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a  b  s  t  r  a  c  t

A  new  variable  selection  algorithm  is described,  based  on  ant  colony  optimization  (ACO).  The algorithm
aim  is  to  choose,  from  a large  number  of available  spectral  wavelengths,  those  relevant  to  the  estimation
of  analyte  concentrations  or  sample  properties  when  spectroscopic  analysis  is  combined  with  multi-
variate  calibration  techniques  such  as  partial  least-squares  (PLS)  regression.  The  new  algorithm  employs
the concept  of  cooperative  pheromone  accumulation,  which  is  typical  of  ACO  selection  methods,  and
optimizes  PLS  models  using  a pre-defined  number  of  variables,  employing  a Monte  Carlo  approach  to
discard  irrelevant  sensors.  The  performance  has  been  tested  on  a simulated  system,  where  it shows  a
significant  superiority  over  other  commonly  employed  selection  methods,  such  as  genetic  algorithms.
Several  near  infrared  spectroscopic  experimental  data  sets  have  been  subjected  to  the  present  ACO  algo-
rithm, with  PLS  leading  to improved  analytical  figures  of merit  upon  wavelength  selection.  The  method
could  be  helpful  in other  chemometric  activities  such  as  classification  or quantitative  structure-activity
relationship  (QSAR)  problems.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Multivariate spectroscopic analysis intends to predict analyte
concentrations or material properties from the spectrum of a given
sample. Pertinent examples are the determinations of octane num-
ber in gasolines, glucose content in blood, oil concentration or
moisture in seeds, and Brix degrees in sugar cane from near infrared
(NIR) spectra [1].  For this purpose, a multivariate model is built
which mathematically relates the spectra for a group of refer-
ence samples with their known property values. The multivariate
model is usually of the inverse type, indicating that it considers
the reference property values as a function of the matrix of col-
lected spectra. The relationship between properties and spectra is
expressed through the so-called vector of regression coefficients.
This latter vector can be estimated in various ways, one of the most
popular being partial least-squares regression (PLS, see below) [2].
Once estimated, this vector can be employed to predict the property
of a new sample from its spectrum.

From the complete spectral data, which can be recorded for
a given sample, it is likely that some of the signals may  not be
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selective as regards the property of interest, while some others
may  be only partially selective. Hence, variables are usually sub-
jected to a careful selection process before submitting them to PLS
regression. This means that the multivariate model is built with
only a limited number of signals. The purpose of variable selec-
tion is the obtainment of models based on spectral data carrying
a higher information content as regards the analyte or property
of interest. Additionally, less spectral overlapping with interfer-
ences is sought [3]. Improved PLS analytical performance has been
reported upon variable selection, which supports the continuing
interest in this chemometric activity [4–9]. The subject has been
recently reviewed, with particular emphasis on NIR spectroscopic
applications [10].

Two  general types of variable selection methods are available:
(1) inspecting the full spectral PLS regression coefficients or latent
variables, and (2) searching for sensor ranges for which the predic-
tion error is minimum. The simplest one, still advocated by many
researchers, is the visual inspection of the spectrum of regression
coefficients [3].  Variables for which the regression vector is sig-
nificant are included in the PLS model, whereas those for which
the regression vector is of low-intensity or noisy are removed. This
simple strategy has been modified in various ways with a similar
objective in mind [11–13].  However, it may  be noticed that the intu-
itive power of regression coefficients to aid in variable selection has
been challenged on a theoretical basis [14–17].

0003-2670/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
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The search for sensor ranges where the predictive indicators are
optimum constitutes a valid alternative for variable selection. Sen-
sor ranges with improved analytical performance are assumed to
correspond to spectral windows with higher information content
regarding the analyte of interest. One of these methods is called
interval-PLS (i-PLS). It builds a multivariate model in each of the
spectral windows given by a fixed-size moving-window strategy
[18]. The best spectral region for regression corresponds to the win-
dow providing the minimum prediction error. A more elaborate
alternative employs variable-size windows, with the error indi-
cator depending on both the first window sensor and the sensor
width [19,20]. This latter method allows one to find regions with a
width, which can be larger than the minimum window, but cannot
locate regions, which combine separate sub-regions. An interesting
derivation of i-PLS and window search has been recently described
[21].

