
common amongst its k nearest neighbors measured by a distance
function. Hence, it is also known as KNN method (K Nearest Neigh-
bors) (Lu, 2011).

Apriori is a classic algorithm used to find association rules in a
dataset, widely used for discovering relationships between vari-
ables in large databases (Piatetsky-Shapiro, 1991). This algorithm
is based on prior knowledge or ‘‘a priori’’ given a set of itemsets,
where the itemsets represent putative association rules between
problem variables. Basically, the algorithm attempts to find subsets
which are common to at least a minimum number of the item sets,
it’s a bottom search, moving upward level; it prunes many of the
sets which are unlikely to be frequent sets, reducing the search
space and increasing the efficiency (Agrawal and Srikant, 1994;
Härdle Wolfgang, 2002).

For more in deep details about the mentioned methods see Han
and Kamber (2000).
2.2. Biological datasets

The data used in this work were taken from the PhD thesis of
Pavan Chand Akkiraju related with the mapping of genomic re-
gions associated with yield and yield components in durum wheat
within different environments (Akkiraju, 2010).
2.2.1. Plant Material
A mapping population consisting of 93 recombinant inbred

lines (RILs) was obtained by crossing the line UC1113 with the
variety Kofa (Zhang et al., 2008). UC1113, a breeding line from
the UC Davis Wheat Breeding Program, has excellent agronomic
performance, but intermediate pasta quality parameters. Kofa is
a durum variety developed by West-Bred. It has optimal semolina
and pasta color, high protein content and strong gluten.
2.2.2. Experimental design and field trials
The experiments were conducted and evaluated in three loca-

tions of the Province of Buenos Aires, Argentina, during two grow-
ing seasons (2006/2007 and 2007/2008). The locations were
Cabildo (39�360S61�640W), Barrow (38�200S60�13W), and Balcarce
(37�450S58�180W). The rainfall recorded in 2006 between August
and December in these locations was 175.4 mm, 344.6 mm and
271.2 mm, respectively. The corresponding rainfall values for
2007 were 233.2 mm, 286.9 mm, 366.5 mm for Cabildo, Barrow
and Balcarce, respectively.

The experimental design was a randomized complete block
(RCBD) with three replications, using 3 m2 plots. At each location
the trial received special care and fertilization management, appro-
priate to the area where the experiments were conducted. The RILs
population and their parents (UC1113 and Kofa) were evaluated in
the mentioned conditions and locations.
2.2.2.1. Evaluated traits. Two kinds of data were used, plot data and
individual plant data, as follows:

(a) Plot data

Grain yield (Yld) from each entire plot was obtained by weigh-
ing the clean grains harvested using a harvest machine (Kg/ha).
Thousand grain weight (Tgw) was recorded by weighing two sam-
ples of 100 grains from each plot. Each value was used to calculate
thousand grains weight and then averaged, expressed in grams (g).

(b) Individual plant data

Ten plants from each RIL were randomly collected from the cen-
tral row of each plot after harvest maturity. The following yield re-
lated traits were measured on each plant: plant height (cm),
peduncle length (cm), harvest index, spikelets number per year,
grain number per year, grain weight per year, and spike fertility.
Average values were calculated per plot by using the data of the
ten plants.

– Plant height (Ph): Calculated as the distance from the edge of
separation of the stem from the root to the tip of the spike,
and it was expressed in cm.

– Peduncle length (Pd): Measured as the distance from the last
internode to the base of the spike, expressed in cm, and
obtained as the average of the measurements in all tillers from
each plant.

– Harvest index (Hi): Quantified as the ratio between the total
weight of grains per plant (Wgp), and the weight of the plant
(WP). (Hi = Wgp/Wp).

– Spikelet number/ear (Sne): Obtained as the average number of
spikelets/ear, counting the number of spikelets in all the ears/
plant.

– Grain number/ear (Gne): Calculated as the product of the weight
of grains/spike (Gwe) and the weight of one grain which was
obtained from the thousand grain weight (Tgw)
(Gne = Gwe � (1000/Tgw).

– Grain weight/ear (Gwe): Determined by weighing the grains
from each ear of the plant. The value per plant was calculated
as an average of all ears by plant.

– Spike fertility (SF): Calculated as the ratio of the number of fertile
spikelets/ear (Nfse) and the number of total spikelets/ear (Ntse),
and expressed as a percentage (SF = (Nfse)/(Ntse) � 100).

