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In this work we study the Tomita-Takesaki construction for a family of excited states that, in a strongly
coupled CFT—at large N—correspond to coherent states in an asymptotically AdS spacetime geometry.
We compute the modular flow and modular Hamiltonian associated to these excited states in the Rindler
wedge and for a ball shaped entangling surface. Using holography, one can compute the bulk modular flow
and construct the Tomita-Takesaki theory for these cases. We also discuss generalizations of the
entanglement regions in the bulk and how to evaluate the modular Hamiltonian in a large N approximation.
Finally, we extend the holographic Banks, Douglas, Horowitz and Matinec (BDHM) formula to compute
the modular evolution of operators in the corresponding CFT algebra, and propose this as a more general
prescription.
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I. INTRODUCTION

Modular Hamiltonians (also called entanglement
Hamiltonians in the condensed matter community) are
unbounded and Hermitian operators properly defined in
the context of axiomatic quantum field theories [1,2], and
in particular in the framework of the Tomita-Takesaki (TT)
theorem [3]. However, they are also useful in other areas of
physics as quantum information, quantum field theory and
also in the AdS=CFT context.
Given a theory on a spacetime M in a state defined

through its density matrix ρ we can define the reduced
density matrix, ρA, on a subsystem A ∈ M as the partial
trace on the complement of A (denoted by Ā). By definition
this object is semi-definite positive and Hermitian and then
can be always written as

ρA ¼ TrĀρ ¼ e−KA

Tre−KA
; ð1:1Þ

where KA is the modular Hamiltonian. The denominator
ensures TrρA ¼ 1 but will not play an important role along
this work.
In the condensed matter literature, the spectrum of the

modular Hamiltonian is important because it have relevant
information to characterize and identify topological states

of matter. For example, in [4] it was applied to fractional
quantum Hall states and, more recently, it was used to
analyze topological non-Hermitian systems [5]. In QFTs, it
is also an important tool when computing information
theory measures, such as the relative entropy between two
states [6] or the capacity of entanglement [7] but since
modular Hamiltonians are typically nonlocal they are not
easy to compute in general. Despite of this, its explicit form
is known for the Rindler wedge in any QFT’s vacuum state
[8], as well as for a spherical entangling surface in CFTs [9]
and in time dependent situations after a quantum quench
[10]. Some new analytical results were also found recently
for free theories and multiple intervals on Minkoski
spacetime [11] and the torus [12]. Lastly, we mention that
modular Hamiltonians have also been relevant in the
context of the AdS=CFT correspondence [13–15], in
studying the Bekenstein bound [16], the averaged null
energy (ANEC) and quantum null energy (QNEC) con-
ditions [17], and emergent gravity [18]. There is also a way
to study modular Hamiltonians in AdS=CFT on the gravity
dual theory [19,20].
The Tomita-Takesaki [3] theorem is one of the most

important theorems in the algebraic quantum field theory
setup and despite being a very formal tool, it has many
applications in physics and mathematics, see [2] and
references therein. Let A be a von Neumann algebra on
a certain Hilbert spaceHwhich contains a vector jΩi that is
cyclic and separating on A. Let us now define and operator
S on H by the following relation

SAjΩi ¼ A†jΩi; ∀ A ∈ A: ð1:2Þ
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The operator S is called the Tomita operator with respect to
ðA;ΩÞ and it has a unique polar decomposition

S ¼ JΔ1=2 ¼ Δ−1=2J; ð1:3Þ

where the operator Δ ¼ S†S is called the modular operator
and the antiunitary operator J is called modular conjuga-
tion. From the definition can be seen that J ¼ J† and
J2 ¼ 1. The TT theorem states that for A a subalgebra ofA
and jΩi a separating and cyclic vector on A then the
following properties holds

JjΩi ¼ ΔjΩi ¼ jΩi; JAJ ¼ A0;

ΔisAΔ−is ¼ A; ∀ s ∈ R: ð1:4Þ

Here the subalgebra A0 belongs to the commutant of A
(called A0). This theorem ensures that there exist an
uniparametric group of automorphisms σsðAÞ¼ΔisAΔ−is

that will be called in our context as modular flow. Usually it
is nonlocal (nongeometric) but there exist some important
examples where it is local (geometric). Typical examples of
local flows are those produced by modular operators in the
vacuum state and for the Rindler wedge [8], or the vacuum
of a CFT on a sphere [9] and more recently the single
interval case of fermions on a torus [12]. Typical examples
of a nonlocal flow is when the region is on the real line and
made of disjoint intervals [11] and as well when we study
fermions in disjoint intervals on the torus [12].
The modular Hamiltonian KA is a self-adjoint operator

that belongs to the algebra of operators, defined on the
region A. It has a very precise definition in the AQFT setup
in the context of the TT modular theory [3]. However, it is
often difficult to relate the modular operator with the one
defined in equation (1.1). One of the goals of the present
work is to computeΔ in a special class of excited states that
have an holographic dual. Some recent works on the Tomita
modular operator show its relevance in the derivation of the
ANEC [17,21] and in understanding aspects of black holes
interiors [22,23] and bulk reconstruction [21,24,25].
A remarkable feature of the modular Hamiltonian is the
fact that it depends only on the algebra of operators on the
region of interest and the state of the system. Moreover, as
was mentioned before, the TT theorem ensures that a
notion of modular time evolution can be defined. A local
observer with a clock that runs in modular time will find
himself in a thermal bath which is reminiscent of what
happens in the Unruh effect.
In the present work we will study the modular

Hamiltonian, modular operator and its modular flow for
a family of excited states in equipartite Hilbert spaces in the
context of holographic CFTs. Some related works in the
field theory context are [26–28] (see [29] for an axiomatic
approach). The particular set of excited states, that we will
call holographic, have the advantage that its precise holo-
graphic dual is known [30,31] and can be shown to be bulk

coherent states on the large N limit. Due to this important
property, these states were extensively studied in different
setups [32–35] and extended to finite temperature cases
[36,37]. To be concrete, the excited states are built by
considering external sources in the Euclidean path integral
that define a reference state, and can be written as (notation
will be made explicit is Sec. II)

jΨλi≡ Pe−
R
τ<0

dτOðτÞ·λðτÞj0i

⇔ hϕΣjΨλi≡
Z

DϕΣ;λΦe−SE½Φ� ð1:5Þ

where the object on the left is an excited state on the CFT,
and the object on the right is its wave function in the
holographic dual.
In Sec. II we will review the main properties of the states

(1.5) that will be useful in the context of our work. In
Sec. III we will study the modular Hamiltonian of these
excited-states from a QFT perspective for the case of an
equipartite system. Throughout this section, we will
emphasize on the TT theory and the geometric structure
associated to it that follows from our analysis. For a CFT,
this analysis can be extended to other partitions via
conformal maps. The main explicit computations are
presented in Sec. IV for a free scalar field in the gravity
dual, where by virtue of the large-N approximation, the
problem with general τ-dependent λ becomes tractable and,
by using thermofield dynamics (TFD) tools, we find the
explicit details of the TT construction in the gravity dual.
The underlying proposal is that holographic methods can
be used to treat some formal as well as quantitative aspects
related with the modular theory. In particular, using the
Banks, Douglas, Horowitz and Matinec (BDHM) recipe,
we compute the excited modular flow for scalar operators
in the field theory from the explicit calculation in the bulk.
In Sec. V we summarize our results and discuss some open
problems. We also include two Appendixes: Appendix A
contains a brief introduction to the relevant aspects and
tools of the TFD formalism and in Appendix B we
explicitly show the extension of our results to a spherical
entangling region using the Casini-Huerta-Myers (CHM)
map [9].

II. EXCITED STATES AND
HOLOGRAPHIC DICTIONARY

In this section we briefly summarize some relevant
properties and known results on excited states in the
holographic context that will be the basis of the present
work. A prescription for holographic states appears in the
Skenderis-van Rees works [38,39] which combines
Lorentzian and Euclidean AdS spacetimes, as being dual
to real and imaginary time pieces of a Schwinger-Keldysh
path in the field theory (e.g., see Fig. 2). Such as in the
Hartle-Hawking (HH) formalism [40], the imaginary time
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intervals describe states, which are connected by evolution
on the real-time intervals. The excited states are deformations
of the vacuum HH state related to nonvanishing asymptotic
(Euclidean) boundary conditions, and have been recently
studied in many different contexts [30,33,35,37,41].

