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Abstract

Single Molecule Localization Microscopy (SMLM) currently attains lateral resolution around 10 

nm approaching the molecular size. Together with increasingly specific fluorescent labeling it 

opens the possibility to quantitatively analyze molecular organization. When the labeling density is 

high enough, SMLM provides clear images of the molecular organization. However, either due to 

limited labeling efficiency or due to intrinsically low molecular abundance, SMLM delivers a small 

set of sparse and highly precise localizations. In this work, we introduce a correlation analysis of 

molecular locations based on the functional dependence of the complementary cumulative 

distribution function (CCDF) of the distance to the first neighbor (r1). We demonstrate that the log(-

log(CCDF(r1))) vs. log(r1) is characterized by a scaling exponent n that takes extreme values of 2 

for a random 2D distribution and 1 for a strictly linear arrangement, and find that n is a robust and 

sensitive metric to distinguish characteristics of the underlying structure responsible for the 

Page 1 of 24 Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t

Pu
bl

is
he

d 
on

 2
5 

M
ar

ch
 2

02
0.

 D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ite

 D
e 

Fr
ib

ou
rg

 S
ui

ss
e 

on
 3

/2
5/

20
20

 8
:5

2:
24

 P
M

. 

View Article Online
DOI: 10.1039/C9NR10805J

https://doi.org/10.1039/c9nr10805j


2

molecular distribution, even at very low labeling density. The method enables the detection of 

fibrillary organizations and the estimation of the diameter of host fibers under conditions where a 

visual inspection provides no clue.

Introduction

Single molecules inside biological cells may be located in different topological environments such 

as the cytosol, the lumen or the membrane of organelles and fibrils, among others. In this context, 

biomolecular organization takes place over length scales that range from a few nanometers to 

micrometers, therefore covering several orders of magnitude in the spatial domain and in the 

number of molecules participating in these superstructures. Biological function is quite dependent 

on the molecular distribution and association states. Proteins, either individually or clustered, can be 

located in specific organelles, distributed over membrane domains, associated to cytoskeleton, or 

forming higher order supramolecular structures. Each particular spatial organization is linked to 

specific biological functions.

The advent of super resolution microscopy, also known as fluorescence nanoscopy, has 

dramatically changed biological imaging as it allows the observation of biomolecules organized at 

the nanoscale. 1–7 Probes and labeling techniques of increasing performance and specificity8–13, 

together with the development of numerous nanoscopy methods and analysis algorithms,14–16 

extended and deepened the insight that optical nanoscopy provides for biological research.

A first generation of optical nanoscopy methods, composed of coordinate-targeted methods such as 

Stimulated Emission Depletion (STED)17, and coordinate-stochastic methods such as Stochastic 

Optical Reconstruction Microscopy (STORM)2 and Photactivated Localization Microscopy 

(PALM)10, are able to deliver lateral resolutions in the 10-20 nm range, limited by the photon 

budget available from organic fluorophores. DNA-Points Accumulation for Imaging in Nanoscale 

Topography (DNA-PAINT)18 is becoming increasingly popular as it increases the fluorescence 

photon budget enabling sub-10 nm lateral resolution. Lately, a second generation of methods 

combines the advantages of coordinate-stochastic and coordinate-targeted methods to achieve 

higher resolutions, well below 10 nm. The recent molecular localization with Minimal emission 

Fluxes (MINFLUX) technique19 has lowered this limit to 1 nm, practically the molecular size of the 

fluorescent marker. More recently, a method called Supercritical Illumination Microscopy by 

Photometric z-Localization Encoding (SIMPLE)20, and also MINFLUX21, have demonstrated a 

more challenging sub-10 nm axial resolution. In summary, fluorescence nanoscopy has reached a 

level of resolution that is comparable to the size of structural proteins and even to the size of the 

fluorescent marker, giving access to the supramolecular organization of biomolecules at molecular 
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scale in their native environment. 

However, the direct visualization of protein organization is not always possible due to intrinsic 

biological conditions or limitations of the fluorescent labeling process. Labeling each and every 

moiety that is aimed to be visualized in a supramolecular protein structure is often challenging, if 

not impossible. The maximum density of labeling through (bio-) chemical interactions is limited by 

the interaction affinity as well as by steric or electrostatic repulsions. The effectiveness of 

endogenous labeling is also imperfect and actually hard to quantify. In addition, the organization 

and abundance of biomolecules varies depending on their expression level and their structural or 

physiological role. In the case of highly abundant structural proteins sufficiently high labeling 

densities can be achieved and fine structural details can be observed. This is the case, for example 

of microtubules, actin filaments or the Membrane-associated Periodic Skeleton (MPS) of mature 

neurons22–25. By contrast, when a particular enzyme or receptor is the target, fluorescence 

nanoscopy images are usually composed of a sparse distribution of molecules where no evident 

organization is observed26–28. Still, the location and function of these sparsely distributed 

biomolecules may be determined by a subjacent structure. For example, the location of CD44 

receptor for cell-cell interaction and adhesion, whether tethered to linear or branched actin 

filaments, regulates its mobility22,23. Motor proteins transporting cargos along microtubules 

experience a great hindrance to motion at intersections29,30. The cell adhesion protein P-selectin re-

distributes into circular nanostructures in platelets when incubated with cancer cells due to 

accumulation in alpha-granules, while no pattern is observed when normal cells are used.31

