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Design for Operability: A Singular-Value Optimization Approach
within a Multiple-Objective Framework
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Design-for-operability is a field of active research in process systems engineering because of the
high economic impact of design on operability. Dynamic operability has been widely studied by
means of the so-called (open-loop) controllability and resiliency indices, which are mostly based
on linearized (Laplace/frequency domains) models of the dynamic systems. In particular, the
minimum singular value of the transfer function matrix is a fair measure of resilience to
disturbances. Among the plethora of approaches to design for dynamic operability, a multiple-
objective formulation between cost and controllability naturally arises because of the conflicting
characters of the two objectives. In this contribution the cost/minimum-singular-value multiple-
objective design problem is solved for the meaningful reactor—separator—recycle system and
two different control strategies. The generation of the noninferior solution set is performed here
within the framework of an eigenvalue optimization approach.

1. Introduction

Systems design problems can be mathematically
formulated as optimization problems, in which a mean-
ingful objective (usually economic) is aimed to be
optimized while model constraints (equalities and in-
equalities) are satisfied.

Certain operability issues should also be considered
for proper design. Operability is a broad concept that
has to do with the behavioral features of the system. In
this work, we focus on the dynamic implications of
operability, that is, the appeal of our system in a
dynamic sense.

Because dynamic operability features depend on the
process itself, rather than, for example, on control
strategies, design-for-operability is an active research
field in engineering. It is particularly important to
chemical engineering because of the economic magni-
tude of the involved processes.

The work on design-for-operability is quite vast, as it
includes the also-large literature on dynamic assess-
ment techniques. In the following discussion, only the
major approaches are described. The review in Bansal®
as well as the works by Morari and Perkins? and Lewin3
are highly recommended for further reading on the
subject.

Sequential Approach to Process Design. Process
design is evolving toward a completely integrated and
automated activity. However, it still requires “artistic”
skills from the designer. This is because full nonlinear
optimization design/synthesis with convenient closed-
loop dynamic behavior under disturbances and para-
metric uncertainty is a very difficult problem.

Current design/synthesis practice, therefore, involves
the proposal of reasonable flowsheets based on engi-
neering criteria and experience and the optimization of
single economic objective functions subject to the steady-
state model of the proposed processes.
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To perform operability assessment, the designs thus
generated are classified according to certain operability
measures. Such operability measures, better known as
controllability and resiliency (C&R) indices, are based
on linearized versions of the open-loop nonlinear dif-
ferential algebraic models of the process and are defined
in the frequency domain. These measures include non-
minimum phase elements (right-half-plane zeros, right-
half-plane poles, and time delays), singular values,
condition number, and Relative Gain Array (RGA).

Once the design is deemed satisfactory according to
some or all of these measures, it is further developed.
This approach has the advantage that poorly operable
designs can be discarded early without waste of time
and effort.

At this point, an adequate control strategy is pro-
posed, and intense steady-state and dynamic simula-
tions are performed to assess the system behavior in
the face of disturbance and parametric uncertainty and
set-point changes. In general, open-loop stability is
desired, and controller tuning seeks quick and smooth
transients. The design is also dynamically evaluated
regarding “path constraints” to verify that no state
violates possible lower or upper bounds imposed by
operational or safety considerations during the tran-
sients.

If satisfactory dynamic behavior is not observed, the
process flowsheet is improved, or new ones are tried.
This procedure is performed repeatedly until a satisfac-
tory design is achieved.

Nonlinear dynamic simulation is, by far, the most
widely applied tool for evaluating the dynamic perfor-
mance of chemical processes. Despite its inherent
advantages, mainly the ability to handle large and
involved nonlinear systems, extensive dynamic simula-
tion can be time-intensive and computationally expen-
sive at the design stage.

This rather heuristic approach requires a great deal
of experience-based knowledge and ingenuity for the
early proposal of successful flowsheet alternatives.
However, it provides a very intuitive framework for
addressing the complex design-for-operability problem,
and meaningful contributions have been produced on
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the subject in the past decade, particularly the work by
Luyben et al.4

Integrated Design and Operability. Process dy-
namic operability can be considered in mainly two ways
within the design problem: through operability (C&R)
analysis tools and through dynamic simulations. These
strategies give rise to the two major approaches to
design-for-operability: multiobjective optimization and
dynamic optimization. In the following discussion, these
two major approaches to address the design-for-oper-
ability problem in an integrated fashion are briefly
described.