A. Holographic states: Definition
and geometric motivation

Consider a CFT defined by a conformally invariant
action, on a spacetime ðRdþ1; ημνÞ. In the interaction picture
the states defined in [30] have the form

jΨλi≡ Pe−
R
τ<0

dτOðτ;xiÞ·λðτ;xiÞjΨ0i: ð2:1Þ

Here, jΨ0i denotes the vacuum state and τ represents the
Euclidean time, and · denotes integration on the spatial
coordinates on a certain Cauchy surface. The function
λðτ; xiÞ parametrizes the family of states, and can be
arbitrarily chosen on the asymptotic boundary of (a half
of) an Euclidean asymptotically AdS (aAdS) spacetime
(called E−). The objectO is an operator1 of the CFTand the
operation denoted by P denotes the path ordering in the
(imaginary) time. We will often omit the xi dependence of
O and λ. By extending the source λ⋆ðτÞ≡ λð−τÞ to the
region 0 < τ < ∞, one obtains the corresponding “bra,”

hΨλj≡ hΨ0jPe−
R
τ>0

dτOðτ;xiÞ·λ⋆ðτ;xiÞ: ð2:2Þ

According to the Hartle-Hawking construction, if λ is
independent of τ, the states (2.1) can also be thought as
the ground state of a deformed Hamiltonian [34],

H ¼ H0 þ
Z

dxOðx; 0ÞλðxÞ: ð2:3Þ

On the other hand, if the source λ ¼ λðτ; xÞ is vanishing
when τ → 0 and decays to zero as τ → −∞, the state (2.1)
can be interpreted as the result of a (Wick rotated) time
evolution of the fundamental state perturbed by an external
source, i.e., in Schrodinger picture,

jΨλi ¼ UλjΨ0i ¼ Pe−
R
τ<0

dτðHþO:λðτÞÞjΨ0i: ð2:4Þ

This procedure provides excited states of the original
theory [43]. These states are especially interesting in the
context of holography, where there is a precise (non-
perturbative) prescription for the states (2.1) and its
corresponding bra (2.2) in the dual bulk theory:

Ψλ½ϕΣ� ¼ hϕΣjΨλi ¼
Z
Φj∂E−¼λ;ΦjΣ¼ϕΣ

½DΦ�e−S½Φ�: ð2:5Þ

Here E− is an Euclidean spacetime whose metric is locally
AdS on the asymptotic boundary ∂E− ¼ E−, Σ is the
spacelike surface over which the state is defined, and
S½Φ� stands for the bulk gravity action, say for a bulk scalar
field Φ, dual to the scalar (primary) operator O in the CFT
theory. Implicitly this action contains an Einstein-Hilbert
term proportional to G−1

N ∼ N2 that will contribute to the
Ryu-Takayanagi area term, see Sec. IV D. In the present
study we will focus on the subleading (∝ G0

N) terms,
coming from the matter sector and backreaction effects,
that shall describe the quantum corrections to the (bulk)
modular Hamiltonian and entanglement entropies [44]. The
expression (2.5) can be derived from the Skenderis—van
Rees (SvR from now on) proposal [30,38,39], and general-
izes the Hartle-Hawking wave functional of the gravita-
tional vacuum to excited states. In what follows we will
refer to these CFT states (2.1) simply as holographic states.
We want to stress that there is a simple holographic
dictionary that characterize them: Deformations of the
CFT action on the Euclidean times τ < 0 correspond to
deformations of the (Dirichlet) boundary conditions for the
bulk fields on the Euclidean section of the dual aAdS
spacetime. Notice that this rule captures the holographic
correspondence between the Hartle-Hawking vacua of both
(CFT and gravitational) theories in absence of sources
(λ → 0). As a by-product, in the large N limit, as gravity
becomes semiclassical, the vacuum is given by a unique
(classical) Euclidean aAdS spacetime which corresponds to
the CFT vacuum state jΨ0i. This prescription will allow us
to obtain the holographic dual of the modular flow for
arbitrary holographic states and arbitrary regions A of a
Cauchy slice t ¼ 0 of the boundary spacetime ∂E.
Another important feature is that with these kind of states

we can study density matrices and reduced density matrices
in a clean way. Considering (2.1), we can define the density
matrix reduced to the subsystem A as

ρλ½ϕþ;ϕ−�≡ hϕþjρλjϕ−i ¼
Z
λ;ϕ�

DΦe−S½Φ�; ð2:6Þ

where ϕ� ≡ ϕjΣA
, represents two different data on the

surface ΣA. Additionally, we have to impose the asymptotic
conditions Φj∂E− ¼ λ;Φj∂Eþ ¼ λ⋆, and vanishing data for
all the other bulk fields (including the graviton). This
expression is straightforwardly obtained by gluing two
halves of Euclidean AdS on the shaded regions of Fig. 1,
which represents the operation TrΣ̄A

jΨλihΨλj in a path
integral description.
The Ryu-Takayanagi prescription (RT) determines the

entangling surface in the bulk γA, so as the spatial region ΣA
delimited by γA ∪ A. In fact, this formula should be
interpreted in the sense of a perturbative expansion in
the Newton constant GN , so that the surface γA (and ΣA)
remains unchanged by the backreaction effects to each
order. In Sec. IV we will see that this prescription allows to

1Originally in [30] only single trace operators were considered.
Recently, [42] studied the effect of multitrace deformations.
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obtain, at least formally, the holographic dual of the
modular Hamiltonian (and its corresponding modular flow)
for holographic states and arbitrary regions A of a Cauchy
slice t ¼ 0 of the boundary spacetime ∂E.

B. Relation to coherent states in the bulk

It has been stressed that states of this form are holo-
graphic in the sense that correspond to well-defined geo-
metric duals [32,41,45]. One of the most interesting
features of (2.4) is that, by canonically quantizing a (nearly)
free nonbackreacting field Φ in the bulk, these states
become coherent in the large N Hilbert space [30]

jΨλi ∝ e
R

dkλka
†
k jΨ0i; ð2:7Þ

where akða†kÞ are the annihilation (creation) operators
associated to the canonically quantized bulk field Φ̂ and
λk are eigenvalues of ak, given by the Laplace transform of
the Euclidean sources. This result can be achieved by using
the so-called Banks, Douglas, Horowitz and Matinec
(BDHM) prescription that relates the CFT with bulk field
operators [46], i.e., the operators O (2.4) are linearly
expanded in terms of ak, a

†
k.

One can generalize this formalism to other more com-
plex SK paths as we will see below, but the case presented
here captures the essential aspects of this family of excited
states. For example, by working in the thermofield dynam-
ics (TFD) formalism one can extend the definition of these
states also to closed SK paths. This was done in [36,37] and
in what follows we will use some of their results.
An immediate application of (2.7) is that, in the free field

approximation, these states work as generating states since
by simple derivation with respect to the normal modes

components λw we can obtain the expansion in a Fock
basis. Although coherent states are an overcomplete basis,
they are associated to (generate) a complete orthogonal
basis of the Fock space. Schematically,

jΨλi≡
Y
w

e−
jλw j2
2

X
n

ðλwÞnffiffiffiffiffi
n!

p ða†wÞnjΨ0i: ð2:8Þ

The product is on the (positive) frequencies w of the
normal-modes, and λw are the components in the basis of
functions on the Euclidean boundary induced from the
normal-modes in the asymptotic boundary. The remarkable
aspect of this expansion is that formally expresses the
holographic state as a linear combination of operators on
the ground state, that according to the BDHM dictionary
[46], can be translated to the CFT basis of states,
∶ðOwÞn∶j0i, where Ow are nothing but the (normal)
frequency components of the local primaries OðτÞ on
the Euclidean time τ < 0 [30,33,37].

III. MODULAR HAMILTONIAN FOR EXCITED
STATES IN CFT

In this section we will study the modular Hamiltonian in
the excited states introduced in the previous section from a
field theory point of view. In order to do so we will consider
that these states lives in a bigger TFD Hilbert space. In
Appendix A we review TFD definitions and notations that
will be useful. We will start studying the situation where we
can take the subsystem and its complement in an equipartite
way i.e., the same number of operators on each of them. An
example of this is the Rindler wedge, where we can think of
the total Hilbert space as HTot ¼ HL ⊗ HR with AL;R
denoting the algebra of operators on the left (right) wedges,
respectively. But, the situation considered here will be more
general than equipartite systems and then the results can be
extended to any subregion that can be obtained from a
conformal map from the Rindler result. As an example of
this in Appendix B we will follow the CHM map [9] to
obtain the modular Hamiltonian in holographic excited
states for a spherical entangling surface.

A. Results in QFTs for equipartite subsystems

Let us apply the construction reviewed in Sec. II
for a QFT defined on a globally hyperbolic spacetimeM ∼
Σ ×R with a Lorentzian metric η that we assume flat for
simplicity. Consider first the case of an equipartition of the
degrees of freedom in two equal sides Σ≡ ΣL ∪ ΣR, and
the causal domain of both sides are called WL=R respec-
tively. The equipartition requirement is not essential to
study entanglement, but here we are motivated by an
ingredient of the TFD formalism which supposes that
the system described inWL (and the corresponding algebra
of operators) is a copy of the system that lives onWR. In the
Rindler example, the gravity dual has also two wedges

(a) (b)

FIG. 1. A depiction of the computation of TrΣ̄A
jΨλihΨλj in (2.6)

is shown. The figure in the left represents the gluing of the states,
(2.1) and (2.2), by tracing over Σ̄A, the complement of ΣA ⊂ Σ,
shown in dark grey. The CFT external source λ, as well as
conditions ϕ�, provide boundary conditions for the path integral
in the bulk.Theblue line corresponds to the extremal surface γA. On
the right, an example where a ζ Killing vector that runs as an angle
from Σ−

A to Σþ
A pivoting around the blue point γA is shown. All but

radial and euclidean time coordinates have been suppressed.