2.3. Data preparation for analysis using the Weka software

The data obtained from agronomic experiments were submitted
to a comma delimited CSV file with 8 records (traits analyzed) dis-
missing RIL’s column. As all input data were real numbers, it was
necessary to discretize them using an unsupervised filter in order
to make feasible the use of classification algorithms that do not
handle these numeric attributes. Ten boxes (bins) of possible inter-
vals were used for each trait. The boxes represent ranges: they
arise from the need to discretize in sub-ranges the real numbers
that are associated to the attributes.

In order to classify the yield components and relate them to the
real yield (calculated as Kg/plot) of each RIL/location, the actual
values were divided into three groups corresponding to low,
medium and high yield. This discretization into classes depended
of the specific agronomic region. For Cabildo the values were: less
than 899 kg s for low, 900–1799 kg s for medium and greater than
1800 kg s for high; Barrow: less than 2132 kg s for low,
2133–4264 kg s for medium and greater than 4264 kg s for high;
Balcarce: less than 1476 kg s for low, 1477–2952 kg s for medium
and greater than 2953 kg s for high); and the combined location:
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less than 2132 kg for low, 2133–4264 kg for medium and greater
than 4264 for high. In this context, it is important to have in mind
that the objective of this work is to show a global analysis, being
aware of the limitations of realizing a join of the data. Each data
set for each location was divided (80/20): the first (80% of the data)
was used as the training set and the second (20%) was used for the
evaluation; this division was performed under an instance super-
vised filter called ‘‘Stratified-RemoveFolds’’ by Weka.

3. Results and discussion

As it was described in Material and Methods, the three locations
had different environmental conditions that affect in different
ways the yield of this crop. Balcarce provides the best environment
for obtaining good yield values, Cabildo is the worst, having Barrow
intermediate values. Results obtained after applying the algo-
rithms to the durum wheat field datasets are shown here, de-
scribed in the following paragraphs and summarized in Table 1.
Table SM2 shows the traits that intervene in the rules that corre-
spond to each location.

Regarding to the accuracy level, the Apriori algorithm was
identified as the most relevant for each location and for the combi-
nation of the three. Accuracy, often called confidence, is the num-
ber of instances that it predicts correctly, expressed as a proportion
of all instances to which it applies. In our context, the accuracy rep-
resents the proportion of samples with which the algorithms pre-
dict the correct yield class (high, medium and low yield).

3.1. One-R

Using this algorithm it was possible to associate low, medium
and high yield to plant height in Balcarce, peduncle length with
high, medium and low yields in Barrow and spike fertility with
high and medium yields in Cabildo. These predictions were ob-
tained with accuracies of 57.00%, 65.14% and 93.20%, respectively.
When the values from all the three combined locations were con-
sidered it was possible to predict high and medium yields from the
variable thousand grain weight with an accuracy of 74.90%.

In summary, with the One-R algorithm it was possible to detect
three different yield predictors for all the three locations, but with
a low level of accuracy except for the predictor based on spike fer-
tility in Cabildo. Plant height, peduncle length and spike fertility
are interesting traits since they can be measured in a pre-harvest
stage, when the plant reaches its maximum development. These
data allow the anticipation of the final yield of the crop, with appli-
cations in plant breeding programs or harvest prediction at farmer
scale. Thousand grain weight appears as a good indicator to predict
high yields with high accuracy in the global analysis (using all
datasets together), and as it is already known, is a useful trait tra-
ditionally used in plant breeding.

3.2. J48

In Balcarce, the use of this algorithm to predict high yield based
on thousand grain weight, peduncle length, harvest index, grain
Table 1
Accuracy level in predicting high yields of durum wheat, using different algorithms
for three locations of the province of Buenos Aires.

One-R (%) J48 (%) IBK (%) Apriori (%)

Balcarce 57.00 71.03 71.03 76.00
Barrow 65.14 66.97 61.47 79.00
Cabildo 93.20 92.23

⁄
93.20 96.00

Three combined locations 74.90 76.78 77.15 90.00

* The low variation among the data for Cabildo makes the tree collapse in a single
node.
number per year, grain weight per year, plant height, spikelet num-
ber per year and spike fertility, gave a final accuracy level of
71.03%. In Barrow this algorithm allowed the prediction of high
yield based on six characteristics: thousand grain weights, plant
height, spikelet number per year, grain number per year, spike fer-
tility, and peduncle length with a final accuracy level of 66.97%.

Using this algorithm it was not possible to predict yield for
Cabildo since this location had adverse characteristics for growing
this cereal in the evaluated period (lower temperatures and lower
rainfall than in Balcarce or Barrow, especially in 2006). The low
variation among the data for this location makes the tree collapse
in a single node. For the algorithm J48, if all the records consist in
the same value for the target attribute, it returns a single leaf node
with that value. With this algorithm for the three combined loca-
tions it was possible to determine that the most important traits
to predict high yields were thousand grain weight, spikelet number
per year, spike fertility, grain number per year, plant height, har-
vest index, peduncle length and grain weight per year with a final
accuracy level of 76.78%.