Multiobjective Optimization Approach. Multiobjective
optimization problems arise when it is necessary to
consider competing objectives, that is, when one of the
objectives can be improved only at the expense of the
other(s). This situation is rather common in design, and
it is indeed the case in design-for-controllability.

A multiobjective problem can naturally be posed
between economic objectives and C&R indices, as pro-
posed by Palazoglu and Arkun® and Luyben and Flou-
das.b

Other operability indices have also been considered
within such a strategy.”8

The main advantage of using multiobjective optimiza-
tion to address the design-for-operability problem is that
the objectives have very intuitive meanings and the
tradeoffs among them can be clearly traced.

The use of linear operability objectives presents,
however, several limitations.® First, linear approxima-
tions might not be reliable enough for the usually highly
nonlinear process systems in the face of uncertainty.
Some of the measures assume square (Laplace domain)
plants, which might be unrealistic. These indices are
defined in the frequency domain, whereas the perfor-
mance requirements are established in the time domain,
and the translation might not be straightforward.
Finally, the application of these tools requires the use
of heuristics and experience to overcome the subjectivity
of their definition.

Dynamic Optimization Approach. This approach con-
siders process design and process operability simulta-
neously as one integrated optimization problem. This
is an attractive approach indeed, as both flowsheet
synthesis and operability analysis are fully automated.

Process synthesis reduces to the development of a
superstructure of process flowsheets, which might in-
clude the possible control schemes, introducing binary
decision variables within the formulation.

Satisfactory process controllability is ensured because
the dynamics of the (closed-loop) system is explicitly
considered through the set of differential equations,
giving rise to a dynamic optimization problem.

Steady-state and dynamic process feasibility are also
ensured because disturbance and parametric uncer-
tainty are explicitly taken into account (through a
deterministic or stochastic approach).

The very general formulation results in a mixed
integer nonlinear, infinite-dimensional dynamic opti-
mization problem. Different versions of this problem
have been addressed by Mohideen et al.,’° Schewiger
and Floudas,!! and Bansal.l

The solution of the full problem is a very complex
task, and only simplified versions have been recently
solved. First, systematically developing superstructures
for process flowsheets is a difficult task. The handling
of dynamic behavior and uncertainty in mixed integer
nonlinear programming problems is also an involved
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problem. Finally, this approach involves significant
demands on computational resources.

This second integrated approach to design-for-oper-
ability presents very attractive features as it allows the
explicit consideration of most of the required design
issues within a very elegant formulation. The major
drawback of such an approach is the inherent difficulty
in modeling and solving the resulting complex program-
ming problem.

The multiobjective approach, on the other hand, has
a much simpler formulation and solution strategy. It
relies on steady-state optimization models and rather
intuitive operability objectives if C&R indices are con-
sidered. Of course, it suffers the limitations of applying
linear tools to study nonlinear dynamic systems as
discussed above.

In this work, a multiobjective cost/controllability
approach to the design-for-operability problem is con-
sidered. Such an approach has been addressed by
Luyben and Floudas,® among others, as already noted.

In that contribution, the multiobjective strategy was
applied, for several C&R measures, to the design of
various meaningful chemical engineering processes.
Pareto-optimal solutions between cost and a C&R index
were generated, and the best compromise solution was
evaluated in some way. In particular, minimum-singular-
value analytical expressions were supplied to the NLP
optimization model as functions of the optimization
variables.

The original contribution of this work is the imple-
mentation of eigenvalue optimization techniques to deal
with the controllability objective, namely, the minimum
singular value of the zero-frequency process transfer
function matrix, within the multiobjective optimization
problem. It is the purpose of this work to introduce the
possibilities of eigenvalue optimization to the chemical
engineering community and to demonstrate its features
through the important design-for-operability problem.

Eigenvalue optimization is an active research disci-
pline in mathematics and engineering, although it is
almost unexplored in the chemical engineering field.
Alternative applications of eigenvalue optimization to
the design-for-operability problem can be found in
Blanco and Bandoni.'?