Since a fully comprehensive search may  be prohibitively time
consuming when the full spectral range includes a large number of
sensors, such as those employed in visible/near infrared (Vis–NIR)
spectroscopy, alternative strategies have been proposed, based
on algorithms for global searches inspired in natural processes.
Genetic algorithms (GA) are popular tools in this regard; they are
based on concepts related to natural selection [22–26].  They pro-
ceed to select variables by assigning binary digits to selected and
unselected features (i.e., 1 s and 0 s respectively), and to construct
vectors (“chromosomes”) of binary digits (“genes”). These vectors
are sorted according to a certain objective function to be minimized,
typically the average prediction error over a pre-determined set of
samples. The best individuals are allowed to survive, breed and
randomly mutate from one generation to the next one. The new
offspring continues with this process until a certain number of gen-
erations elapse. The final best chromosome is assumed to encode
the sought solution, in terms of selected features to be included in
the multivariate model under scrutiny.

Recently, ant colony optimization (ACO) has been introduced
for variable selection in PLS regression problems [27]. ACO resem-
bles the behavior of ant colonies in the search for the best path to
food sources [28]. Variables are identified with space dimensions
defining the available paths followed by ants, with allowed coor-
dinates of 1 or 0 (selected and unselected features respectively,
as in GA). In this way, a given path is connected to a number of
selected variables, which in turns corresponds to a given predic-
tion error. In each generation, ants deposit a certain amount of
pheromone, which increases with decreasing values of the objec-
tive function defined by each path. They find new paths based on
the following information: (1) the pheromone amount accumu-
lated in each of the dimension coordinates, (2) a heuristic measure
of path goodness, and (3) a random search across all available
paths. Ant search is then based on a probabilistic combination
of these factors, which allow deviations from the best looking
paths.

One potential problem with GA is rooted in its own funda-
mentals: randomness allows the algorithm to find new solution
candidates and to avoid local minima. However, the solutions are
different in different algorithm runs. GA have a tendency to include
irrelevant variables in the final solutions together with those which
are relevant to the problem under study. One alternative to avoid
these problems is to run the GA several times, registering a statis-
tics of the selected variables. The premise underlying this Monte
Carlo-type methodology is the assumption that irrelevant variables
are randomly selected, and repeated runs will tend to average out
their appearance in the final solution. The relevant variables, on the
other hand, will be persistently included. If the Monte Carlo results
are presented in the form of a histogram, then selectable variables
will appear as more intense peaks than irrelevant variables in this
histogram.

Unfortunately, however, these expectations are not completely
realized, and additional activities have been proposed to reach
chemically reasonable solutions to the problem of feature selec-
tion. One of them involves the re-initialization of the GA with elitist
chromosomes, i.e., those having 1 s for the variables corresponding
to histogram peaks in a first GA run [25,29]. This leads to a certain
improvement in variable selection in subsequent runs. The process
is repeated again until the histogram stabilizes. This is the basis of
the iteratively reinitialized genetic algorithm (IRGA) [25].

Another possibility is the introduction of chemically reasonable
variable selection tools after the GA is run, avoiding the time con-
suming IRGA. For example, the combination of GA and i-PLS for
weighting the histogram led to ranked regions genetic algorithm
(RRGA) [26]. Another resource is the removal of irrelevant selection
by testing their relative significance, using backward interval-PLS
(bi-PLS) [30].

Variable selection based on ACO does also present, in princi-
ple, a similar problem. In previously reported papers, ACO-inspired
algorithms were applied to the selection of variables aimed at
the quantitative structure-activity relationship (QSAR) modeling of
the inhibiting action of diarylimidazole derivatives on the enzime
cyclooxygenase [31], the rate constants of o-methylation of phe-
nol derivatives and activities of antifilarial antimycin compounds
[32], the anti-HIV-1 activities of 3-(3,5-dimethylbenzyl)-uracil
derivatives [33], and the activity of glycogen synthase kinase-
3� inhibitors [34]. ACO variable selection was also employed for
improving a PLS regression analysis [27], with irrelevant variables
being selected along with relevant ones. In none of these previous
works Monte Carlo repeated calculations were attempted.

In this report we have applied both GA and ACO to PLS modeling
of simulated and experimental data sets. Monte Carlo calculations
show that GA and the already published ACO versions display an
analogous behavior towards less relevant variables. However, a
new and highly simplified ACO version which keeps most of the
original ACO features produces stimulating results under Monte
Carlo philosophy, different than those of the remaining algorithms.
The selection was applied to several experimental sets of NIR data
with improved analytical results.