Then, the question arises as to whether it is possible to obtain information about the underlying 

structure responsible for a particular protein distribution, even under conditions where sparse 

molecular localizations are acquired, at such a low density that no molecular organization can be 

recognized by direct visual inspection.

In view of its importance, efforts have been recently devoted to the quantitative characterization of 

molecular distribution within cellular images7. In particular, many algorithms were developed to 

extract information from the correlation of molecular positions determined by Single Molecule 

Localization Microscopy (SMLM) 15,32–43. These analyses were recently reviewed15. As examples, 

they include the probability density function of nearest neighbors44. Those algorithms based on 

Ripley's K analysis45 or on the pair correlation function35 measure the distribution function in 

concentric disks or rings from a central point, respectively, providing information on clustering. 

Area sectioning based on Voronoi polygons46,47 has been used to quantify regions of clusters and of 

sparsely distributed molecules. Cluster-type analysis gives valuable quantitative information on the 

extent and number of partners forming the aggregates35,37,46,48–50. In all these cases, the basis for the 
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analysis is an array of molecular (x, y) positions derived from different SMLM techniques, and the 

random distribution of molecules in two dimensions (2D) is used as a reference. Nevertheless, 

biomolecules are often organized in fibrillary structures. Fibrils and reticules are structures 

profusely present in biological cells that extend predominantly in one dimension (1D) and are 

characterized by linear-like molecular distributions. Recently, the group of Owen reported an 

analysis strategy to interrogate fibrillary organization in SMLM data using an angular version of the 

Ripley's K function38,43. This analysis extracts several quantitative descriptors such as the number of 

fibers, their length, as well as the locations and angles of branching points, although it only works 

well in situations where straight fibers are the dominant structure and the labeling density is high. 

In many cases, however, biological structures that show a linear organization in the short range tend 

to curve and intertwine in a longer range, or form part of higher order structures, giving rise to 

higher dimensionality sub-regions where preferential directions are blurred. For that reason, they 

cannot be treated either as pure 1D- or 2D-like distributions.

Here, we develop an analysis method to obtain information about molecular organization from 

SMLM data at very low densities. Based on simulated and experimental SMLM data, we 

demonstrate that the distance dependence of the complementary cumulative distribution function 

(CCDF) of the distance to the first neighbor is an adequate means to obtain quantitative indexes that 

correlate with the dimensionality and complexity of the underlying structure responsible for the 

molecular distribution. Even at low localization densities, where visual inspection provides no clue 

about the molecular organization, this method reveals if the molecular distribution is two-

dimensional or fibrillary, providing also information about the degree of intercrossing and the width 

of the host fibers.

Experimental

Primary hippocampal neuronal cultures: Cell cultures had the same origin and were treated in the 

same way as previously described51. Briefly, mouse (CD1) hippocampal neurons were harvested 

from embryonic day 17 pups, following the general guidelines of the National Institute of Health 

(NIH, USA) and approval of the National Department of Animal Care and Health (SENASA, 

Argentina). Neurons were then cultured in Neurobasal medium (Gibco) supplemented with 5 mM 

GlutaMAX-I (Gibco) and 2% B27 supplement (Gibco) at 37 °C and 5% CO2, and seeded on #1.5 

thickness glass coverslips of 18 mm diameter. Glass coverslips were previously coated with 0.05 

mg/mL poly-L-lysine (overnight at 37°C) (Sigma Aldrich) and 1 μg/μL Laminin (3 h at 37°C) 

(Sigma Aldrich). Neurons were incubated for either 3 or 40 days, for microtubules and spectrin 

labeling, respectively.
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Immunofluorescence: Neurons were simultaneously fixed and permeabilized for 20 min at RT in 

PHEM buffer (60 mM PIPES, 25 mM HEPES, 5 mM EGTA, 1 mM MgCl2) containing 0.25% 

glutaraldehyde, 3.7% paraformaldehyde, 3.7% sucrose, and 0.1% Triton X-100. Samples were 

quenched with 0.1 M glycine in PBS for 15 min and subsequently blocked for 1 h in 5% BSA 

solution in PBS containing 0.01% Triton X-100. For spectrin labeling, mouse anti- β-Spectrin II 

monoclonal primary antibody (Clone 42/B-Spectrin II, BD Biosciences) was diluted 1:400 in 

blocking solution and incubated with the samples overnight at 4 °C. After 3washes with PBS, Alexa 

Fluor 647 conjugated goat anti-mouse secondary antibody (Invitrogen, # A-21236) was incubated 

for 1 h at room temperature in 1:750 dilution in blocking solution. 