The proposed formulation is applied to the reaction—
separation—recycle process, of outstanding importance
in chemical engineering.

The paper is outlined as follows. In the next section,
the most relevant theoretical topics covered in this
paper, namely, singular-value analysis, eigenvalue op-
timization, and multiobjective optimization, are intro-
duced. Then the model of the reactor—separator—recycle
system (taken from Luyben?3) is described. Finally, the
proposed approach is applied to the generation of the
nonminimum solution sets of the cost/controllability
design problem for two control configurations.

2. Theoretical Framework

2.1. Singular-Value Controllability Analysis. C&R
measures, such as singular values, condition number,
and RGA, are based on linearized versions of multiple-
input/multiple-output dynamic models in the Laplace
and frequency domains

y(8) = G(s) u(s) + G4(s) d(s)

In particular, the minimum singular value of the steady-
state (zero-frequency) transfer function matrix, G
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indicates how close this matrix is to being singular and
represents the smallest gain of the process among
possible input directions. A large value of this measure
implies that the process is resilient to disturbances. The
singular values of matrix G can be calculated as the
square roots of the eigenvalues of H = GTG

0(G)=i(H) i=1..n

Specifically

Omin(G) = V’lmin(H)

Another meaningful index, which is introduced to
provide a most complete description of the controllability
theory, is the condition number of matrix G, defined as

which verifies the following relation

[1oull _ , 19C
lul| il

A small condition number means that model errors do
not cause large errors in the manipulated variable.

As discussed by Luyben and Floudas,® controllability
measures can be calculated not only at steady state but
also as functions of frequency so that dynamics can be
considered. We limit ourselves here to a steady-state
analysis because of inherent difficulties in considering
frequency dependence. Frequency-dependent control-
lability, however, has been studied within a multi-
objective approach by Palazoglu and Arkun,5 for ex-
ample.

In previous approaches (e.g., Luyben and Floudas®),
explicit analytical expressions for singular values were
supplied and straightforwardly incorporated into the
design model within a multiobjective optimization frame-
work, as already described. In this work, a different
technique, which makes use of eigenvalue optimization
ideas, is applied.

2.2. Eigenvalue Optimization. It is impossible to
obtain explicit mathematical expressions for the eigen-
values of systems larger than 4 x 4. This makes it
impossible to include eigenvalues within the optimiza-
tion model in a straightforward manner (as objectives
and/or constraints). Furthermore, even in the cases
where analytical expressions can be obtained, their
typical high complexity and nonconvexity make them
difficult for standard NLP solvers to handle.

Moreover, a critical difficulty in eigenvalue optimiza-
tion problems is the potential coalescence of eigenvalues.
The eigenvalues of a matrix with differentiable elements
(smooth in the optimization variables) are themselves
nondifferentiable (nonsmooth) at the points where
coalescence occurs. Also, frequently, the optimization
objective tends to make the eigenvalues coalesce at the
solutions. See Blanco and Bandoni? for further refer-
ences on the subject.

To overcome such difficulties, it is necessary to
develop specialized optimization methods when eigen-
values are present. In the following, an eigenvalue

optimization strategy for symmetric matrices is intro-
duced and applied to the singular-value optimization
problem.

Because singular values are defined in terms of the
eigenvalues of the symmetric matrix H, a fairly straight-
forward implementation of singular-value optimization
within multiobjective design is possible.

Consider the maximization of the smallest eigenvalue
of a symmetric matrix H(y)

Max Apin[H(Y)]

s.t. h(y) =0

ay) =0
yeY
This problem can be reformulated in terms of the
auxiliary variable z (Ringertz'). The strategy is to

bound the spectrum from below and maximize the lower
bound z

max z
y.z

s.t. AHWY)] = z i=1..,n

h(y)=0
gly) =0
veY
2 <z
Because H-v = Al-v implies (H — zl)-v = (1 — 2)I-v,
the condition 1; — z > 0 implies that H — zI > 0. Here,

> 0 indicates positive definiteness. Therefore, the above
problem can be rewritten as

max z
&4

s.t. Hy) —zl >0
h(y) =0
g(y) =0
veY
Z'<z

Several approaches have been proposed to solve the
above problem.1214

In this work, positive definiteness of symmetric
matrix H — zI is ensured through Sylvester’s criterion,
which states that the necessary and sufficient conditions
for a symmetric matrix A(n,n) to be positive-definite are
that its successive principal minors A; (i = 1, ... ,n) be
positive: det[A(1,1)], det[A(2,2)], ..., det[A(n,n)].

max z
v,z

s.t. det{[H(y) — zI];} > & i=1,..,n
£>0
h(y)=0 (1)

agy) =0
yeY

Z<z

This is an NLP problem, which can be solved with
standard nonlinear optimization solvers.