2. Algorithms

2.1. Genetic algorithms

The GA applied in the present work has already been described
[29]. In this case, however, we  did not employ the final i-PLS weight-
ing scheme, in order to compare all algorithms on the same basis,
i.e., whit no post-processing procedures. The parameters for run-
ning the GA were similar to those employed for ACO (see below)
in terms of number of blocks (and sensors per block), time steps,
Monte Carlo cycles and maximum number of latent PLS variables.
The number of chromosomes was  equal to the number of ants in
ACO algorithms.

2.2. ACO algorithms

Two ACO versions already described in the literature for vari-
able selection have been employed, which will be called ACO-1
[31] and ACO-2 [27]. The basic MATLAB code for ACO-1 has been
generously provided by Prof. Wu  (Hunan University), and has only
been modified in order to adapt it to the Monte Carlo-type calcu-
lations described in this paper. See Ref. [31] for details. The ACO-2
version was  programmed in MATLAB according to the description
given in Ref. [27], and then modified to incorporate Monte Carlo
calculations.
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Fig. 1. Flow chart of the new ACO-3 algorithm based on ant colony optimization for
the  selection of relevant variables in PLS regression.

In the present work, a new algorithm will be described and
called ACO-3. As in other wavelength selection strategies, in ACO-3
a variable to be selected is defined as a sensor range (or block of sen-
sors) with a pre-defined spectral width. Additionally, the present
ACO-3 methodology selects variables (or sensors blocks) one by
one until a certain pre-defined maximum number of variables are
chosen.

The purpose of introducing this new ACO-3 methodology is not
to follow exactly the original ACO formulation (see Ref. [28]), but to
develop a very simple algorithm inspired in the general philosophy
of ant colony optimization, which could render acceptable selec-
tion results when coupled to Monte Carlo repeated calculations. In
any case, the basic algorithm described in this report bears some
resemblance with the so-called ant system discussed by Dorigo
[35].

The ACO-3 flow chart shown in Fig. 1 compactly illustrates the
proposed algorithm steps. A vector p of size N × 1 is initially created,
where N is the full number of available variables (i.e., blocks of
individual spectral sensors). A generic vector element p(n) collects
the amount of pheromone at each time step which is associated to
the nth variable. Initially, all elements of p are equal to 1, meaning
that all variables have the same probability of being selected.

A certain number of variables (s) are then selected from the
available N variables according to the pheromone content at the
corresponding element of vector p, using the roulette-wheel selec-
tion mode (Fig. 1). In this selection method, a fitness value is
assigned to all possible variables, which is associated to a proba-
bility of selection. If p(n) (the nth element of vector p) is ascribed
to the fitness of the nth variable, its probability of being selected is
prob(n):

prob(n) = p(n)∑N
n=1p(n)

(1)

This could be imagined similar to a roulette wheel in a casino: a
proportion of the wheel is assigned to each of the possible candi-
dates based on their fitness values. This is achieved by dividing the
fitness of a selection by the total fitness of all the selections, thereby
normalizing them to 1. Then a random selection is made similar to
how the roulette wheel is rotated. In our case, the fitness of each
variable is given by the elements of the vector p, which provides
a probability of selecting a given variable. After selection, the p(n)
value for the latter variable is set to zero (to avoid duplication),
and the selection starts again following the same roulette scheme,
until all s variables have been selected. This provides the vector v
(size s × 1) of selected variables. Notice that in the first time step,
all variables have the same probability of being selected, but as p is
updated in successive time steps, these probabilities will differ.

With the selected variables, the RMSEmon (root mean square
error) is estimated for the prediction of the property of interest in
an independent monitoring set of samples (Fig. 1). This parameter
is computed by building a PLS model with the calibration proper-
ties and signals, the latter being taken at the variables selected by
the information carried by each ant. It should be noticed that a cer-
tain maximum number of latent PLS variables should be defined
before program operation, and the optimum number of factors is
estimated as the one leading to an RMSEmon value which is not sta-
tistically different than the minimum RMSEmon, in order to avoid
overfitting.

At successive time steps, the vector p is updated (see Fig. 1)
according to:

p(t) = (1 − �) p(t − 1) + �p  (2)

where t implies the current time step, � is the rate of pheromone
evaporation (� < 1) and �p  is the vector of pheromone changes.
The latter changes take place at certain variables, because each
ant deposits pheromone at the vector element corresponding to
its selected variable. Specifically, if v is the vector of selected vari-
ables, the contribution to �p  by a given ant occurs at the vector
element with index v(i) in such a way  that:

�pa[v(i)] = −log(RMSEmon)a (3)

where a identifies a particular ant.
Once the s variables are selected by each ant, �pa values for

all variables and all ants are summed at the appropriate vector
positions in order to obtain the �p  vector required in Eq. (2).