For microtubules staining, neurons were treated with mouse monoclonal anti--Tubulin (clone 

TUB-A4A Sigma Aldrich) for 1 h at room temperature using a 1:400 dilution in 5% BSA in PBS, 

followed by 3 washes with PBS. Alexa Fluor 647-conjugated goat anti-mouse secondary antibody 

(Invitrogen, # A-21236) was then incubated for 1 h at room temperature in 1:300 dilution in 

blocking solution. 

Poly-(methylmethacrylate) (PMMA) film with Rhodamine 6G single molecules embedded. Glass 

coverslips of 18 mm diameter were sonicated at 30°C for 10 min submerged in acetone, 10 min in 

aqueous solution of Hellmanex III (0.05%), and 10 min in Milli-Q water. After drying at 100°C for 

2 h, coverslips were treated in a Plasma Cleaner (Zepto, Diener Electronic), with air-filtered plasma 

(15 minutes at 20% power). A solution containing Rhodamine 6G 0.01 nM (Sigma Aldrich) and 

0.5 % w/w PMMA in toluene (Merck Millipore, spectroscopic grade) was spin coated onto the 

cleaned coverslip. The films were dried in vacuum at 50ºC for 12 h before imaging.

STORM setup and imaging. The experimental setup was described in a previous work51. Briefly, 

the setup was custom-built around an Olympus IX-73 inverted microscope, and a 642 nm 1.5 W 

laser (MPB Communications 2RU-VFL-P-1500-642) was used for fluorescence. A 405 nm 50 mW 

laser (RGB Photonics Lambda Mini) was used to re-activate fluorophores form their dark states. 

Both lasers were combined with dichroic mirrors (Semrock LM01-427 and LM01-552), magnified 

and focused on the back focal plane of an oil immersion objective Olympus PlanApo 60x NA 1.42. 

A dichroic mirror (Semrock Di03-R 405/488/532/635-t1), a multi-edge notch filter (Semrock NF03-

405/488/532/635E) and a band pass filter (Chroma ET 700/75m) were used in order to selectively 

detect the fluorescence light. The emission light was expanded with a 2x telescope so that the pixel 

size of the EMCCD camera (Andor iXon3 897 DU-897D-CS0-#BV) was 133 nm in the sample 
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plane. The camera and lasers were controlled with a custom software developed in the laboratory 

and described previously.52 STORM imaging buffer (IB), pH 8, contained 50 mM TRIS (Sigma 

Aldrich), 10 mM NaCl, 10% w/v D-glucose, 10 mM mercaptoethylamine, 1 mg/mL glucose 

oxidase (Sigma Aldrich), and 40 g/mL catalase (Sigma Aldrich). Typically, 20,000-30,000 frames 

at 30 ms of exposure time were acquired with a laser power density of ~20 kW/cm2 at the sample.

Simulation and data analysis: Simulation of random location of molecules in different 

environments, as well as processing routines were performed in self-written programs in Matlab. 

STORM movies were analyzed with ThunderSTORM53 plugin for Fiji-ImageJ54, taking into 

account the link of multiple localizations of the same molecule in order to get the list of single 

molecule localizations necessary to reconstruct the final super-resolved images.

Results and Discussion

Working principle of the analysis

The central concept of our method is that the number of molecules encountered as a function of the 

distance r from any starting point scales differently with the distance, depending on the way 

molecules are distributed. For a random 1D distribution it scales linearly with r (Figure 1a) and for 

a random 2D distribution it scales as r2 (Figure 1b). In intermediate cases, such as a reticule with 

different branching or crossing degrees (Figure 1c), the operative dependence of the number of 

encountered molecules scales as rn with 1 < n < 2.