& is a small positive parameter that is arbitrarily
chosen. It was set to 1 x 107% in the examples consid-
ered.

In a similar fashion, it is possible to formulate the
minimization of the maximum eigenvalue of symmetric
matrix H(y) by bounding its spectrum from above with
an auxiliary variable z and minimizing this upper
bound.

By performing operations analogous to those used in
the maximization problem, one obtains

min z
Y.z

s.t. det{[zl — H(Y)]} > & i
£E>0
h(y) =0 )

ay)=0
yeY

1,...,n

z<2z"

In the following example, a very simple singular-value
optimization problem is solved to illustrate the described
ideas. The purpose of this example of intuitive meaning
is to show that the proposed optimization strategies
produce the desired results regarding the singular-value
structure of the matrix.

Consider the following classic example used to intro-
duce matrix singularity theory

Ble) = [1/6 2]

This pathological matrix is often used to show how poor
the determinant is as an indicator for studying singu-
larity.1> Even though the determinant of B(e) is always
equal to 1, B(e) approaches singularity as ¢ becomes
smaller.

According to the above explanation, the problem of
maximizing the minimum singular value of matrix B(e)

Max Ay, [B(0)B(e)]

I
s.t. € <e€=<e"

can be posed according to eq 1 as
max z
€,2

s.t. det{[B(e)"B(e) — zI]} > & i=1,2
§>0
d<e<d

where
1/e 1

B@pmdz[r+a@2 u1

As expected, the solution of this problem corresponds
toe=¢€",andz— 1,01 — 1, and o, — 1 as €' — o,

The same result is obtained if minimization problem
2 is considered.

By combining formulations 1 and 2, it is also possible
to formulate alternative problems to consider the condi-
tion number of matrix G by adding upper bounds on
the maximum eigenvalue of matrix H
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max z
&4

st det{[H(y) —zI]} > & i=1,..n
det{[k"l — H()]} > &
§>0
h(y)=0

ay)=0
veyY

i=1,..,n

z<z7"

In the above formulation, kY is chosen to be an upper
bound of the maximum eigenvalue of matrix H. Because
the square of the condition number of matrix G is the
ratio between the maximum and minimum eigenvalues
of matrix H, the following constraint on the condition
number can be straightforwardly included: y2(G) < kY/
z.

The proposed eigenvalue optimization approach pro-
vides a systematic framework to handle the whole
spectrum of even medium- and large-scale symmetric
matrices by bounding both minimum and maximum
eigenvalues. In Blanco and Bandoni,!? similar ideas are
applied to handle the spectrum of unsymmetric matri-
ces.

2.3. Multiobjective Optimization. Common prac-
tice in multiobjective optimization is to generate the
noninferior solution set in some way and then select
among its members according to a certain decision
maker’s preference.

The expected qualitatively noninferior solution set for
the cost/minimume-singular-value problem is roughly
depicted in Figure 1.

To generate the noninferior solution set, the classic
e-constraint method is applied here between the cost
and the minimum singular value of the transfer function
matrix of the process.

The idea is to maximize variable z (which bounds from
below the spectrum of H and, therefore, the minimum
singular value of matrix G) as in eq 1, including an
additional constraint on the cost of the process

rr}e;xz
s.t. det{[H(y) — zI];} > & i=1,..,n
£§>0

cost=¢ j=1,..,p

h(y)=0
gly)=0
yeY
<z
By progressively increasing the value ¢, different
results for the minimum singular value are obtained

(the constraint on the cost should be binding at the
solution), to calculate the Pareto-optimal solution.