The above scheme shows that various ants may contribute to the
same element of vector �p,  demonstrating a cooperative behavior
which is absent in GA. Notice in Eq. (3) that the contribution to �p
increases with decreasing monitoring error: the lower the error,
the higher the pheromone content deposited by a specific ant in the
corresponding variable. Hence the ant colony will give increasing
importance (translated to larger pheromone deposits) to specific
variables, which are expected to be the most significant ones for
PLS property prediction.

Once completed the calculations for the required number of
time steps, the whole cycle is repeated in order to register a his-
togram of the selected variables (Fig. 1). In this histogram, the
variables selected at each calculation cycle are weighted inversely
proportional to the final value of RMSEmon, in order to give compar-
atively more importance to better solutions. After the histogram is
obtained, it is scaled to a maximum value of 1, and the sensor blocks
having histogram values larger than a pre-defined tolerance (for
example, 0.3) are employed to build a final PLS regression model,
which allows to compute a single RMSEmon for the monitoring set
of samples, as well as the RMSEtest, computed for the independent
set of test samples.

The required parameters for running this new ACO-3 version for
variable selection are (suggestions in parenthesis): (1) � parameter
(0.65), (2) number of ants (at least half the number of variables or
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Fig. 2. (A) Pure component spectra at unit concentration, employed for building the
simulated sets of spectra: solid line, analyte 1, dashed line, component 2, dashed-
dotted line, component 3. (B) Spectra for the 50 calibration samples.

sensor blocks N), (3) sensor width of each range (which should be
smaller than a typical spectral width of an absorption band), (4)
maximum number of PLS latent variables (estimated by leave-one-
out cross validations applied to the complete spectral range), (5)
number of sensor ranges to be selected from each ant (selected
by gradually increasing s until no significant RMSEmon changes are
observed), (6) maximum time steps (50), (7) number of cycles or
repeated calculations for histogram building (20).

The algorithm is given in Fig. 1 as a flow chart, and the complete
code is provided as Supporting Information.

2.3. Software

All programs were written in MATLAB 7.10 [36], and are avail-
able from the authors on request.

3. Data sets

3.1. Simulated data

A synthetic data set was created by mimicking the spectra of
three components, with component 1 being the analyte of inter-
est. All constituents are present in 50 calibration samples, 100
monitoring samples and 100 test samples, at randomly chosen con-
centrations ranging from 0 to 5 units for analyte 1, from 0 to 10 for
component 2, and from 25 to 50 units for component 3 (in the lat-
ter case to ensure high relative concentrations of component 3).
Fig. 2A shows the pure component spectra, all at concentrations of
1 unit. From these noiseless profiles, calibration and test spectra
were built. Specifically, each spectrum x, whether belonging to the

calibration, monitoring or test set, was  created using the following
expression:

x = y1s1 + y2s2 + y3s3 (4)

where s1, s2 and s3 are the pure component spectra at unit con-
centration, and y1, y2 and y3 are the component concentrations in
a specific sample. Gaussian noise with a standard deviation of 0.01
units was  added to all concentrations, before inserting them in Eq.
(4). A vector of signal noise (standard deviation = 0.05 units) was
then added to each x vector after applying Eq. (4).  Signals higher
than 5 units were cut at this latter value, and noise was added to
them with 1 unit of standard deviation (this mimics the saturation
of the detector at high absorbances in a real experiment). Fig. 2B
shows the resulting matrix of calibration signals.

3.2. Experimental BRIX data

For building this first experimental data set, NIR spectra were
measured for a series of sugar cane juices with a NIRSystems 6500
spectrometer, equipped with a cell with 1.0 mm optical path. Spec-
tra were acquired using the spectrometer software ISISCAN, and
then converted to ASCII files for further data processing. Reference
Brix data were measured with a Leica AR600 refractometer. Sugar
cane juices were analyzed at the quality control laboratory of the
Estación Experimental Obispo Colombres, Tucumán, Argentina. The
laboratory receives samples from several different cane processing
units of the sugar-producing province of Tucumán. Cane samples
are first processed in the sugar mills, where juice (65% of the cane)
is extracted, and are then sent to the laboratory. For the calibration
set, 59 samples were randomly selected, having Brix values in the
range 11.76–23.15, as measured with the refractometer. The moni-
toring set was composed of 23 samples, and the test set of additional
23 samples with Brix values different than those employed for
calibration. NIR spectra were measured in the wavelength range
400–2498 nm each 2 nm (i.e., 1050 data points).