The analysis we present is based on the distribution of distances from every detected molecule to its 

nearest detected neighbor, r1. For a random distribution of molecules in 2D, the distribution 

function of the distance to the first neighbor, P2D(r1), is given by:

 (1)𝑃2𝐷(𝑟1) = 2.𝜋.𝐷2.𝑟1.exp( ― π . 𝐷2 .𝑟1
2)

D2 being the area density of molecules. The corresponding function in the case of a random 

arrangement of molecules along a line, P1D(r1), is given by:

(2)𝑃1𝐷(𝑟1) = 𝐷1.𝑒𝑥𝑝( ― 𝐷1.𝑟1)

where D1 is the linear density of molecules. The n-dimensional Complementary Cumulative 

Distribution Function (CCDF) is defined as:
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(3)𝐶𝐶𝐷𝐹𝑛𝐷(𝑟1) = 1 ― ∫𝑟1

0 𝑃𝑛𝐷(𝑟1′).d𝑟1'

The function CCDF(r1) represents the probability of finding a neighbor at a distance greater than r1 

from the reference point. Consequently, CCDF(0) = 1. The expressions of CCDF(r1) for the random 

distributions in 1D and 2D are:

(4)𝐶𝐶𝐷𝐹1𝐷(𝑟1) = 𝑒𝑥𝑝( ― 𝐷1.𝑟1)

(5)𝐶𝐶𝐷𝐹2𝐷(𝑟1) = 𝑒𝑥𝑝( ―𝜋.𝐷2.𝑟1
2)

The algebraic treatment of the localization data uses a plot of log(-log(CCDF(r1))) vs. log(r1), as 

depicted in Figure 1d. In this plot, the pure 1D and 2D random organizations are represented by 

straight lines with a slope of 1 and 2, respectively. Intermediate cases display distance-scaling 

exponents, n, between 1 and 2. In general, we expect:

(6)𝐶𝐶𝐷𝐹(𝑟1) = 𝑒𝑥𝑝( ―𝐵.𝑟1
𝑛) 1 ≤ 𝑛 ≤ 2

where B is an adimensionalization coefficient, playing a role equivalent to a density.

Figure 1. Schematic representation of three different distributions of molecules. (a) Distributed 

randomly over a line. (b) Distributed randomly on the plane. (c) Distributed randomly in a fibrillar 

network. (d) Representation of the expected slopes of the log(-log(CCDF(r1))) vs log(r1) for the 

three cases.

In the next sections, we test the power of CCDF(r1) to discern different molecular organizations 

sampled with low density localizations.

We will assume that the target molecules are labeled and detected with uniform probability. We will 

concentrate the analysis in a priori random distributions. On the one side they represent the less 
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biased case, while on the other, they can be analytically studied and serve as reference to compare 

with actual distributions.

2D random distributions

Figure 2a shows two example simulations of molecular localizations distributed randomly in 2D 

with two different localization densities. It is important to note that the density of localizations has 

different meanings in 1D or 2D distributions. We choose to use the average distance to the first 

neighbor <r1> as a measure of the density of localizations, because this parameter can be obtained 

for any distribution independently of its dimensionality and provides an unbiased comparison. 

SMLM data is characterized by the average uncertainty in the localization of single molecules . 

The value of   varies depending on the particular SMLM method and the experimental conditions. 

In order to withdraw general conclusions, we perform our analysis in units of  The two 

simulations shown in Figure 2a correspond to <r1> = 7.6  and <r1> = 20.2 .

Figure 2b shows the plots of log(-log(CCDF(r1))) as a function of log(r1), obtained from the 

distributions of Figure 2a. The slope of these plots yields a value for n, the distance scaling 

exponent of the distribution, according to Equation 6. Linear fits retrieve values of n = 1.97 and 

1.96 for the high and low density situations, respectively. Figure 2c shows the dependence of n 

(mean value and standard deviation) on <r1> obtained from simulations. Over a range of <r1> 

spanning from 5 to 8000 , the average value of n is consistently found near the expected value of 

2. We note that in order to obtain the theoretically expected value of 2, it is necessary to exclude 

localizations near the borders. If this is not taken into account, slightly smaller values are obtained 

(being the difference less than 1%). Both the standard deviation of <n> as well as the effect of the 

border increase as the number of localizations decreases. We performed 1000 simulations, each one 

using the same number of localizations sufficiently away from the borders, and obtained for 3250 

localizations <n> = 2.00 and = 0.06, and for 650 localizations <n>= 2.00 and = 0.13. As it will 𝜎𝑛 𝜎𝑛

be analyzed in more detail below, the standard deviation of n is determined by the number of 

localizations and not by the number of simulations.

An experimental realization of the 2D random distribution of molecules was achieved by spin-

coating a PMMA film containing well dispersed Rhodamine 6G (R6G) molecules. An example of 

187 R6G molecules localized in a 70 x 70 m2 area of the film is shown in Figure 2d. These 

localizations were obtained with a    nm and <r1> = 2247 nm = 140  Figure 2e shows the 

corresponding distance scaling plot and linear fit, that yields n = 2.04. Figure 2f displays the 

distribution of n obtained from the analysis of 100 images of the R6G-doped PMMA film, which is 
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well described by a Gaussian function with an average of 2.02 ± 0.04 (95% confidence interval), 

and  = 0.14. The average number of R6G molecules per image was 141. Observations are 𝜎𝑛

consistent with the simulation predictions.