3.3. IBK

The absence of a universal optimal value of k, valid for any
problem, there was to experiment with values (K = 2,3,4,5) and
determine the best value that produces better accuracy of the near-
est neighbor algorithm. The value that best fitted our data was
k = 2. Using this algorithm with data from Balcarce a level of accu-
racy of 71.03% was found for the traits showed in Table 1. For Bar-
row, the accuracy level was 61.47% whereas the accuracy level for
the traits measured in Cabildo was higher, explaining the model
with an accuracy of 93.20%. Similar results were obtained for the
three combined locations (accuracy level 77.15%). Table 2 shows
the continue-valued ranges corresponding to the different traits
used for predicting high yields using the IBK algorithm, when the
real yields values (measured as it was indicated before) are high.

3.4. Apriori

Using this algorithm it was possible to associate medium yield
with plant height, with values between 81.37 and 85.68 cm, in
Balcarce. In Barrow the association was a medium yield with
peduncle length, with values between 27.01 and 29.23 cm. These
predictions had accuracies of 76.00% and 79.00%, respectively.
However, in Cabildo the algorithm indicated that the best predic-
tors for high yield were the following traits: thousand grain weight
with values between 31.31 g and 33.38 g, plant height with values
ranging 65.64 cm and 69.70 cm, and peduncle length with lengths
between 24.5 cm and 28 cm. All these traits with a accuracy level
of 96%. When the data of the three locations were combined, only
one rule for predicting high yield was found. Thousand grain
weight, with values between 29.66 cm and 33.85 cm, showed an
accuracy of 90%. Two important conclusions can be drawn from
this information; one is the high level of accuracy, not only for
the individual locations but also for the combined locations. An-
other one is the coincidence between this algorithm and One-R
to detect thousand grain weight as a good indicator of high yield
for the three combined locations. Table 3 shows the location and
the rules associated with yield in each location.

Therefore, our study indicates that the algorithms that per-
formed with the highest accuracy are j48 an Apriori. There is a
good reason for preferring simpler models; they are easier for
people to understand, remember and use (as well as cheaper for
computers to store and manipulate). Given two models with the
same accuracy, the simpler on should be preferred because sim-
plicity is desirable in itself. Considering the Occam’s principle of
parsimony or Occam’s razor that states that one should always



Table 2
Ranges associated to the traits used for predicting high yields using the IBK algorithm.

Balcarce Barrow Cabildo Three combined locations

Tgw Thousand grain
weight

{38.98,60.46} {41.34,48.02} {25.07,+1} {�1,42.22} U
{46.40,54.78}

Ph Plant height {�1,55.52} U {59.83,81.37} U
{85.68,v89.98}

{77.4,81.05} {�1,53.46} U
{57.52,85.94}

{�1,89.80}

Pd Peduncle length {�1,38.32} {31.45,33.68} {�1,34.5} {�1,37.64}
Hi Harvest index {�1,0.29} u {0.34,0.53} {0.38,0.44} {0.21,0.46} {0.28,0.46}
Sne Spikelet number/ear {�1,11.74} U {12.48,17.66} {15.14,15.64} U

{16.15,16.66}
{11.23,17.80} –

Gne Grain number/ear {10.49,38.66} {23.12,26.40} U
{32.94,36.12}

– {22.84,39.84}

Gwe Grain weight/ear {0.49,1.80} {1.1,1.21} U {1.56,1.67} {�1,1.56} {�1,1.66}
Sf Spike Fertility {0.33,0.70} U {0.78,+1} {0.75,0.79} U {0.83,0.87} {0.51,0.57} U {0.69,+1} {0.63,+1}

Meaning any value.

Table 3
Best rules associated with durum wheat yields in different locations from the
province of Buenos Aires using Apriori algorithm.

Location Rule

Balcarce Ph = 0(81.369–85.676]0==>Category = Medium conf:(0.76)
Barrow Pd = 0(27.01–29.202]0 ==> Category = Medium conf:(0.79)
Cabildo Tgw = 0(31.308–33.305]0==> Category = High conf:(0.97)

Ph = 0(65.64–6907]0==> Category = High conf:(0.96)
Pd = 0(24.5–27]0==> Category = High conf:(0.96)

All together Tgw = 0(29.662–33.808]0==>Category = High conf:(0.9)
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opt for an explanation in terms of the fewest possible causes, fac-
tors or variables, the simplicity is a goal in itself, we should choose
Apriori algorithm. This algorithm proved to be the one that finds
the simplest rule to explain high yield for each location.