3. Reactor—Separator—Recycle System Model

Chemical plants used to be cascades of individual
units. The key for successful dynamic operation of such
plants was proper control of each unit.
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Cost

Cost *

Non-inferior Solution Set

0min*((;) Gmin(G)
Figure 1. Noninferior solution set for cost and omin(G).

z

F, zz

Figure 2. Reactor—separator—recycle system.

Modern chemical plants, on the other hand, are highly
integrated (mass and energy recycles) to maximize
conversion throughout the whole process and accom-
plish efficient energetic operation. Integrated plants
present complex dynamic behavior because of the posi-
tive feedback introduced by the recycles.

Conventional wisdom for handling such complex
dynamics is to isolate units by means of large surge
tanks, so that dynamic interactions can be reduced. This
practice, however, is expensive and can be environmen-
tally unacceptable when hazardous chemicals are in-
volved.

The challenge is therefore to design for the feasible
operation of tightly integrated processes. Recycle sys-
tems gave rise to the concept of plantwide control, which
considers processes as a whole, rather than cascades of
units, for control purposes.*

In this section, a multiobjective approach between cost
and controllability is applied to the design of the
outstanding reactor—separator—mass-recycle system.
The model considered is taken in full from Luyben.'3
The basic flowsheet of the single-reactor/single-column
system is shown in Figure 2.

A first-order A — B reaction takes place in the iso-
thermal reactor. The reactor effluent is fed to a column

where nonreacted A and product B are separated.
Nonreacted A is recycled back to the reactor.

For a given fresh-feed flow rate, Fo, and composition,
Zo, and a certain product specification, xg, the goal is to
calculate the design variables that optimize the two
conflicting objectives: cost and controllability.

The optimization variables are the feed flow rate, F,
and composition, zg, to the column; the number of trays,
N; the vapor boil-up, V; the reflux flow rate, R; the reflux
ratio, RR; the recycle flow rate, D, and composition, Xp;
and the reactor hold-up, V.

The usual simplifying assumptions are considered in
the column model: constant relative volatility between
components throughout the whole separation, equimolar
overflow, total condenser, partial reboiler, and saturated
liquid feed.

The following equations describe the mathematical
model for this process. For further details, see Luyben.!3

3.1. Process Model. Total balance around the reactor

Fob+D=F
Component balance around the reactor
Fozy + Dxp = Fzg + V kzg
Component balance around the column
Fz, = Dxp + BXg

Eduljee design equation
(N - Nm) g (RR - RRm)0-5668
N+1/ ~I7 \ RR+1

Minimum reflux ratio

1

RR P

m

Xp ol — Xxp)
Zg  (1-12zp)

Minimum number of stages

( Xp 1-— XB)
In
1-X5; Xg

Nim = In o
Reflux ratio
R
RR ==
D
Condenser balance
V=R+D

Applicability of the Eduljee design equation
RR = 1.0101RR,, + 0.0101

This model has 3 degrees of freedom because it
involves 11 equality constraints and 8 variables. From
the overall balance, one can immediately see that Fo =
B. a stands for the relative volatility.

3.2. Economic Objective. The economic objective is
the total cost to be minimized, which includes both
capital and utility costs



cost = 1 (Creactor T C +C

ﬁpay

exchangers) +

ﬁtax(cutilities)

where fpay is the payback period and fSrx is the tax
factor. All of the costs involved are in units of dollars
per year.

Cutilities Mainly corresponds to the hot utility at the
reboiler of the distillation column and is calculated as

column

Cutitities = 1207V
where V is supplied in kilomoles per hour.
The capital cost of the reactor depends on its size and
is calculated here as

C =17 639(DR)1.066(2DR)0.802

reactor

where
Dy = 0.3967(0.6366V,,)""

These equations assume that the height of the reactor
is twice the diameter. Dgr is in meters, and Vy, is in
kilomoles.

The capital cost of the column depends on the
diameter, D¢, and the number of trays, N, according to
the equation

C = 6802(D)"**%(2.4N)*%%* + 548.8(D )" *°N

column

The diameter affects on the vapor velocity in the
column, which is related to the vapor boil-up. It then
follows that

D = 0.0832vV

The capital cost of the heat exchangers depends on
the areas of the reboiler, Agr, and the condenser, Ac,
which are, in turn, related to the vapor boil-up

C = 8701A>% + 8701A.%%

exchangers
where

Ag =0.512V A, =0.854V
The areas are in square meters, and V is again in
kilomoles per hour.