Figure 2: (a). Example of two random distributions in 2D with different density. The total number 

of points, N, and the average distance to the first neighbor, <r1>, characterize each distribution. 

Distance expressed in units of the average uncertainty in SMLM,  = 16 nm (see Figure S1) (b) The 

corresponding plots according to Equation 6 to obtain the distance scaling exponent, n. (c) Plot of n 

as a function of <r1>. Error bars represent the standard deviation. Each point is the result of 1000 

simulations. (d) SMLM image of a PMMA spin coated film of Rhodamine 6G (one image shown 

from a sequence of 100). (e) The corresponding plot of the distribution according to Equation 6. (f) 

Distribution histogram of the value of the distance scaling exponent, n, in the 100 images of the 

sequence.

Fibrillar organizations

Next, we performed a similar characterization of the CCDF analysis for the other extreme case: 

molecules distributed randomly along a single straight line. We note that, while 2D random 
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distributions can be encountered in real life experiments, the perfectly linear distribution is an 

idealization because it would correspond to molecules organized along a fiber of null width and 

localized with infinite precision. This situation can, of course, be simulated and a distance scaling 

exponent of 1.00 is obtained. Real cases of molecular organization along fibers are more complex 

and require a more profound analysis. Molecules placed along a single straight fiber will display 

distance scaling exponents greater than 1 when the probability of localizing molecules in the 

direction perpendicular to the fiber is increased. This, in turn, can be favored by the increase of 

three factors: fiber width, localization uncertainty, and localization density. The effect of the first 

two factors is illustrated in Figure 3a, where the situation of molecules distributed along a straight 

fiber of width d, that are localized with uncertainty  is schematically shown. Clearly, both 

parameters contribute to the fact that the detected positions depart from a perfect line. An effective 

width, D, can be defined as D = d + 2. Figure 3b shows the influence of increasing d, while 

keeping <r1> constant. Three simulated fibrillar distributions are displayed (left) together with their 

corresponding plots to obtain n (right). As expected, for a given <r1>, an increase of d results in a 

larger value of n. Analogously, Figure 3c shows the influence of increasing the density of 

localizations in a fiber of constant width. It also results in an increase of n. Finally, Figure 3d 

summarizes the behavior of n as a function of d and <r1> in fibrillary structures. The influence of 

the localization uncertainty is implicitly included as d and <r1> are expressed in terms of . High 

densities (low <r1> values) as well as thick fibers favor values of n approaching 2, as expected. 

Nevertheless, in cases of high density, the fibrillary shape of the underlying structure will be 

evident to the eye and there would be no need to perform this analysis. 
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Figure 3: (a) Schematic representation of molecules distributed randomly in a fiber of width d, 

localized uncertainty . (b) Left: Simulations of random distributions with fixed mean distance to 

first neighbor, <r1> = 5, and increasing fiber width, d, (from bottom to top). Right: Corresponding 

plots to obtain the distance scaling exponent of each distribution. (c) Left: Simulations of random 

distributions with fixed d = 16, and decreasing <r1> (from bottom to top). Right: Corresponding 

plots to obtain the distance scaling exponent of each distribution. (d) Histogram of the distance 

scaling exponent (expressed in color code) derived from simulations of random distributions in 

linear environments, as a function of <r1> and d.

In addition to the localization uncertainty and the width of the host fiber, the value of the distance 

scaling exponent n of a fibrillary distribution can be increased by other factors. The presence of 

more than one fiber in the region analyzed (even if they are parallel), as well as the crossing or 

bending of the fibers contribute to increase the probability of nearby locations with respect to the 

case of a single straight fiber. Some of these cases are illustrated in the SI (Figure S2).

In order to test the performance of our analysis in a real fibrillary structure, we applied it to single 

molecule localizations on microtubules of hippocampal neurons. Figure 4a displays a STORM 

image reconstructed with around 300,000 localizations of single AlexaFluor647 molecules 

immuno-conjugated to -tubulin in a hippocampal neuronal cell. Figure 4b shows, in a divided 
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image, two randomly selected subsets of 2,000 and 200 localizations within the same region. The 

respective plots of log(-log(CCDF(r1))) vs log(r1) used to obtain the distance scaling exponent are 

displayed in Figure 4c and the behavior of n as a function of <r1> is shown in Figure 4d. In the 

latter, each point is the average of 1000 different random choices of subsets of a given number of 

localizations. Remarkably, the same value of n is obtained even when considering only 200 

localizations. As expected for a reticular pattern with intercrossing fibers, an intermediate value 

between 1 and 2 is obtained for n. Again, the analysis based on the CCDF(r1) provides a robust 

measure of the molecular organization: in this case a fibrillary network labelled at very low 

localization densities, where it is difficult or impossible to infer any information from a visual 

inspection of the images. 