3.3. Experimental OCTANE data

The second set consists of NIR spectra of gasoline samples
collected in a local distillery, in the range 4020–9996 cm−1 each
12 cm−1 (499 data points) using a Bran + Luebbe Infraprover II FT
NIR spectrophotometer. The corresponding octane numbers were
determined by the reference method for research octane number of
spark-ignition engine fuel [37]. The set was randomly divided into
a 91-sample calibration set with octane numbers ranging from 91.0
to 97.6, and two different 45-sample sets employed as monitoring
and test respectively.

3.4. Experimental CORN data

This is a data set which is freely available on the internet at
http://www.eigenvector.com/data/Corn/. It consists of 80 samples
of corn measured on three different NIR spectrometers. The wave-
length range is 1100–2498 nm at 2 nm intervals (700 channels).
The moisture, oil, protein and starch values for each of the sam-
ples are included. The data was  originally taken at Cargill. A data
set measured in one of the instruments was  randomly divided
into calibration (40 samples), monitoring (20 samples) and test
(20 samples) sub-sets. For calibration, the parameter moisture was
selected, with calibration values ranging from 9.41 to 10.88.

3.5. Experimental VISC data

This data set is also available on the internet, at
http://www.eigenvector.com/data/SWRI/.  It consists of NIR
spectra of diesel fuels along with various properties including the
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Fig. 3. Variable selection results for the simulated data set. (A) GA. (B) ACO-1. (C)
ACO-2. (D) ACO-3. In all cases, the green bars show the histogram values larger than
0.3,  and the red bars those with values smaller than 0.3. Superimposed are the spec-
tra  for the pure sample components: solid line, analyte 1, dashed line, component
2,  dashed-dotted line, component 3, using an arbitrary vertical scale. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web  version of the article.)

viscosity measured at 40 ◦C. They were obtained at Southwest
Research Institute (SWRI) on a project sponsored by the US Army.
For calibration, 116 samples were selected at random (having
viscosity values from 1.33 to 3.38), and two sub-sets of 58 samples
each were chosen for monitoring and test respectively. Spectra
were measured from 750 to 1550 nm each 2 nm.

4. Results and discussion

4.1. Simulated data

As explained above, the simulated data consist of signals for the
analyte of interest, centered at sensors 40 and 160 (analyte 1) and
for two additional components, one at sensors 50 and 150 (compo-
nent 2) and one in the region 80-120 (component 3). Component
3 is included in large relative concentrations in the calibration,
monitoring and test samples (Fig. 2A). These features are apparent
in Fig. 2B. The application of variable selection algorithms is thus
expected to extract, from these simulated data, the regions where
analyte 1 responds, discarding at the same time the high interfer-
ing signal in the middle of the spectra, the overlapping signals from
component 2, and the regions dominated by noise.

When GA, ACO-1 and ACO-2 were applied to this simulated
system, the results showed that this expected outcome was not
realized. In fact, Fig. 3A–C shows that GA, ACO-1 and ACO-2 ren-
der very similar results, in terms of inclusion of irrelevant regions.
One favorable feature of these two algorithms, however, is the fact

Fig. 4. Variables selected in the first 10 individual ACO-3 runs (solid squares) in the
simulated system. The top plot shows the pure component spectra for reference.

that component 3 is avoided (Fig. 3A–C). However, as was observed
before for GA in several simulated and experimental systems, a
complement would be required in the form of post-processing the
histogram of Fig. 3A with either i-PLS or bi-PLS procedures in order
to get the expected selection output [26,29].

The goal of variable selection inspired in natural mechanisms,
however, is to reach the expected answer without the help of intu-
ition or complementary selection methods. Before application of
ACO-3 to this simulated system, a parameter to be tuned is the
number of variables s. In order to estimate it, ACO-3 was  run for
trial values of s ranging from 2 to 10, and for each of these val-
ues, the RMSEmon was computed by selecting the sensor blocks for
which the histograms showed values larger than 0.3 (on a scale
where the maximum histogram value was  set to 1). The results
showed that after an initial decrease of RMSEmon from 0.095 units
to 0.070 units in going from s = 2 to s = 3, the final monitoring error
stabilized in 0.070 units for larger values of s. Hence s = 3 seemed
to be a reasonable choice for this ACO-3 parameter.