3.3. Steady-State Gains. To construct matrix G at
zero frequency, the steady-state gains for the desired
pairing of controlled and manipulated variables should
be provided. In the present work, the compositions xp
and xg are considered as the controlled variables, and
the flow rates R, D, and V are considered as the
manipulated variables.

The following expressions® relate the aforementioned
compositions to some arbitrary manipulated variable,
u, and permit the calculation of the steady-state gains

0Xg B B F\l_
(E)[Kz + K4K6mG = (K, — K4K5)5(1 + —mG)] =

dRR | (Xp = Zg) aD
K3 U + D (K — Kyks) m )

ou

D ou D

(8XD)=(ZR_XD)3D B(l VFK)% @
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where
_ ~1
LTIN+ )(In a)xp( — xp)
_ 1
27 (N + 1)(In o)xg(L — Xg)
_ 05668(RR, +1) (N-N, )
““RRIDERR _RRO\N+1 07
_ 05668 (N— N, )
“T@RR-RR)\N+1 07
__ 1 (1, «
R P zR)
_ -1 (%o (1 — Xp)
T (- 1)(ZR2 i 1- zR)Z)

With these expressions, the steady-state transfer func-
tion matrix for certain control configurations can be
constructed.

4. Control of Two Compositions

In this section, the proposed multiobjective approach
for process design between cost and singular-value-
based controllability is applied to two different control
configurations.

4.1. RV Control Configuration. In this section, a
noninferior solution set for the cost/minimum-singular-
value multiobjective design problem is generated for the
RV control configuration, where the reflux, R, and the
vapor boil-up, V, are chosen to control compositions xp
and xg. For the sake of simplicity, perfect level control
is assumed in the process (reactor, reflux drum, and
column base).

The desired process transfer function matrix is

(()XB) (()XB)
_ v _V

Its elements can be calculated from eqgs 3 and 4 and the
following relations

G =

(BRR) _Vv (8RR) __R
R v p? vV |r D?

oDy _ D) _
v L (BV)R 1

oR
Singular values depend on the scaling of the variables
for fair comparison.

Here, matrix G is scaled as follows

FI(l—%) O

scaled __ v unscaled
G - [o F/XB]G

where the overbar denotes the nominal variable value.

The proposed approach was applied to the generation
of the noninferior solution set of the reactor—separator—
recycle system with the parameters presented in Table
1. The quality specification xp = 0.90 is included in the
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Table 1. Physical Data for Reactor—Separator—Recycle
System

parameter value parameter value
Fo 108.7 kmol/h Pray 3years
20 0.9 Prax 1
XB 0.001 05 F 125 kmol/h
o 2 X8 0.001 05
k 0.34086 h™*

Table 2. Noninferior Set for RV Configuration

N Vm (kmol) cost ($/year) Oomin(G) y(G)
30.84 2964 515 000 142.77 4.62
30.92 2993.06 515 500 144.87 4.62
31 3021.71 516 000 146.96 4.63
311 3048.91 516 500 149.02 4.63
31.15 3077.96 517 000 151.07 4.63
31.22 3105.6 517 500 153.11 4.63
31.29 3132.96 518 000 155.13 4.63
315 3154.07 518 500 157.13 4.63
31.99 3161.17 519 000 159 4.62
32.46 3167.4 519 500 160.73 4.61

analysis to prevent the optimal solution from having a
single stripper column (R = 0).

Table 2 contains the complete noninferior solution set
for the system under study, which is graphically shown
in Figure 3. The condition number of G is also reported.

4.2. DV Control Configuration. Here, the DV
control configuration is employed, where the distillate
flow rate, D, and the vapor boil-up, V, are chosen to
control compositions xp and xg. Again, perfect level
control is assumed in the process (reactor, reflux drum,
and column base).

The desired process transfer function matrix is

(8xD) (axD)
oD /v \aV/o
0Xg Xg

(i), ().

whose elements are calculated from egs 2 and 3 and the
following relations

(BRR) __V (8RR) _1
v D?’ o D

G =

oD oV

D\ 9D\ _
(GD)V =1 (8V)D =0

The same scaling procedure as for the RV configuration
is applied. The process parameters are again those of
Table 1, and the quality specification xp > 0.90 is also
included to prevent the optimal solution from having a
stripper column (R = 0).