Another possible scenario that delivers an intermediate value of n is the case of two populations of 

molecules: fiber-associated molecules and molecules randomly distributed on the areas not 

occupied by the fibers. In this case, the value of n increases with the proportion of non-associated 

molecules. A simulation of this possible scenario is shown in Figure S4, where a subset of 388 

localizations from Figure 4a are taken as a pure fibrilar organization case to which non associated 

molecules are added and assumed to be randomly distributed. 
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Figure 4: (a) Super resolution image of microtubules in a hippocampal neuron with AlexaFluor647 

labeled -tubulin. (b) Random selection of subsets of localizations of the whole image. The image 

is divided in two, each half being a representative part of the whole image: an upper triangle 

showing the corresponding half of 200 localizations of the whole image, and a lower triangle 

showing the corresponding other half of 2000 localizations of the whole image. (c) The respective 

plots for the distance scaling exponent of the distributions of panel (b). (d) Dependence of n on 

<r1>. Each point is the average of 1000 randomly selected subsets of localizations and error bars 

represent the standard deviation. The arrows indicate the conditions of <r1> of the two examples 

shown in panel (b).
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Spatial information 

Up to now, we characterized the molecular distribution over a whole region of interest by an 

average value of n. Nevertheless, biomolecules in real samples may present different types of 

organization, degrees of complexity, and local concentrations in different regions of a cell. Figure 

5a illustrates this fact with a SMLM (STORM) image of microtubules in a hippocampal neuron. 

Regions 1 to 4 were specifically chosen as examples of different local complexity scenarios of the 

microtubule network within the same cell area. For each of these regions the exponent n is plotted 

in Figure 5b as a function of the mean first neighbor distance. To build this plot, smaller subsets 

were taken out of the total localizations in each region, while each point is the average of 100 

different random choices. From Figure 5b, we can observe two facts. First, the value of n increases 

with the complexity of the selected region (in this case given by the number of crossings and 

changes of direction of microtubules). Second, for very low and very high values of  the ⟨𝑟1⟩

probability of finding neighbors in directions transverse to each fiber increases, and therefore the 

obtained value of n increases slightly. For the high density situation, the reason for this is the same 

as the one described for a single straight fiber: increasing the number of molecules raises the 

probability of finding neighbors in all directions, and at some point the distances between neighbors 

in the transverse and longitudinal direction are even. On the other hand, when the molecular density 

is too low, the molecules located in the same fiber are so far from one another that the first neighbor 

can be found in a different host fiber, located at a random direction, due to fiber intercrossing.

With this information at hand, we aim to obtain a map of local values of n. On doing this we are 

faced to the following compromise. For a given labelling density, increasing the spatial resolution 

implies a higher uncertainty in the determination of n because it must be determined using a smaller 

set of localizations (N). The value of n grows for smaller N. Figure S3 shows that, while the 

relative uncertainty n/n does not change significantly with increasing number of simulations of the 

same experiment, it shows a quasi Poissonian dependence with N, i.e. log(n/n)  -0.50 log(N), 

with a small offset. This means that n/n  N-1/2. For the following, we have taken a lower limit of 

100 molecules in the considered area, which enables the determination of n with an uncertainty of 

ca 15%, both for the 2D and for the fibrillary distributions (Figure S3).
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Figure 5: (a) SMLM image of AlexaFluor647 labeled -tubulin in neuronal hippocampal cells. 

Regions 1 – 4 were analyzed separately. (b) Plot of the distance scaling exponent, n, as a function of 

the average distance to the first neighbor, <r1>, in the distribution of each region 1 – 4 as marked in 

panel (a). Each point is the average of 100 simulations performed with different random subsets 

within each region. (c) Color map representing the local average value of n (see text) of 2000 

localizations taken randomly from the image in (a). White dots show the molecular localizations in 

one of the 100 simulations averaged to build the color plot. White regions were not computed due to 

insufficient number of localizations. (d) Histogram of the distribution of n values of panel (c).

In Figure 5c we consider a restricted set of 2000 localizations, <r1>= 8.8, out of the 1.4 million 

localizations that form the full STORM image shown in Figure 5a. Using these 2000 localizations, a 

color map of the local values of n was calculated as follows. We divided the whole area in square 

pixels of 2 size. A value of n was assigned to each one of these pixels according to the following 
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procedure. For each localized molecule, we identified its nearest 100 neighbors. As explained 

above, this number of locations determines a 15% uncertainty in the value of n. These 100 

localizations defined a rectangular area by the extreme values of the (x,y) coordinates of the set. We 

only considered sets when <r1> < 15 . We did not make an exhaustive analysis of the influence of 

this upper limit but clearly setting it at a very high value will extend the influence of low density 

regions whereas a low value will restrict the analysis to the more dense areas. We set this value at 

twice the <r1> of the whole set, still in a range where n displays a constant behavior with <r1> 

(Figure 5b). We computed the value of n and assigned it to the whole area determined by the 100 

molecules. Finally, the value of n in each pixel of the whole n-map is the average of all 

determinations for each particular location. The map shown in Figure 5c is an average of 100 

different choices of 2000 molecules. 