Application of ACO-3 with the parameters shown in Table 1 to
the simulated data set provided the gratifying results displayed
in Fig. 3D, where they can be compared with the remaining algo-
rithms. The fact that ACO-3 provides the expected answer is also
related to the procedure herein adopted of repeated histogram
cycles. This activity is supported by Fig. 4, which shows the specific
selected variables in the first 10 calculation cycles of ACO-3. As can
be seen, while individual cycles select significant variables together
with irrelevant ones, the latter ones are scattered throughout the
cycles, in such a way  that the averaging the histogram would pro-
vide comparatively higher importance to the variables, which are
consistently being selected at each cycle. Precisely this outcome is
the expected one on repeating the calculation cycles. Setting a rea-
sonable cut-off for the histogram values shown in Fig. 3D at 0.3,
the expected sensor regions where the analyte of interest responds
are selected without the help of additional post-processing steps,
corresponding to sensors 36–45 and 156–165.

After the selection process, PLS regression was applied to the
independent test data set, in order to compare the performance

Table 1
Parameters for running ACO-3 in the different data sets.

Data set Variables (s) Total sensors/sensor width Blocks Time steps Cycles Maximum latent variables Ants

Simulated 3 200/5 40 50 20 4 20
BRIX  5 1050/25 42 50 20 11 20
OCTANE 5 500/15 33 50 20 17 16
CORN 5  700/20 35 50 20 20 18
VISC  5 401/10 40 50 20 15 20
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Table  2
Statistical predictive results for the independent test samples in the different data sets after applying various variable selection methods.a

Data set Parameter Selection method

None GA ACO-1 ACO-2 ACO-3

Simulated Factors 4 3 3 3 2
RMSEtest 0.076 0.059 0.056 0.062 0.054
REP% 3.0 2.2 2.2 2.5 2.2
R2 0.9967 0.9980 0.9982 0.9978 0.9983

BRIX Factors 11 10 9 9 7
RMSEtest 0.79 0.27 0.30 0.31 0.24
REP% 4.5 1.5 1.7 1.81 1.4
R2 0.9090 0.9894 0.9869 0.9860 0.9916

OCTANE Factors 17 12 14 14 5
RMSEtest 0.52 0.39 0.44 0.34 0.30
REP% 0.55 0.42 0.47 0.36 0.32
R2 0.8136 0.8952 0.8666 0.9203 0.9380

CORN Factors 18 14 17 14 13
RMSEtest 0.0072 0.070 0.005 0.013 0.001
REP% 0.073 0.690 0.050 0.13 0.01
R2 0.9997 0.9563 0.9696 0.9210 0.9939

VISC Factors 12 8 4 12 12
RMSEtest 0.11 0.11 0.24 0.087 0.087
REP% 4.7 4.4 10.2 3.7 3.7
R2 0.8940 0.8912 0.4830 0.9337 0.9337

a RMSEtest = root mean square error in the test sample set; REP% = relative error of prediction; R2 = correlation coefficient. Units are as follows, for BRIX data, BD (Brix
degrees), for OCTANE data, octane units, for CORN data, %, and for VISC data, viscosity units.

on samples not employed for either calibration or monitoring.
The results are provided in Table 2. Two facts should be noticed
on inspecting this table: (1) the RMSEtest value for the test set
decreases in going from the full spectral data to the selected regions,

accompanied by a decrease in the relative error of prediction or
(REP% = 100 RMSEtest/ȳcal, where ȳcal is the mean calibration value
of the target property) and a slight improvement in the correla-
tion coefficient R2 between predicted and nominal property values,

Fig. 5. GA variable selection results for the experimental data sets. (A) BRIX. (B) OCTANE. (C) CORN. (D) VISC. In all cases, the green bars show the histogram values larger
than  0.3, and the red bars those with values smaller than 0.3. Superimposed are the mean calibration spectra arbitrary vertical scales. (For interpretation of the references to
color  in this figure legend, the reader is referred to the web  version of the article.)
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Fig. 6. ACO-3 variable selection results for the experimental data sets. (A) BRIX. (B) OCTANE. (C) CORN. (D) VISC. In all cases, the green bars show the histogram values larger
than  0.3, and the red bars those with values smaller than 0.3. Superimposed are the mean calibration spectra arbitrary vertical scales. (For interpretation of the references to
color  in this figure legend, the reader is referred to the web version of the article.)

and (2) the number of calibration PLS latent variables does also
decrease, because less responsive components occur in the selected
regions in comparison with the full spectrum. Table 2 does also
show that ACO-3 leads to the minimum number of latent variables
and prediction error.