In summary, the results of this work indicate that it is possible
to use different algorithms working under the software Weka to
predict yield in different locations from the Province of Buenos
Aires in Argentina. The data of two working years were used to cre-
ate a system able to predict yield in different stages of plant devel-
opment. Providing more data to the system (from 3 to 4 years)
could give more precision in the results. However, comparing these
results with the previous ones from our group (Akkiraju, 2010) and
with results from other researchers (Maccaferri et al., 2008, 2010)
using different techniques, mainly QTL mapping, the traits indi-
cated as more significant were the same. Table 4 shows the times
that each trait was implicated in high yield prediction in the durum
wheat RIL population used for this study through specific algo-
rithms. To establish which traits are involved with high yield for
a specific algorithm, the number of times that the algorithms refers
to these traits were determined, and represented this with a star.
The number of stars is shown in Table 4. For example the algorithm
Apriori has the trait Tgw involved twice, and one for Ph and Pd.
Table 4
Yield components measured in durum wheat Ril population and different algorithms used
was selected in high yield prediction through specific algorithms.
As it was mentioned before, they are the same traits as the ones
reported in several articles by different authors. In particular,
Akkiraju reported 74 significant QTL for yield and its components,
especially for thousand grain weight (8), peduncle length (8), grain
number/total spikelets (8), plant height (7), grain number/ear (7)
and spike fertility (6). Several of these QTLs were stable and dis-
tributed on different wheat chromosomes. Moreover, peduncle
length has been already mentioned by Maccaferri et al. (2008,
2010) as mapping on a region of chromosome 3B and strongly in-
volved in conferring high yields to durum wheat.

Moreover, most yield variations are associated with those in
grain number, both under different environments (Fischer, 1985;
Savin and Slafer, 1991; Magrin et al., 1993) and as a result of genet-
ic gains in yield potential (Slafer et al., 1990; Fischer, 2007). The
number of fertile flowers at anthesis essentially determines grain
number (Gonzalez Fernanda et al., 2011). The increased number
of grains per spike was the main determinant of improved grain
number through breeding in wheat (Siddique et al., 1989; Slafer
et al., 1990; Slafer and Andrade, 1993; Calderini et al., 1999).
Therefore, the rules extracted for the machine learning methods
are consistent with previous biology knowledge, showing the
soundness of these approaches. On the other hand, it is important
to note that any prediction model obtained by machine learning
methods can usually suffer of generalization problem. This issue
refers to the ability of an algorithm to perform accurately on
new, unseen examples after having been trained on a learning data
set. Therefore, in our context, there are no guaranties about 379 the
effectiveness of our yield level predictors if they were applied in
environments with different features of those of the Province of
Buenos Aires, which constitutes a limitation of these machine
learning approaches.

Nevertheless, the impact of the generalization problem
can be reduced by using applicability domain techniques. These
to obtain rules for predicting high yield. Stars (�) indicate how many times each trait
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methods - commonly used in the field of quantitative structure –
activity relationship models (QSAR models) [Jaworska et al.,
2005; Grammatica, 2007] - use knowledge and information about
the training set used to generate a predictor in order to identify its
applicability range. Then, as we have experience in the develop-
ment of this kind of techniques in the area of QSAR [Soto et al.
2009b, Soto et al. 2011], we expect to adapt these strategies to this
agronomical field as future work.
4. Conclusions

In this paper, the use of machine learning strategies for the pre-
diction of wheat yield from several phenotypic plant traits, corre-
sponding to different locations of the Province of Buenos Aires in
Argentina, was explored. Several classification methods were se-
lected and tested considering their aptitude for extracting associa-
tion rules from discrete-categorized target variables. As a part of
this problem, the selection of the most relevant phenotypic plant
traits for the prediction of yield arose. In this way, a double contri-
bution was pursued in this work. First, we evaluated the power of
machine learning methods as prediction tools in this context. Sec-
ond, as a consequence of the inference of prediction models, a rel-
evant analysis about the different traits with respect to the wheat
yield levels was also achieved.

The results revealed that the A priori method outperformed the
other tested techniques for all locations, but the set of selected
traits were shared for the predictors (classifiers) obtained by the
different algorithms. Regarding this point, it is interesting to re-
mark that the traits selected as relevant by the machine learning
methods were consistent with previous results obtained using
other technologies, like QTL mapping. Moreover, the analysis of
the resulting rules showed the soundness in the agronomic rele-
vance of the extracted knowledge.
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