The spatial resolution of this map can be defined by the square root of the area containing the first 

100 neighbors of each molecule. With this criterion, resolution depends locally according to the 

molecular density. If the latter is too low, the rectangles will be larger than for cases of higher 

densities and, in consequence, the spatial resolution will be lower. For Figure 5c, where 2000 

molecules occupy  60 – 70 % of the total area (i. e.  150 - 180 m2), the resolution lies in the 

range of 2.5 - 3 m.

The distribution of n values is displayed in the histogram of Figure 5d. Extreme values of 1.25 and 

1.65 are obtained. Figure S5 compares the average distribution of n of Figure 5c with four 

individual determinations. Values of n around 1.5 are predominant and reflect environments like the 

ones of regions 2 and 3 of Figure 5a, with multiple crossing fibers. Complex environments, like the 

ones of region 4 of Figure 5a represent less than 5% of the area. Values of n in the vicinity of 1.2 

represent areas with single filaments, like the region around the bottom left corner of Figure 5a. 

This value coincides with the minimum value of n obtained in simulations of linear distributions. 

Values of n < 1.2 are not obtained because even the thin immunolabeled microtubules have a 

thickness (40 - 45 nm) greater than the localization uncertainty of SMLM (10 – 20 nm), and 

therefore do not represent a strictly linear host. If we were analyzing a protein located in an 

unknown fibrillar environment, we could reasonably assume that the lowest n value corresponds to 

the simplest structure, represented by a single linear fiber. In this image, the average value of  is 

16 nm. A value of n = 1.2 when 5 < <r1> < 12, is compatible with d of 2 - 3  (Figure 3d), in 

agreement with the thickness of the immunolabeled microtubule.

Multi-scale organization
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Biomolecules may be organized in fibrillary structures over multiple length scales. As an example 

of biomolecular multiscale arrangement, we considered the distribution of spectrin in the MPS of a 

mature hippocampal neuronal axon. In the MPS, spectrin forms rings that determine the axonal 

diameter and are separated by 190 nm from one another along the axon24. Both the length and width 

of axons are several times larger than the lateral resolution in SMLM (10-20 nm) and therefore they 

represent an environment for single molecule localizations closer to a two-dimensional situation 

than to a fibrillar one. However, the inner organization of spectrin is expected to result in a 

dimensionality lower than 2. 
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Figure 6: (a) Super resolution image of spectrin in hippocampal neurons labeled with Alexa Fluor 

647. (b). In green, to the left, random subset of 30,000 molecules out of the localizations that form 

the STORM image (a). In blue, to the right, 30,000 localizations distributed randomly over the same 

region. (c) Random subset of 575 molecules for each distribution of panel (b) and the plot showing 

the dependence of n on the molecular density for the two distributions considering subsets of 2000 

to 575 molecules from the corresponding distributions on panel (b). Each point is the average of 

1000 different random choices of subsets. Average n values are 1.85 for the random distribution and 
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1.36 for the real sample. (d) Detail of the region defined by the white rectangle in panel (a); left: 

15,000 localizations in the actual (green) and a random (blue) distribution. Center: Subsets of 100 

molecules for each distribution. The marked lengths dring and daxon are the respective characteristic 

lengths that determine the distribution in each case. Right: Plot of n as a function of <r1>, showing 

the value corresponding to the distributions of the central panel (d). Average n values are 1.86 for 

the random distribution and 1.45 for the actual one.

Figure 6a shows a SMLM image of AlexaFluor647 labeled spectrin in hippocampal neurons 

obtained from 187450 localizations. A subset of 30,000 localizations is shown in Figure 6b (green) 

together with the same number of localizations randomly distributed in the same region (blue). The 

internal organization of spectrin in the MPS is evident in the real distribution, while it is not in the 

random distribution over the same area. Next we considered the case of a downsampled image, 

using just 575 molecules of each distribution, as shown in Figure 6c. Under this condition, the MPS 

structure is no longer evident to the eye, and the real sample becomes indistinguishable from a 

random distribution of molecules. Figure 6c also shows the plot of n as a function of <r1>. For each 

density condition, 1,000 different random subsets of localizations were used in order to calculate the 

mean value and the standard deviation of n. Once more, values of n are significantly different even 

though the order in the green distribution cannot be detected by the eye. Figure 6d enlarges the 

portion defined by the white rectangle in Figure 6a. The rings perpendicular to the axon direction 

are evident, as well as the difference to the random distribution in the same space and with the same 

amount of localizations, that is depicted in blue. The ring width dring and the axon width daxon are the 

characteristic lengths that determine the distribution. Also shown is a subset of 100 molecules of 

each distribution. The distance scaling exponent of the axonal distribution of spectrin is 

significantly smaller than the one of the 2D random simulation even at very low densities (N= 100, 

<r1>= 3 – 4 ) where the visual inspection is meaningless. 