4.2. BRIX data

Brix analysis is a relevant industrial parameter characterizing
sugar cane juice. The Brix degree is a unit representative of the
sugar content of an aqueous solution. One degree Brix corresponds
to 1% by weight (% w/w) of sucrose in a solution. Traditionally, the
Brix degrees are measured with a refractometer, which measures
the refractive index of a solution, although it is being increasingly
determined by NIR spectroscopy.

The main spectral features of the BRIX data set involve a high-
absorbance signal due to water (around 1950 nm), regions with
significant signals at 1450 and 2500 nm,  as well as regions which
are mainly dominated by noise below 1300 nm (see Fig. 5A). A pre-
vious analysis of the useful regions for PLS estimation of the Brix
degrees in this system was made using a GA, requiring i-PLS post-
processing in order to reach a reasonable answer [29]. Fig. 5A shows
the GA results without the latter post-processing, i.e., the raw sen-
sor blocks selected when only GA variable selection is employed.
As can be seen, both relevant and irrelevant regions are equally
selected. The results using both ACO-1 and ACO-2 (not shown) were
similar to those obtained by GA.

ACO-3 was applied with the parameters quoted in Table 1 to the
BRIX data set, with results, in terms of selected sensor blocks, which
are shown in Fig. 6A. The result is encouraging, because both the
high water signal and the noisy regions are avoided, as expected.

The selected regions (1500–1548 and 2100–2298 nm) are similar
to those previously found by GA/i-PLS variable selection [29]. Using
these regions to build the PLS regression model, the RMSE results
for an independent test sample set, quoted in Table 2, represent a
significant improvement over the full spectral results. Additional
improvements in REP% and R2 can also be seen (Table 2). The num-
ber of calibration PLS latent variables, on the other hand, decreases
in going from full spectra to selected sensor blocks, on account of
the removal of signals which are uncorrelated to the Brix degrees
to be estimated by the model. In comparison with other selection
methods, ACO-3 produces the best results, with lower calibration
latent variables and prediction error.

4.3. OCTANE data

The octane number is a measure of the resistance of petrol
and other fuels to autoignition in spark-ignition internal com-
bustion engines. It is measured in a test engine, and is defined
by comparison with the mixture of 2,2,4-trimethylpentane (iso-
octane) and n-heptane which would have the same anti-knocking
capacity as the fuel under test: the percentage, by volume, of 2,2,4-
trimethylpentane in that mixture is the octane number of the fuel.
The most common type of octane rating worldwide is the research
octane number (RON), which is determined by running the fuel in
a test engine with a variable compression ratio under controlled
conditions, and comparing the results with those for mixtures
of iso-octane and n-heptane. Much more conveniently, NIR spec-
troscopy allows for the fast and accurate measurement of octane
number.

This OCTANE data set was previously studied using different
GA versions. Without i-PLS post-processing, the results look rather
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unselective (see Fig. 5B). Similar discouraging results were obtained
on applying the ACO-1 and ACO-2 versions to this system. For
improving these raw GA results, the combination of GA and i-PLS
was developed and named RRGA (rank ranges genetic algorithm)
[26].

Application of ACO-3 provides a more reasonable answer
than the remaining algorithms, which agrees in some of the
selected regions with more sophisticated GA versions [24,25]
and other selection methodologies [38]. In particular, the sen-
sitive regions 5300–5700 and 8200–8800 cm−1 are consistently
selected (Fig. 6B). Table 2 implies a significant improvement in
ACO-3 statistical parameters with respect to the full spectral
analysis, with lower number of calibration variables and better
statistical indicators in comparison with the remaining selection
algorithms.

4.4. CORN data

This data set is available on the internet, and is intended for
calibration of the moisture content in corn seeds. Application of
GA to this data set provides the results shown in Fig. 5C. Similar
results were obtained applying ACO-1 and ACO-2 methodologies.
Many different blocks are selected, as with other data sets. Recently,
a parallelized GA was applied to this data set, including in the
chromosomes the possibility of selecting a wide variety of pre-
processing steps [39]. The selection results are also similar to those
herein reported.

In the case of ACO-3, it is interesting to notice that the highest
intensity in the histogram corresponds to the sensor block for the
ranges 1900–1938 and 2100–2138 nm (Fig. 6C). The former one
is close to one of the highly absorbing NIR bands of pure water
at 1940 nm [40]. This is understandable, since the calibration for
moisture in this data set should be most sensitive when the analysis
is focused on the water absorption band.