ARIAS, BOTTA-CANTCHEFF, MARTINEZ, and ZARATE PHYS. REV. D 102, 026021 (2020)

026021-4



connected by the horizon of a black hole, but there are also
examples where each side could be compact and discon-
nected to each other, e.g., ΣL=R ∼ Sd−1, which is holo-
graphically related to an extended black hole geometry
[36,37,47]. The results of this section apply to both
possibilities. If we consider the algebra of operators A
restricted only to one wedge, say WR, all the expectation
values in a pure state jΨλi can be computed through a
reduced density matrix ρλðRÞ by

TrRfρλðRÞOðX1ÞOðX2Þ…OðXnÞg
¼ hΨλjOðX1ÞOðX2Þ…OðXnÞjΨλi; ∀ Xi ∈ ΣR: ð3:1Þ

The vacuum state (λ ¼ 0) is thermal with respect to the
Hamiltonian K0ðRÞ≡ − log ρ0ðRÞ, that coincides with
the generator of the time translations for accelerated
observers [8].
In the context of the present work, it will be useful to

consider the symmetric Schwinger-Keldysh (sSK) formal-
ism and the extension of the Rindler time parameter to a
closed time contour C in the complex plane [36,37]. The left
wedge of the Minkowski spacetime WL can be identified
with the backwards real-time component of the SK contour
and the corresponding algebra of operators with Ã, the
commutant of A. The initial (and final) pure global state is
described by the Euclidean intervals, see Fig. 2. The
symmetric SK path shown in Fig. 2(a), that involves two
imaginary path of equal length β=2 is equivalent to the TFD
formalism [48–52].

Denoting Xμ ∈ WR any point of the right wedge on the
Rindler spacetime and using the notation X0 ≡ t and
Xd ≡ r, the flat metric in conventional Rindler coordinates
writes

ds2 ¼ −
r2

R2
dt2 þ dr2 þ dXidXi; i ¼ 1…d − 1 ð3:2Þ

and then, the modular flow for the vacuum state is

e−isK0ORðXμÞeisK0 ≡ORðγμðsÞÞ¼ORðr;Xi; tþ sÞ; ð3:3Þ
with γðtÞ denoting the curve referred as geometric flow and
OR ∈ WR. Therefore a constant t defines a particular
foliation of WR in surfaces ΣRðtÞ that are homologous to
ΣR. We will compute the modular Hamiltonian Kλ for a
thermal (in the sense mentioned before) excited state using
the tools and ingredients of the TFD formalism, explained
in Appendix A.
The evolution operator in this case is generated by the

CFT Hamiltonian H ≡ K0 slightly deformed by external
(local) sources λðx; τÞ. The operatorsU� on both imaginary
time intervals, univocally describe the initial/final excited
states in terms of λ [37]:

Uλ ≡ Pe
−
R
I−

dτðK0þO:λðτÞÞ
; ð3:4Þ

where the Euclidean time τ runs on the interval
I− ≡ ð−β=2; 0Þ, that alongside Iþ ≡ ð0; β=2Þ completes a
(not closed) circle S1β of radius β. In the context of TFD
these operators are equivalent to pure states, rearranged as
kets in the duplicated space.
Therefore, the global state is given in terms of this

operator by [36] (see Appendix A)

jΨλi≡ ðUλ ⊗ IÞj1⟫ ¼ ðI ⊗ UλÞj1⟫ ¼ Uλj1⟫; ð3:5Þ
and one can define an Hermitian (reduced) density
matrix as

ρλ ≡ TrÃjΨλihΨλj ¼ TrÃUλj1⟫⟪1jU†
λ ¼ UλU

†
λ ; ð3:6Þ

where we have used

TrÃj1⟫⟪1j ¼
X
n

jnihnj ¼ IA: ð3:7Þ

These expressions explicitly show the connection between
the pure state (3.5) in the TFD setup and the mixed density
matrix (3.6) in a single Hilbert space, both univocally
determined by the evolution operator Uλ. Notice also that
we can move the operatorUλ back and forth between L and
R when applied to j1ii. This will be a key property of the
states (3.5) in our work. The main result of this section is
that for a thermal excited state (3.5) one can find that
the reduced density matrix and modular Hamiltonian on
WR are

(b)(a)

FIG. 2. (a) Closed symmetric Schwinger-Keldysh (sSK) path in
the complex t-plane. The horizontal lines represent real time
evolution. The vertical lines give imaginary time evolution, and
the intervals I� have identical lengths equal to β=2. The insertion
of sources in the vertical lines generate excitations over the
(vacuum) thermal state. (b) The radial Rindler coordinate is
shown so that one can see that the L and R pieces are connected.
Sources λ� are turned on in the corresponding Euclidean regions
E�. Notice that the red point in (a) is now a red line, representing
a spacelike Σ surface. The black arrow represents the path
ordering of the operators given by P, according to the parameter
of the curve (θ); it should not be confused with the time direction;
for instance on the right side, the time parameter grows against
the sense of the arrow (recall that T− < Tþ).
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ρλ ¼ Pe−
R
S1

dτðK0þO:λðτÞÞ

Kλ ¼ − lnðρλÞ ¼ − lnfPe−
R
S1

dτðK0þO:λðτÞÞg ð3:8Þ

Although this is nonlocal by virtue of the integration on the
interval S1, it has a very simple form. Using Eq. (3.6) this
result can be rephrased as

ρλ ¼ Uλð−π; πÞ ð3:9Þ

where the right-hand side (rhs) is the evolution operator
valued on a imaginary time interval that covers the
complete circle S1, provided that the source satisfies
λðτÞ ¼ λð−τÞ.
Recall that this captures all the excited states of the

Hilbert space (often referred to as the vacuum sector of
the Hilbert space [2]) defined as H0 ≡Aj0i, see (2.8). The
holographic dual of this space is the Fock space associated
to quantized fields in the bulk spacetime [46,53]. So, for
instance, the unnormalized reduced density matrix corre-
sponding to a single-particle state created at the point
ð−iτ; XÞ ∈ E− (0 ≤ τ ≤ π), is

ρ1 ¼ U0ð−iπ;−iτÞOð−iτ; XÞU0ð−iτ; 0Þ
×U0ð0; iτÞOðiτ; XÞU0ðiτ; iπÞ

¼ eðτ−πÞK0Oð−iτ; XÞe−2τK0Oðiτ; XÞeðτ−πÞK0 ð3:10Þ

where Xμ ≡ ð−iτ; XÞ denotes a point on the surface
ΣRð−iτÞ of the foliation of E−. This expression can be
derived from (2.8), (3.5), and (3.6) since in the sSK
extension of the Rindler spacetime, the pure state writes2

jΨ1i ¼
δjΨλi

δλðτ; XÞ
����
λ¼0

¼ U0ð−iπ;−iτÞOð−iτ; XÞU0ð−iτ; 0Þj1ii ð3:11Þ

and using that O†ð−iτ; XÞ ¼ Oðiτ; XÞ and U†ðiτi; iτfÞ ¼
Uð−iτf;−iτiÞ. In a CFT, expression (3.10) for the unnor-
malized density matrix can be generalized to any other
region conformally related to the Rindler wedge, say D: a
ball shapped region (see Appendix B), by inserting the
(conformal) prefactor Ω−Δðxð−iτÞÞΩ−ΔðxðiτÞÞ. Here xðiτÞ
denotes the geometric flow in the transformed space D,
such that xð0Þ stands for the conformal map of the point
ð0; XÞ ∈ ΣRð0Þ. Systematically, one could follow the same
procedure for the nth-order in a Taylor’s expansion in λ.
The main expressions (3.8)–(3.9) are nonperturbative

result in the sense that holds for any λ. Upon completion of
this work, we became aware of [54], where the authors did
a perturbative analysis (similar to the first order (3.10) of

this result to compute the modular Hamitonian in the
states jΨλi.
A special case to be considered is whether the source λ

does not depend on τ. Thus, since the path ordering play no
role, the (local) modular Hamiltonian on WR results

Kλ ≡ 2πðK0 þO · λÞ

¼ K0 þ
Z
ΣR

λðXÞOðXÞ ffiffiffiffiffiffiffi
gΣR

p
dXd−1; ð3:12Þ

where K0 can be expressed in terms of the energy-
momentum tensor, the (timelike) Killing vector τμ and
the unit nμ future pointing normal to ΣR,

K0 ¼
Z
ΣR

Tμνnμτν
ffiffiffiffiffiffiffi
gΣR

p
dXd−1: ð3:13Þ

Finally, it is worth noticing that in the Rindler spacetime,
the modular flow generated by Δis is naturally related to
the sSK complexification of the evolution parameter in the
extended geometry of Fig. 2. In fact, let us consider the
formula for a (initial) global state (3.5)

jΨλi≡ ðUλð−iπRÞ ⊗ IÞj1ii ð3:14Þ

such that the modular Hamiltonian coincides with the
generator of boosts and writes as (3.12). For accelerated
observers it generates the time translations and the state lies
on the surface corresponding to T− (see Fig. 3); on the other
hand the same state, lying on the Cauchy surface with
modular parameter T− þ s, also obeys (3.14) and writes as

jΨλðsÞi≡UλðsÞUλð−iπRÞUλð−sÞj1ii; ð3:15Þ

since as shown in Fig. 3, the operator Uλ composes a boost
rotation by s of ΣR with a (Euclidean) rotation in iπR, and
then with a boost by −s. Using the tilde conjugation and
the TFD rules we can see that the modular evolution is
realized by