The noninferior set for the system is reported in Table
3 and depicted in Figure 4.

In this section, the noninferior solution set for the
cost/minimum-singular-value problem for two alterna-
tive control configurations of the reactor—separator—
recycle system were generated. The final design can be
obtained by simply deciding among the set elements,
according to the decision maker’s preferences.

Regarding the condition number, which is related to
robustness to model errors, the RV configuration (yrv
~ 4.62) is a better control scheme than the DV config-
uration (ypy ~ 6.05).

As already noted, however, these analyses are steady
state in nature, and the final decision should be sup-
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Figure 3. Noninferior solution set for RV configuration.
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Figure 4. Noninferior solution set for DV configuration.

Table 3. Noninferior set for DV Configuration

N Vm (kmol) cost ($/year) omin(G) y (G)
30.87 2964.2 515 000 142.9 6.05
30.91 2993.26 515 500 145 6.05
30.99 3021.93 516 000 147.09 6.05
31.07 3050.23 516 500 149.15 6.05
31.14 3078.19 517 000 151.2 6.05
31.21 3105.84 517 500 153.24 6.05
31.29 3133.2 518 000 155.26 6.05
31.36 3160.3 518 500 157.27 6.05
31.43 3187.14 519 000 159.68 6.04
315 3213.75 519 500 161.26 6.04

ported by closed-loop dynamic simulations for possible
disturbance and uncertainty scenarios.

5. Conclusions

Multiobjective optimization is a classic approach to
the design-for-operability problem.

In this contribution, a novel strategy to solve the
multiobjective cost/controllability design problem has
been presented.

The considered controllability index was the mini-
mum singular value of the steady-state process transfer
function matrix, which is a fair measure of resilience
to disturbances. Because singular values are related to
the eigenvalues of symmetric matrices, a direct formu-
lation of the multiobjective problem that makes use of
eigenvalue optimization theory was possible.



The proposed optimization scheme was applied to the
design of the reactor—separator—recycle system for
different control configurations presented in Luyben and
Floudas.® Noninferior solution sets were generated for
each case.

The major advantage of such a formulation is that
there is no need to provide explicit expressions for the
singular values (eigenvalues), and then large-dimension
problems can be tackled in an efficient way.

In fact, the proposed approach provides a systematic
framework for handling the whole spectrum of a sym-
metric matrix by bounding both minimum and maxi-
mum eigenvalues. It is therefore possible to formulate
alternative problems to consider the condition number
of the matrix by adding upper bounds on its maximum
eigenvalue.

Although condition numbers and singular values are
classic tools for controllability analysis, other open-loop
C&R indices, such as RGA and disturbance condition
number, exist that should be considered for proper
operability assessment. Those that are defined in terms
of eigenvalues of symmetric matrices can be handled
as described in this work. Others can be considered as
regular constraints within the NLP formulation as
usual.

Nomenclature

Ac, AR = heat-exchanger areas for the condenser and
reboiler

B = bottoms flow rate

Ceolumn = capital cost of the column

Cexchangers = Capital cost of the exchangers

Creactor = capital cost of the reactor

Cutilities = utility cost

D = distillate flow rate

D¢ = diameter of the column

Dgr = diameter of the reactor

F = feed flow rate to the column

Fo = fresh-feed flow rate to the reactor

G = process gain matrix

Hr = reactor height

k = Kinetic rate constant

N = number of stages in the column

Nm = minimum number of stages in the column

R = reflux flow rate

RR = reflux ratio in the column

RR; = minimum reflux ratio

V = vapor boil-up in the column

Vm = molar hold-up in the reactor

Xg, Xp = bottoms and distillate composition in the column,
respectively

z = eigenvalue optimization auxiliary variable

Zr = reactor composition

zo = fresh-feed composition supplied to the reactor

Greek Symbols

o = relative volatility
Prax, Ppay = tax factor and payback period, respectively
y = condition number
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ki = terms in steady-state gain expressions
i = eigenvalues
o; = singular values
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