Mitochondria are another example where molecules can be found organized in multiscale fibrillary 

structures. As described by Jakobs and Wurm55, three main different labeling scenarios can be 

expected: a mitochondrion with a regular 100 nm separation between cristae; a helical structure 

circumventing the matrix; and randomly distributed molecules in the outer membrane. Figure S6 

illustrates simulations of these three types of molecular distributions at different density and the 

dependence of nn as a function of the average distance to the first neighbor. In the first two cases, 

the (x,y) projections of molecular positions form fibrillary organizations hosted in an elongated 

structure, and hence can be treated as a multi-scale organization. The fibrilar arrangements give rise 

to n values in the range of 1-1.4. For the case of molecules located randomly in the outer 
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membrane, a higher scaling exponent is expected. Whether the exponent n reaches a value near 2 or 

not will depend on the aspect ratio of each analyzed mitochondrion and on the molecular density. 

All the examples presented demonstrate that the distance scaling exponent n is a robust and 

sensitive measure to discern different degrees of confinement of molecules that are randomly 

distributed over a given surface or fibrillary structure. Nevertheless, clustering of proteins is very 

often encountered36,40,46,49,50. Figure S7 compares clustered, random, and mixed random and 

clustered distributions of the same average density. The analysis based on the distance-scaling 

exponent renders an easily differentiable diagnosis of these three types of distribution, and indicates 

that the method is also useful to detect if clusters are present, as well as to estimate the proportion of 

clustered molecules and the aspect ratio of clusters. Further studies of varying clustering scenarios 

must be carried out in the future in order to completely understand the potential and applicability of 

the distance-scaling exponent to characterize clustered protein organization.

Finally, we can think of potential applications where this method might be useful in the analysis of 

sparse distributions, besides the already mentioned as a way to distinguish if a given protein is 

randomly distributed either in the cytoplasm or in the membrane, or if it is associated to fibers or 

elongated structures. It might be helpful to monitor time evolution of low density molecular 

distributions: for example, if a protein originally located in a fibrous arrangement is released to the 

whole cell, n is expected to increase along with this process. The same is true if there is an increase 

in the branching of the fibrous arrangement as a function of time. As mentioned in the Introduction 

of the manuscript, receptors such as CD44 can be associated to actin and be affected in its function 

by the degree of branching of the actin filaments. If spatial distribution of n can be performed in the 

image, it renders information on the distribution of fibrilar complexity, and the corresponding 

histogram of n values can point to the evolution of this complexity.

Conclusions

In this work, we propose the use of the distance scaling exponent n of the CCDF of the distance to 

the nearest neighbor as an indicator of the molecular organization. Though it is not expected that 

only one parameter will fully characterize any molecular distribution, n is a robust and sensitive 

indicator that provides information about the subjacent molecular organization even at low density 

of localizations, where visual inspection is meaningless. Remarkably, the value of n in a given 

region of interest remains constant over a broad range of localization density and reveals if the 

molecules are organized in a random 2D distribution or form part of a fibrillary structure. Analysis 

of subsets of localizations, both simulated and extracted from a real cases, demonstrate that single 

determinations of n show variabilities that are mainly dependent on the number of localizations 
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considered, in a quasi Poissonian fashion. Values of n with a statistical error of 15% can be 

obtained with just 100 localizations. Local analysis allows the identification of areas of high and 

low complexity (crossings and bendings) of a fibrillary network. The value of n increases with the 

possibility of different radial locations of molecules around a given point. Thus, many factors 

contribute to the increase of the value of n, namely, fiber complexity, surface distribution, mixed 

specific and non-specific location. On the other side, particular attention should be given to values 

of n smaller than 1.5, as displayed in the images of Figures 4 to 6, either globally or locally. They 

are indicative of stringent limitations to the location of nearby molecules, as in fibrilar distribution. 

Furthermore, the width of the host fibers can be estimated from the minimum value of n and the 

localization uncertainty, by using the plot of Figure 3d, as we exemplified for the microtubules of 

Figure 5 with only 2000 localizations in the whole image.

We demonstrate that n is also useful to detect the presence of fibrillary structures confined to other 

supra-structures, as in the case of the organization of spectrin in neuronal axons. Here we note that 

further developments of the method, such as considering higher order neighbors or analyzing the 

dependence of n on <rn>, should provide information about the internal structure with respect to the 

supra-structure. 
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