FIG. 3. Upon building the modular Hamiltonian via an
Euclidean path integral, the picture shows its evolution on the
L/R wedges given by the operator Δis.2For a n-particle state we have to take n derivatives.
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jΨλðsÞi ¼ UλðsÞŨλðsÞUλð−iπRÞj1ii
¼ eisðK̃λ−KλÞjΨλi ¼ ΔisjΨλi;

⇒ Δ≡ eK̃λ−Kλ : ð3:16Þ

An important remark is that this modular flow is related
to a complexified geometric flow in Eq. (3.3), where
γμðs → θÞ and θ ∈ C is the complex parameter of the
closed symmetric SK path of Fig. 2 which describes a
closed curve that intersects ΣRðtÞ only in the point Xμ. The
union of all these curves covers completely the sSK
geometry of Fig. 2(b): WC. In fact, the modular flow can
evolve the local operators along these curves according to

Oðr; Xi; tþ θÞ≡ e−iθK0OðXμÞeiθK0 θ ∈ C; Xμ ∈ ΣðtÞ
ð3:17Þ

and defines a sort of extension of the operator algebra
AðWRÞ, to local operators on all the points of WC.

3 Then
the Tomita-Takesaki theory might be interpreted as a
constraint, relating these operatorsO with certain operators
Õ of the commuting algebra Ã when they act on a specific
state. This point of view will become more precise in what
follows.

B. TFD formalism and the Tomita-Takesaki theory
for holographic states

The TFD formalism can be applied to study the
entanglement in systems separated in two identical sub-
systems and reduced to one of them, such as the vacuum of
a QFT on a Rindler spacetime (or a black hole [36,37])
reduced to a wedge X1 ≥ 0.
According to this formalism, the condition that defines

the (thermal) ground state and fixes the Bogoliubov trans-
formation that relates this state with the (disentangled)
vacuum of inertial observers [50,51], is usually expressed
as a constraint on the fields,O ∈ A for an initial time t [37],

ðÕðX̃; tÞ −O†ðX; t − iβ=2ÞÞjΨ0i ¼ 0; ð3:18Þ

where ÕðX̃Þ≡ gOðXÞ is defined by the tilde conjugation
rule [50], see Appendix A. In the Rindler space, this
represents the field in the algebra Ã of operators on the left
wedgeWL.

4 This is known as the thermal state condition in
the TFD context [50,51], and in particular has been studied
in spacetimes with event horizons, and interpreted as the
quantum/operator formulation of the Unruh-trick [37], see
discussion in IV C 1. The geometric interpretation of this

equation is that, in the state jΨ0ðtÞi, the field on the right
can be related to the left ones by an analytically continued
time evolution in iβ=2.
Then, by identifying the tilde conjugation with the action

of the operator J of the polar decomposition (1.3), and
taking

Δ1=2 ≡U0ðiβ=2Þ ⊗ Ũ0ð−iβ=2Þ ¼ e−βðK0−K̃0Þ=2 ð3:19Þ

and jΨ0ðtÞi given by (3.5) with λ ¼ 0 it can be verified that
(3.18) is equivalent to the Tomita-Takesaki relation

SOjΨ0i ¼ O†jΨ0i ð3:20Þ

which, being jΨ0i cyclic and separable (see Appendix A),
guarantees that the operator Δit ≡ ðSS†Þit defines the
modular flow in the vacuum state jΨ0i. Therefore, we have
shown with this simple example that in some cases, we can
translate the Tomita-Takesaki theory to the TFD analysis,
and interpret Eq. (3.20) as a constraint defining a state.
Our main statement in this section is that the TFD

constraint (3.18) can be generalized to excited states as [37],

ðÕðX̃; tÞ−Uλð−iβ=2ÞO†ðX;tÞUλðiβ=2ÞÞjΨλi¼ 0: ð3:21Þ

Thus, if we defineΔ1=2
λ by substitutingU0 → Uλ in (3.19) it

can be verified that

SλOjΨλi ¼ O†jΨλi; ð3:22Þ

with

Sλ ≡ JΔ1=2
λ ; Δλ ¼ ρ−1λ ⊗ ρλ: ð3:23Þ

Notice that J remains unchanged under the deformation.
This follows from the fact that the deformation can be
equivalently created by operators acting only on either side
of the d.o.f splitting, see (3.5). A more explicit derivation
of this result is presented in Sec. IV B. This type of
deformations are known to preserve the J operator and
are contained in what is called the “standard cone,” see [1].
From a TFD perspective, the formalism naturally admits
excited states, see [55,56] for example, without deforming
the tilde map between the duplicated theories.
Let us see, for instance, that this constraint is trivially

satisfied for the (holographic) excited states constructed
with a time-independent source λ≡ λðXÞ, in an arbitrary
QFT. In this case themodularHamiltonianwrites, see (3.12),

K0 → Kλ ≡ K0 þ
Z
ΣR

dXd−1λðXÞOðXÞ: ð3:24Þ

and, because of the Bisognano- Wichmann theorem [8],
the time evolution coincides with the modular evolution
generatedby this operator.Consequently, the state defined as

3On the other hand, one also have an extension associated to
the commuting algebra Ã.

4Formally, they are obtained by applying a CPT, composed
with a particular rotation in a π angle, on the fields O, see [2].
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jΨλi ¼ Uλð−iβ=2Þj1ii ¼ e−βKλ=2j1ii ð3:25Þ

is the new TFD-vacuum for the deformed Hamiltonian
(3.24), although it is an excited state of the original
(undeformed) theory. In other words, the constraint (3.21)
reduces to (3.18).
Wewould like to close this section by pointing out that in

CFT, this construction can be straightforwardly extended to
regions bounded by a sphere through the CHM map, or
regions conformally related to a Rindler wedge.
We emphasize that the computations done so far in this

section are on QFTand hold for arbitrary coupling constant
and N. In this sense our results are nonperturbative.
However, when λ depends on τ it is difficult to prove that
the equation (3.21) is satisfied by the objects identified in
(3.22). There are two scenarios where this can be done
explicitly. In the first case one may consider a perturbative
expansion of the QFT to a fixed order in the coupling
constant, thus proving the statement in a weakly coupled
regime. The second setup would be that of a strongly
coupled (large N) CFT such that a holographic description
is available. This again allows an expansion for single trace
CFT operators, but this time in terms of the bulk ladder
operators, see [46,53]. In the next section wewill follow the
latter approach and compute the dual modular Hamiltonian
to Kλ in the bulk in the large N limit, where we will be able
to provide more explicit results.

IV. THE GRAVITY DUAL OF THE MODULAR
HAMILTONIANS AT LARGE N

In the previous section we were computing the modular
Hamiltonian and modular flows for the particular excited
states introduced in Sec. II from a QFT point of view. We
concluded that the result can be written as (3.8) for an
equipartite subsystem and (B2) for the spherical entangling
surface. But, we cannot ensure that this result is the one
related to the modular operator Δ of the TT theory in the
general casewith explicit τ-dependence of the source λ. In the
present section we will use the fact that we know the precise
holographic dual of the state (3.8) and of the condition (3.18)
to show that it satisfies theTTconstraint in thebulk. Then,we
will see in this way that the modular Hamiltonian computed
in the previous section in the context of a CFT is the one
associated with Δ in the strong coupling limit of the field
theory.Wewill also provide explicit examples of themodular
flow induced by our excited modular Hamiltonians on both
sides of the duality.Wewill conclude the section mentioning
how we can explicitly compute matrix elements of modular
Hamiltonians for the excited states using the JLMS proposal.