Table 2 shows a significant improvement in predictive ability on
sensor selection, as judged from the reported statistical indicators,
with a final RMSEtest value for the test samples which is compa-
rable to that recently reported for a sophisticated GA version [39].
Also, the results are better than those provided by other selection
algorithms.

4.5. VISC data

This data set is also available on the internet, and is supposed
to provide a test field for variable selection tools. When the GA is
applied to this system, Fig. 5D is obtained, where it is apparent that
relevant absorption bands are selected, together with regions of
very low signal intensity. ACO-1 and ACO-2 provided comparable
results.

When ACO-3 was applied to this data set, the selected wave-
lengths corresponded to well-defined absorption peaks in the NIR
spectra, located at 1050–1068 and 1210–1248 nm (Fig. 6D). Build-
ing a PLS model with these selected regions led to improved
viscosity prediction (Table 2). The RMSE quoted in Table 2 for the
independent test sample set (0.087 units) is close the one reached
by Westerhuis et al. [41] using the full spectral information ana-
lyzed by a rather sophisticated version of pre-processed partial
least-squares regression called direct orthogonal signal correction
(DOSC), which allowed to reach a mean error of 0.08–0.09 units.
The improvements in REP% and R2 are also apparent, comparable
to those achieved by ACO-2 (Table 2).

5. Conclusions

Both simulations and experimental information show that a
new variable selection model based on ant colony optimization,

combined with Monte Carlo repeated calculations, is highly useful
in discarding irrelevant spectral regions when partial least-squares
regression analysis is performed on spectroscopic data. The results
could be beneficial for other research areas such as QSAR, where
variable selection is often crucial for the success of the correlation.
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[23] R. Leardi, A. Lupiáñez González, Chemom. Intell. Lab. Syst. 41 (1998) 195–207.
[24] H.C. Goicoechea, A.C. Olivieri, J. Chem. Inf. Comp. Sci. 42 (2002) 1146–1153.
[25] C.E. Boschetti, A.C. Olivieri, J. NIR Spectrosc. 12 (2004) 85–91.
[26] H.C. Goicoechea, A.C. Olivieri, J. Chemom. 17 (2003) 338–345.
[27] M. Shamsipur, V. Zare-Shahabadi, B. Hemmateenejad, M.  Akhond, J. Chemom.

20  (2006) 146–157.
[28] M. Dorigo, T. Stützle, Ant Colony Optimization, The MIT  Press, Cambridge, MA,

USA, 2004.
[29] N. Sorol, E. Arancibia, S.A. Bortolato, A.C. Olivieri, Chemom. Intell. Lab. Syst. 102

(2010) 100–109.
[30] R. Leardi, L. Nørgaard, J. Chemom. 18 (2004) 486–497.
[31] Q. Shen, J.-H. Jiang, J.-C. Tao, G.-L. Shen, R.-Q. Yu, J. Chem. Inf. Model. 45 (2005)

1024–1029.
[32] M. Shamsipur, V. Zare-Shahabadi, B. Hemmateenejad, M.  Akhond, Anal. Chim.

Acta 646 (2009) 39–46.
[33] M. Goodarzi, M.P. Freitas, R. Jensen, Chemom. Intell. Lab. Syst. 98 (2009)

123–129.
[34] M. Goodarzi, M.P. Freitas, R. Jensen, J. Chem. Inf. Model. 49 (2009) 824–832.
[35] M. Dorigo, Optimization, Learning and Natural Algorithms, PhD Thesis, Politec-

nico di Milano, Milan, Italy, 1992.
[36] MATLAB 7.10, The MathWorks Inc., Natick, MA,  2010.
[37] ASTM Method D 2699-99, Annual Book of ASTM Standards, vol. 05.05. ASTM,

West Conshohocken, PA, USA, 2001.
[38] H. Chung, H. Lee, C.-H. Jun, Bull. Korean Chem. Soc. 22 (2001) 37–42.
[39] O. Devos, L. Duponchel, Chemom. Intell. Lab. Syst.,

doi:10.1016/j.chemolab.2011.01.008, in press.
[40] J.A. Curcio, C.C. Petty, J. Opt. Soc. Am.  41 (1951) 302–1302.
[41] A. Westerhuis, S. de Jong, A.K. Smilde, Chemom. Intell. Lab. Syst. 56 (2001)

13–25.