A. Expected results

The cases that we have studied can be considered
dual to spacetimes with a Killing vector in the bulk:
ζμ ¼ ∂μ=∂t, such as AdS-Black Holes, Rindler-AdS, or

isometric mappings of these spaces (e.g., regions whose
asymptotic boundaries are ball-shaped [9,57]). In these
cases, ζ is bifurcating on the entangling surface, given by
the RT recipe (see [9]). Therefore, according to the
prescription discussed in Sec. III, the expectation is that
the (bulk) modular flow shall also be determined by
the Euclidean evolution operator Ubulkð0; i2πÞ, but the
λ-deformations shall be described as no vanishing
Dirichlet asymptotic BCs on the bulk fields [30,33,37].
In the following analysis of the bulk theory we will

assume a large N approximation, which in particular,
supposes nonbackreacting and weakly coupled QFT in
the gravity side, i.e., the existence of ladder operators. For
simplicity we will also consider a real scalar field Φ.
The canonical Hamiltonian H ¼ HðΦ;ΠÞ, derived from

theactionS½Φ�, is the operator that generates the t-translations
on the entanglement wedge (see red lines in Fig. 4). Thus, for
the vacuum state λ ¼ 0 one can write (2.6) as

ρ0½ϕþ;ϕ−�≡ hϕþje−2πHjϕ−i; ð4:1Þ

and so the modular Hamiltonian in this case is simply
K0 ≡ 2πH, and the modular flow will be defined by

UðtÞ ¼ e−2πitH: ð4:2Þ

The simple form of the holographic formula (2.6) suggests an
ansatz for holographic excited states defined by nontrivial

FIG. 4. The figure shows a subregion A of a system defined
on the white plane and its causal diamond, as well as its
entanglement wedge inside its holographic dual. Assuming a
bulk timelike killing vector ζ, whose flows are shown in red, one
can define the spacelike surfaces ΣA. The blue lines are the flows
that live on the boundary.
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asymptotic conditions on the Euclidean sections of the
spacetime. Thus, we expect that at large N, the backreaction
is negligible and the Killing vector remains ζμ, and thus Kλ

will depend on λ in the following way

Kλ ∝ H½ϕþ fλ; π − ∂tfλ� ð4:3Þ

where fλ is a particular solution of the classical e.o.m.
satisfying nonvanishing asymptotic boundary conditions
ðλ; λ⋆Þ ¼ fλj∂E on the Euclidean pieces of the spacetime.
This is nothing but the canonical Hamiltonian under the
substitution ϕ → ϕλ ≡ ϕþ fλ in the action.
Although the explicit computation will be done later, a

simple path integral argument for it is that this field
redefinition transforms the expression (2.6) to

ρλ½ϕþ;ϕ−�≡ hϕþjρλjϕ−i≡ hϕþjPe−
R

2π

0
dτHλ jϕ−i

¼
Z
λ¼0;ϕ�

½DΦ�e−S½Φþfλ�; ð4:4Þ

where the sum is over fields Φ with vanishing asymptotic
b.c.s. So this can be thought as a new theory that under
certain conditions, in particular at large N, does not break
the time-translational symmetry and the Hamiltonian
canonically derived from the action S½Φþ fλ� coincides
with (4.3). Furthermore, it would generate the modular/
dynamic flow in the bulk, and (4.4) can be expressed as

ρλ ¼ e−2πHλ ð4:5Þ

Thus, one can show this ansatz by interpreting the above
substitution as a canonical transformation of the fields (and
its canonically conjugated momenta), one can see that the
equations of motion

∂tϕλ ¼ i½Hλ;ϕλ�; ∂tπλ ¼ i½Hλ; πλ� ð4:6Þ

are preserved, as the fields are promoted to operators
according to the rule

½ϕλðx1Þ; πλðx2Þ� ¼ iδ1;2 x1;2 ∈ Σ: ð4:7Þ

Then, the quantization of this theory in the Heisenberg
picture consists in finding the general solution to the
equations (4.6) (while the state keep the same) provided
(4.7). Assuming that ϕ is the most general solution of the
problem with vanishing (asymptotic) boundary conditions,
e.g., at large-N approximation, it is a linear combination of
the normalizable modes. Therefore, ϕλ, πλ is nothing but
the most general field (solution) of the equations of motion,
and the condition (4.7) is automatically satisfied, by
demanding that the particular solution fλ be a c-number.
Then, the time-evolution for any operator Aðϕλ; πλÞ of

the theory is given by

AðtÞ ¼ eitHλAð0Þe−itHλ ð4:8Þ

and in particular

ϕðtÞ ¼ eitHλϕð0Þe−itHλ − ðfλðx; tÞ − fλðx; 0ÞÞ ð4:9Þ

πðtÞ ¼ eitHλπð0Þe−itHλ − ð _fλðx; tÞ − _fλðx; 0ÞÞ ð4:10Þ

Then (4.3) is the modular Hamiltonian corresponding to the
excited (holographic) state jΨλi, since it generates the
modular flow. We will see in Sec. IV B that by virtue of
large-N approximation, the field equations can be assumed
to be linear, and then one can exactly consider the canonical
quantization.

B. Tomita-Takesaki formalism in the bulk

Here we will give the proof in the bulk of the formulae
derived in Sec. III B for the modular Hamiltonians for the
excited states. The central point of the argument resides
again in the relation between TFD and Tomita-Takesaki
theory. Starting from the TFD vacuum thermal equilibrium
condition, we will show explicitly how to map it to the
Tomita-Takesaki equation and how to extract the exact Δ0

and J. From there, we will deform the original thermal
equilibrium condition to include the holographic excited
states but we will still be able to perform the mapping to the
Tomita-Takesaki equation. Thus, we will be able to identify
the excited Δλ and J for the bulk theory.

1. From TFD to Tomita-Takesaki: Vacuum state

We will extract from the thermal state condition of the
TFD vacuum state both the modular and J operators. We
start from the bulk analog of (3.18),

ðΦRðtÞ−ΦLðt− iβ=2ÞÞjΨ0i
¼ðΦRðtÞ−U0ð−iπ;0ÞΦLðtÞU0ð0;iπÞÞjΨ0i¼0; ð4:11Þ

and show that this can be rewritten as [cf. with (1.2)]

SΦRðtÞjΨ0i ¼ Φ†
RðtÞjΨ0i ¼ ΦRðtÞjΨ0i; ð4:12Þ

where we have used the fact that the fieldsΦ are Hermitian.
Recall that the TFD formalism readily provides an anti-
unitary tilde operation which map the operators from R to L
and vice-versa, Φ̃RðtÞ ¼ ΦLðtÞ and Φ̃LðtÞ ¼ ΦRðtÞ. This
can be represented as an operator J ¼ J−1 such that
Φ̃RðtÞ≡ JΦRðtÞJ−1 ¼ ΦLðtÞ. Notice that J does not fac-
torize into L and R pieces. The specific form of J is
however not important for our purposes but the interested
reader can see [2] for details.
The central piece of this argument is the fact that one can

build the TFD vacuum out of an operator with support only
on one of the sides, i.e.,U0ð0;−iπÞ, on the identity operator
j1ii introduced before, see Appendix A,
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jΨ0i≡U0ð0;−iπÞ ⊗ Ij1ii ¼ I ⊗ U0ð0;−iπÞj1ii: ð4:13Þ

This is a consequence of the Reeh-Schlieder theorem [58], and the highly entangled nature of the vacuum, manifestly
expressed in the state j1ii.
We now demonstrate the connection between (4.11) and (4.12) starting from a more explicit version of (4.11)

I ⊗ ΦRjΨ0i ¼ ðU0ð−iπ; 0ÞΦLU0ð0; iπÞÞ ⊗ IjΨ0i
¼ ðU0ð−iπ; 0ÞΦLU0ð0; iπÞ ⊗ IÞðI ⊗ U0ð0; iπÞU0ð−iπ; 0ÞÞjΨ0i
¼ ðU0ð−iπ; 0Þ ⊗ U0ð0; iπÞÞðΦL ⊗ IÞðU0ð0; iπÞ ⊗ U0ð−iπ; 0ÞÞjΨ0i
¼ ðU0ð−iπ; 0Þ ⊗ U0ð0; iπÞÞJðI ⊗ ΦRÞJðU0ð0; iπÞ ⊗ U0ð−iπ; 0ÞÞjΨ0i
≡ Δ−1

2JðI ⊗ ΦRÞJΔ1
2jΨ0i

¼ SðI ⊗ ΦRÞSjΨ0i ¼ SðI ⊗ ΦRÞjΨ0i; ð4:14Þ

where in the second linewe inserted I¼U0ð0;iπÞU0ð−iπ;0Þ
and in the last equality we used SjΨ0i ¼ JΔ1

2jΨ0i ¼ jΨ0i
which is trivial if S is the correct Tomita operator, but
from our perspective this is still left to prove. Actually, in
order to meet the Tomita-Takesaki theorem conditions, we
need to prove both Δ1

2jΨ0i ¼ JjΨ0i ¼ jΨ0i independently.
The condition on J follows trivially from the fact that

U0ð−iπ; 0Þ ¼ e−
β
2
H, where H is an Hermitian Hamiltonian

which can be diagonalized with real eigenfunctions and the
fact that it acts trivially on j1ii by definition. The demon-
stration then follows as

JjΨ0i ¼ JU0ð0;−iπÞ ⊗ Ij1ii ¼ ½JðU0ð0;−iπÞ ⊗ IÞJ�Jj1ii
¼ I ⊗ U0ð0;−iπÞj1ii ¼ jΨ0i: ð4:15Þ

Notice that the operator J is antiunitary, butU0ð0;−iπÞ ∈ R
is a Wick rotation an analytical extension of a unitary
evolution operator. It is also immediate to show

Δ1
2jΨ0i ¼ ðU0ð0; iπÞ ⊗ U0ð−iπ; 0ÞÞðU0ð−iπ; 0Þ ⊗ IÞj1ii

¼ I ⊗ U0ð0;−iπÞj1ii ¼ jΨ0i; ð4:16Þ

which completes the demonstration. Note that (4.13) was
crucial.

2. TFD to Tomita-Takesaki: Excited states

Once proven for the vacuum, we will consider the
holographic excited states,

jΨλi≡Uλð0;−iπÞ ⊗ Ij1ii ¼ I ⊗ Uλð0;−iπÞj1ii: ð4:17Þ

Note that the state admits two equivalent ways of defining it
via operators acting only on either L or R. One could
readily argue that the J operation should not be deformed,
see discussion below (3.22).

The constraint on the excited state is

½ΦRðtÞ − Uλð−iπ; 0ÞΦLðtÞUλð0; iπÞ�jΨλi ¼ 0; ð4:18Þ

which will lead to

SλΦRðtÞjΨλi ¼ Φ†
RðtÞjΨλi ¼ ΦRðtÞjΨλi;

Sλ ≡ JΔ
1
2

λ ¼ Δ−1
2

λ J ð4:19Þ

where we have used again Hermiticity of the fields Φ.
The demonstration of (4.19) from (4.18) follows as in

(4.14). As before, one has to prove that

SλjΨλi ¼ JjΨλi ¼ Δ
1
2

λjΨλi ¼ jΨλi; ð4:20Þ

which also follow analogously from the vacuum compu-
tation. This completes the demonstration.
As a summary, the main result is that for the set of excited

states and systems described above, we get a closed
expression for the modular operator, which can bewritten as

Δλ ¼ ρ−1λ ⊗ ρλ; hϕþjρλjϕ−i¼
Z

DΦλ;ϕ�e
−SE½Φ�:

Notice again that the theory is undeformed, and only
the boundary conditions are affected. From here we can
compute a reduced modular Hamiltonian, which coincides
with the one found in [59,42] for these type of states at first
order in 1=N.
To conclude this subsection we observe that, once (4.20)

is known, one can also obtain the modular operator for any
other (that can be nonequipartite) subsystems connected to
(4.20) via an isometry of AdS. Since we are considering an
excited state, both the region and the state are affected by
the transformation. As the excited states are created by a
perturbation localized only on one the subsystems, the AdS
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isometries will still map the deformation inside of the
transformed subsystem.

C. Computing the bulk modular Hamiltonian
and bulk modular flow at large N

Consider an equipartite bulk spacetime with a Killing
vector ζμ, which is bifurcating on the entangling surface,
and it is holographically dual to the Rindler spacetime
studied in the previous sections. We can describe this with
the following metric:

ds2 ¼ −u2dt2 þ du2

1þ u2
þ ð1þ u2Þðdχ2 þ sinh2 χdΩ2

d−2Þ
ð4:21Þ

where the coordinate y≡ ðχ;Ωd−2Þ involves a noncompact
component χ, while Ωd−2 describes a (d − 2)-sphere. The
holographic coordinate u can be extended to take all the
real values (e.g., [60]); thus u > 0 stands for the wedge that,
after a suitable change of coordinates: u2 → u2 − 1, is dual
to the a hyperbolic cylinder on the boundary [57], that can
be conformally mapped to a ball shaped region, or to one of
the two wedges of the flat Rindler spacetime [9]. Figure 4
illustrates how the Killing vector ζ≡ ∂t, asymptotically
coincides (up to a conformal map) with the vector ∂t of the
boundary metric (3.2). The sSK extension of this geometry
is similar to Fig. 2, but the theory here is to be sourced by a
Dirichlet BC at the asymptotic boundary of the euclidean
regions ∂E�, see Fig. 1(b).
Consider a canonically quantized free scalar field Φ in

the bulk. This is essentially the behavior of all the fields of
the bulk theory in the large N approximation. The general
solution on the entanglement wedge (one of the two sides
of the bulk spacetime, say u > 0) writes

Φðu; y; tÞ ¼
X
n

a†nϕnðu; y; tÞ þ H:c: ð4:22Þ

The eigenfunctions ϕnðu; y; tÞ are assumed to be an
orthonormal basis of the space of (positive energy) sol-
utions of the e.o.m., and the subindex n collectively denote
its quantum numbers.
The global state in the bulk theory, can be computed

through the formula

jΨλi ¼ Uλð0;−iπÞj1ii ð4:23Þ

where Uλð0;−iπÞ is the (Euclidean) evolution operator in
the Schrödinger picture. A convenient trick is to transform
this to the interaction picture, in which the state can be
expressed as

jΨλi ¼ DðλÞjΨ0i ¼ DðλÞe−πHj1ii; ð4:24Þ

where DðλÞ ¼ Q
n DðλnÞ is the (unitary) displacement

operator such that DðλnÞanD†ðλnÞ ¼ an þ λn. Then using
(3.6) we get

ρλ ¼ DðλÞρ0D†ðλÞ ¼ DðλÞe−2πHD†ðλÞ; ð4:25Þ
which is nothing but a thermal coherent state. By express-
ing the Hamiltonian as K0 ≡ 2πH ¼ 2π

P
n wn∶ana

†
n∶ and

certain algebraic work using the BCH formulas one obtains

ρλ ¼ e−2πHλ ; ð4:26Þ

where

Hλ ¼ DðλÞHD†ðλÞ ¼
X
n

wnDðλnÞ∶ana†n∶D†ðλÞ

¼
X
n

wn∶ðan þ λnÞða†n þ λ�nÞ∶: ð4:27Þ

Here we stand for λ the decomposition of the source in
(Euclidean) normal modes [30,37]

λn ≡ lim
juj→∞

uΔ
Z
ΣR

dy
Z

π

0

dτλðy; τÞϕnðu; y;−iτÞ; ð4:28Þ

This is the expected expression (4.3) in terms of the
frequency components of the fields and momenta, and the
displacement operator realizes the canonical transformation
in these variables. In fact, one of the results of the present
analysis is that, at large N, the holographic excitations
consist of a family of canonical transformations, para-
metrized by the holographic source λðy; τÞ. It is worth
emphasizing that here, the source λ can depend arbitrarily
on the coordinates of the half Euclidean boundary ∂E−.
Note that the map

H → Hλ aλ ≡ aþ λ a†λ ≡ a† þ λ�; ð4:29Þ
is a canonical transformation. The label n for each normal
frequency mode from (4.28) is left implicit. One can verify
that the canonical commutation relations are preserved for
the new set of ladder operators and therefore, the e.o.m. for
the Heisenberg operators are

_aλ ¼ ½aλ; Hλ� ¼ waλ; _a†λ ¼ ½a†λ ; Hλ� ¼ −wa†λ : ð4:30Þ

Here we stand for λ the decomposition of the source in
(Euclidean) normal modes, Eq. (4.28). Since the parameter
of the evolution generated by Hλ is often called s, from
(4.30) one gets the equations of evolution

i
daλ
ds

¼ waλ; i
da†λ
ds

¼ −wa†λ ; ð4:31Þ

which can be integrated to obtain the explicit modular
evolution
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aλðsÞ≡ e−isHλðaλÞeisHλ ¼ eiswaλ

a†λðsÞ≡ e−isHλða†λÞeisHλ ¼ e−iswa†λ : ð4:32Þ

Define the (deformed) field operator as

Φλðu; y; 0Þ≡DðλÞΦðu; y; 0ÞD†ðλÞ ð4:33Þ

¼
X
n

DðλnÞa†nD†ðλnÞϕnðu;y;t¼0ÞþH:c:

ð4:34Þ

¼
X
n

ða†nþλ�nÞϕnðu;y;t¼ 0ÞþH:c: ð4:35Þ

¼
X
n

ða†λÞnϕnðu; y; 0Þ þ H:c:; ð4:36Þ

therefore, we can compute the s-evolution of this operator

ρisλ Φλðu; y; 0Þρ−isλ

¼
X
n

e−isHλða†λÞneisHλϕnðu; y; t → sÞ þ H:c:; ð4:37Þ

that by virtue of (4.32), takes the form:X
n

ða†λÞne−iswnϕnðu; y; 0Þ þ H:c:

¼
X
n

ða†n þ λ�nÞϕnðu; y; sÞ þ c:c:

¼ Φðu; y; sÞ þ fλðu; y; sÞ; ð4:38Þ

where

Φðu; y; sÞ≡X
n

a†nϕnðu; y; sÞ þ H:c:

fλðu; y; sÞ≡
X
n

λ�nϕnðu; y; sÞ þ c:c: ð4:39Þ

Φðu; y; sÞ is the canonically quantized field as the time
coordinate t is interpreted as the parameter s, and fλðu; y; sÞ
is the solution of the classical e.o.m. on the entanglement
wedge, with asymptotic boundary conditions ðλ; λ⋆Þ on ∂E
and 0 otherwise (see Fig. 2).
On the other hand, from (4.33) notice that

Φλðu; y; 0Þ ¼ Φðu; y; 0Þ þ fλðu; y; 0Þ; ð4:40Þ

thus,

e−isHλΦλðu; y; 0ÞeisHλ

¼ e−isHλΦðu; y; 0ÞeisHλ þ fλðu; y; 0Þ: ð4:41Þ

Comparing finally with (4.38), we obtain the modular
evolution of the original field

e−isHλΦðu; y; 0ÞeisHλ

¼ Φðu; y; sÞ þ fλðu; y; sÞ − fλðu; y; 0Þ ð4:42Þ

¼ ΦðγμðsÞÞ þ fλðγμðsÞÞ − fλðγμð0ÞÞ ð4:43Þ

where _γμðsÞ≡ τμ is the timelike Killing vector of
the AdS-Rindler spacetime. In these coordinates γμðsÞ ¼
ðu;y;tþ2πsÞ. This result resembles the one obtained in [29]
in the axiomatic quantum field theory context on flat
spacetime, but the nontrivial fact here is that, because of
holography, fλðu; y; sÞ is the (unique) classical solution to
the boundary problem schematically described in Fig. 2.
Finally, it is worth emphasizing that by virtue of the

BDHM prescription [46]:

Oðy; 0Þ ¼ lim
u→∞

jujΔΦðu; y; 0Þ ð4:44Þ

and by assuming the holographic duality between the
(QFT/bulk) modular flows, one can compute the modular
evolution of operators OðsÞ ∈ A in the dual CFT by

Oðy; sÞ ¼ lim
u→∞

jujΔe−isKλΦðu; y; 0ÞeisKλ ; ð4:45Þ

that in the case studied here (at the large N) gives:

Oðy; sÞ ¼ lim
u→∞

jujΔΦðu; y; sÞ
þ lim

u→∞
jujΔ½fλðu; y; sÞ − fλðu; y; 0Þ�: ð4:46Þ

Notice that the last terms do not vanish in the u → ∞ limit.
This (radial) limit generates a set of operators that are
included in the boundary algebra A.
We would like to conjecture that the formula (4.45), to

compute the modular evolution of operators in a holo-
graphic field theory from its gravity dual, has general
validity for arbitrary regions A and states (see discussion of
Sec. IV D).

1. An explicit example of modular flow and
Tomita-Takesaki theory in AdS2+ 1=CFT1 + 1

This section is devoted to solving the normal modes of a
scalar field in AdS2þ1-Rindler exactly, and compute the
modular flow expressed in Eq. (4.46) for some particular
examples of excited states. Moreover, we will show the
realization in this explicit example of the Tomita-Takesaki
construction and its relation with the constraints (4.11) and
(4.18) for an excited state. The results and remarks
achieved also hold for the extended Bañados-Teitelboim-
Zanelli (BTZ) spacetime.
Consider a free scalar field Φ in AdS2þ1 in Rindler

coordinates, that explicitly split the system in two equal
halves
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ds2 ¼ −u2dt2 þ du2

1þ u2
þ ð1þ u2Þdχ2;

ð□ −m2ÞΦðu; χ; tÞ ¼ 0: ð4:47Þ

Observe that if the coordinate is extended to cover all the
real interval u ∈ ð−∞;∞Þ this metric captures both sides
L (u ≤ 0) and R (u ≥ 0), and the boundary of the subsystem
R=L is placed on the Killing horizon u ¼ 0, such as in the
section above. Clearly, the sSK extension of this geometry
is similar to Fig. 2, and the ground states and holographic
excitations correspond to the Euclidean pieces as explained
in the paper.
Recalling from the previous section that the quantized

fields on the left wedge (u < 0) can be constructed from the

right ones Φ on the right (entanglement) wedge by the
operation J, or equivalently the tilde conjugation rules (A1)
of the TFD formalism, we can express the global solution
on the Lorentzian regions as

Φðu; χ; tÞ ¼ Φ̃ðu; χ; tÞΘð−jujÞ þΦðu; χ; tÞΘðjujÞ: ð4:48Þ

where ΘðxÞ is the Heavyside step function. Notice that
∂=∂t is a Killing vector, and Φ (and Φ̃) can be canonically
quantized in terms of (positive-energy) normalizable modes
as in Eq. (4.22).
In this metric, the normal modes ϕn in (4.22) form a

continuous basis of eigenfunctions (with n≡ ðω; lÞ), so the
field can be written as

Φðu; χ; tÞ ¼
Z
ω>0

dωdlaωlϕωlðu; χ; tÞ þ H:c:; ϕωlðu; χ; tÞ ¼ N ωle−iωtþilχ ½fωlðuÞ − f−ωlðuÞ�; u ≥ 0 ð4:49Þ

fðω; l; uÞ≡ CωlΔr−Δ
�
1 −

1

u2

�
iω
2

2F1

�
Δ
2
þ 1

2
iðω − lÞ;Δ

2
þ 1

2
iðωþ lÞ; iωþ 1; 1 −

1

u2

�
; ð4:50Þ

CωlΔ ≡ ΓðΔ
2
þ 1

2
iðω − lÞÞΓðΔ

2
þ 1

2
iðωþ lÞÞ

ΓðΔ − 1ÞΓðiωþ 1Þ ; ð4:51Þ

with CωlΔ defined for future convenience, 2F1 the
Gauss hypergeometric function andN ωl fixed by imposing
orthonormality of the KG product5

ðϕωl;ϕω0l0 Þ ¼ δðω − ω0Þδll0 ; ð4:52Þ

so that

ð□−m2Þϕωlðu;χ; tÞ¼ 0

∂tϕωlðu;χ; tÞ¼−iωϕωlðu;χ; tÞ ω> 0: ð4:53Þ

In 2þ 1 dimensions, both Rindler-AdS and BTZ space-
times are examples of equipartite gravitational systems
and their metrics share the form (4.47), albeit the χ
coordinate covering R and S1 respectively. Thus, despite
being physically distinct, one can effectively follow
from this example the analogous BTZ construcion by
replacing

R
dk → r−1S

P
k∈Z above, where rS is the horizon

radius and r−1S is the precise factor that maintains the
orthonormalization.
With these eigenfunctions we can calculate precisely the

bulk modular flow (4.42) by giving some specific λðχ; τÞ. In
order to show an example we choose a deltalike excitation

exactly at π=2, i.e., λðχ; τÞ ¼ ϵδðτ − π=2Þeil0χ , where ϵ≪1
is an dimensionless small parameter that controls the
excitation, which leads to

λω;l ≡ lim
u→∞

uΔ
Z

dx
Z

π

0

λðχ; τÞϕωlðu; χ;−iτÞ

¼ ϵδl;l0N ωl0e
−ωπ=2ðαω;l0;Δβω;l0;Δ − α−ω;l0;Δβ−ω;l0;ΔÞ;

ð4:54Þ

and then

fλðu; χ; sÞ ¼
X
l

Z
dωλ�ω;lϕωlðu; χ; sÞ ð4:55Þ

¼ ϵ

Z
dωjN ωl0 j2ðαω;l0;Δβω;l0;Δ−α−ω;l0;Δβ−ω;l0;ΔÞ�

×e−ωπ=2−iωsþil0φ½fωl0ðuÞ−f−ωl0ðuÞ�; ð4:56Þ

in terms of which the bulk modular flow (4.42) can be
computed, as well as boundary modular flows via (4.46).
For this particular example we have that

lim
u→∞

jujΔ½fλðu; χ; sÞ − fλðu; χ; 0Þ�

¼ ϵ

Z
dωjN ωl0 j2jαω;l0;Δβω;l0;Δ − α−ω;l0;Δβ−ω;l0;Δj2

× e−ωπ=2þil0φ½e−iωs − 1�; ð4:57Þ

5The orthonormalization of fields on a foliation ending at a
horizon is subtle. This is however not related to our concrete
problem and has already been extensively covered in the
literature, see for example [61].
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alongside the generic (λ-independent) operator piece

lim
u→∞

jujΔΦðu; χ; sÞ
¼ lim

u→∞
jujΔ

X
ω>0l

aωlϕωlðu; χ; sÞ þ H:c: ð4:58Þ

¼
X
ω>0l

N ωle−iωsþilχðαω;l;Δβω;l;Δ − α−ω;l;Δβ−ω;l;ΔÞaωl

þ H:c: ð4:59Þ

Although Φ and Φ̃ are independent operators in com-
muting algebras, their respective action on vacuum state are
related by an imaginary time translation though the
Euclidean piece E− [see Figs. 2(b) and 6(a)], i.e.,

Φ̃ð−juj; t ¼ T−; χÞjΨ0i
¼ Φðjuj; t ¼ T− − iπ; χÞjΨ0i; ∀ u; χ ð4:60Þ

which must be complemented with a similar condition for
the canonically conjugated momentum fields Πðu; t; χÞ,
and so for any operator AðΦ;ΠÞ of the theory. These
equations constitute a constraint to be imposed on the
(initial) state at the spacelike surface t ¼ T−. Recall that the
(imaginary) time translation is realized by the operator
U0ð−iπÞ, which in the Rindler space is the boost generator
[8], analytically extended to a purely imaginary parameter.
We have shown in Sec. III that this constraint (on the

vacuum) is equivalent to the Tomita-Takesaki formalism. In
this example we want to see how this also determines the
Bogoliubov transformation relating the particle notion for
inertial/accelerated observers, and also captures the so-
called Unruh trick. In fact, using the (2nd quantized)
solution (4.22) and the orthonormality relations of the
eigenfunctions ϕωlðu; t; χÞ, one obtains the following con-
straint equations

d̂ð1Þωl jΨ0i≡ C1ðãωl − e−ωπa†ωlÞjΨ0i ¼ 0

d̂ð2Þωl jΨ0i≡ C2ðã†ωl − eþωπaωlÞjΨ0i ¼ 0; ∀ ωl; ð4:61Þ

where aωl and ãωl denote the L and R independent ladder
operators in A and Ã respectively, and C1;2 are numeric
factors determined by the relations of orthonormality
(4.52). Since these equations can be viewed as annihilating
the global vacuum, this procedure defines the Bogoliubov
transformation between the R=L ladder operators and the

new set dð1;2Þωl , associated to particles for (inertial) observers
that have access to the global spacetime. One can easily
verify that these equations are satisfied by using the explicit
form of the state (4.13).6

Therefore, the eigenfunctions associated to these oper-
ators, are the precise linear combinations appearing in
(4.61) of the original ϕωl, ϕ̃ωl solutions, are analytic at the
throat u ¼ 0:

hð1Þωl ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinhðπωÞp �

eπω=2ϕ�
ωl on L

e−πω=2ϕ�
ωl onR

hð2Þωl ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 sinhðπωÞp �

e−πω=2ϕωl on L

eπω=2ϕωl onR
ð4:62Þ

In other words, the correct global canonical quantization of
the fields in the manifold lead directly to the analytic global
modes defined via the Unruh trick. All these are equivalent
restatements of the constraint (4.60).
The last important aspect of the present example is to

show how this constraint/Tomita-Takesaki theory can be
generalized to the excited states studied in the paper. If one
perform the time translation in −iπ of the R fields with the
sourced evolution operator Uλð−iπÞ in place of U0,

ΦðT− − iπÞ≡Uλð−iπÞΦðT−ÞUλðiπÞ; ð4:63Þ

the constraint (4.61) generalizes to

½Φ̃ð−juj; t ¼ T−; χÞ − Uλð−iπÞΦðT−ÞUλðiπÞ�jΨλi
¼ 0; ∀ u; χ: ð4:64Þ

As shown in Sec. III, this equation has the ingredients to
construct the Tomita-Takesaki theory for excited states. It
decomposes in two linearly independent set of equations:

ðãωl − e−ωπa†ωl − e−ωπλωlÞjΨλi ¼ 0;

ðã†ωl − eþωπaωl − eþωπλ�ωlÞjΨλi ¼ 0; ∀ ω; l; ð4:65Þ

where we have used that the operator Uλ act on ladder
operator as a displacement, composed with time trans-
lation: Uλð−iπÞaωlUλðiπÞ ¼ eþωπðaωl þ λωl) (and its
H.c.), where the numbers λωl are given by (4.28). It is
straightforward to verify that the solution of this equation is
the state (4.17), that can also be expressed as (4.24).
Notice finally that these equations can be written as

equations of eigenvalues for the new (global) annihilation
operators. Multiplying them by C1;2 respectively, we obtain

ðd̂ð1;2Þωl − λð1;2Þωl ÞjΨλi ¼ 0; ð4:66Þ

where the eigenvalues are given by λð1Þωl ¼ C1e−ωπλ�ωl and
λð2Þωl ¼ C2eωπλωl. This is nothing but the condition solved
by a coherent state of d-particles.
It would be interesting to study this construction in other

partitions of the system where the operators involved in the
TT theory are known. For instance, one could apply an

6Different formulations of the thermal state condition as a
constraint in the string context can be found in [60,62].
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isometry of this spacetime such that the entanglement
wedge be dual to the causal development of a ball shaped
region in the boundary [9].

D. The gravity dual of modular Hamiltonians for
arbitrary entangling surfaces

As we mentioned many times the states studied here are
particularly relevant in holography since they are closely
related to coherent states in the bulk. The AdS=CFT
conjecture prescribes that the respective Hilbert spaces
are equal; therefore, one actually has a single object jΨi in a
Hilbert space representing the same state. Of course, this
state can have very different representations in one or other
theory. This hypothesis has been useful to obtain the
explicit descriptions of holographic excitations in both
theories and to obtain conclusions on their coherence in the
bulk at large N.
Consequently, by tracing carefully to both sides of the

correspondence (subtleties with the entanglement wedge
and the rule to separate in direct products in the bulk should
be taken into account [63]), one obtains that the reduced
density matrices also coincide. Thus one concludes that

KCFT ¼ Kbulk ð4:67Þ

holds, even thought that the bulk modular Hamiltonian has
a nontrivial structure that comes from an expansion in the
Newton constant [44], and the purely gravitational con-
tribution oðG−1

N Þ involves an area operator [19,64].
The objective of this section is to take advantage of this

formula and use our previous knowledge on excited states
in order to compute the contribution of the deformation
(3.4) at oðG0

NÞ. In principle, this can be used to compute the
leading contributions to the (bulk) matrix elements of
ρλ½ΣA� for any set A≡ ∂ΣA, although in absence of a bulk
killing vector one cannot describe the whole (Euclidean)
space time as S1 × ΣA and it is hard to check important
symmetry features of the modular Hamiltonian.
The JLMS prescription for the modular Hamiltonian

in a theory consisting of gravity and a nearly free real
field ϕ is [19,65]

Kbulk
λ ¼ Â

4GN
þ Kgrav

λ þ Kmatter
λ ð4:68Þ

where Â is the area operator. This formula can be obtained
from a saddle point approximation (large N) of the path
integral (2.6) (see Fig. 1). The (first) area term can be
explained from an additional contribution to the boundary
term of the gravitational action called Hayward term7 [66],
in particular, it was recently shown that the holographic
gravitational entropy can be obtained from this term using

replica calculations [65]. We leave the study of this term in
the calculus of the modular Hamiltonian for another
work [67].
Interestingly, even thought the whole Euclidean space-

time E ¼ Eþ ∪ E− cannot be foliated as S1ðζÞ × ΣA as in the
previous subsections, the matrix elements of the second and
third term can be evaluated as

hþjKgrav
λ j−i¼ 1

8πG

Z
Σþ

κþ
ffiffiffiffiffiffi
hþ

p
þ 1

8πG

Z
Σ−

κ−
ffiffiffiffiffiffi
h−

p
ð4:69Þ

hþjKmatter
λ j−i ¼

Z
Σþ

ϕþΠþ ffiffiffiffiffiffi
hþ

p
þ
Z
Σ−

ϕ−Π−
ffiffiffiffiffiffi
h−

p

þ
Z
∂E

λ∂ n̂λ
ffiffiffi
h

p
; ð4:70Þ

where h� are the induced metrics on Σ� and κ� their
respective extrinsic curvature. For concreteness, these
expressions are understood in the set up of Sec. II, where
j�i≡ jϕ�; h�i are arbitrary configurations of the fields
and induced metrics on the surfaces Σ�, that are two
homologous copies of ΣA, as shown in Fig. 1(b). The
asymptotic source λ is a smooth function defined on
E− ¼ ∂E− (vanishing on τ ¼ 0 and τ ¼ −∞ for technical
issues) and extended to ∂Eþ with reflection symmetry
with respect to τ ¼ 0, and n̂ is the normal vector to the
asymptotic boundary. The solution for the field is

ΦðxÞ ¼
Z
Σ�

G�ðx − yÞϕ�ðyÞdy

þ
Z
∂E

G∂ðx − zÞλðzÞdz ð4:71Þ

where x is any point in the bulk and z≡ ðτ;ΩÞ ∈
ð−∞;∞Þ × Sd ¼ ∂E and y ∈ Σ�. Here G� and G∂ differ
from the standard bulk-to-bulk and bulk-to-boundary propa-
gators. They are solutions to be determined by demanding
the following consistency (boundary) conditions.
Denote by Ê the Euclidean manifold of Fig. 1(b)., then

Bi; i ¼ Σ−;Σþ; ∂E denotes the three different components
of ∂Ê, and the solution can be expressed as

ΦðxÞ ¼
X
i

Z
Bi

Giðx − yÞϕiðyÞdy ð4:72Þ

where ϕ∂EðzÞ≡ λðzÞ, thus, the consistency condition
adopts the simple form of boundary conditions

Giðx−yÞ¼δijδðx−yÞ wherex∈Bj; y∈Bi ∀i;j: ð4:73Þ

Finally, inserting Π�ðxÞ≡�∂τΦðxÞjΣ� and Φ�ðxÞ≡
ΦðxÞjΣ� into Eq. (4.70) we obtain the explicit matrix
element in the large N approximation. Observe that this
is a quadratic form in the input functionsΦ�ðxÞ,Π�ðxÞ and7It is the contribution associated to the blue line in Fig. 1.
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λðxÞ. For a nonbackreacting field the formula (4.69) can be
explicitly calculated in the same way, from the aAdS
solution of the Einstein equations on the manifold Ê with
boundary conditions h� on Σ�, and then κ� are the (trace
of) extrinsic curvatures on these surfaces.
Let us compute this in the (Euclidean) 2þ 1 dimensional

AdS spacetime

ds2 ¼ þu2dτ2 þ du2

1þ u2
þ ð1þ u2Þdχ2

τ ∈ ð−π; πÞ; u ≥ 0; χ ∈ R: ð4:74Þ

In order to study the matrix elements we will fix the
surfaces Σ� on τ ¼ �π to impose the Dirichlet BCs ϕ�. In
this example we will be able to obtain the required
propagators as well as an explicit computation of modular
Hamiltonian matrix elements The required propagators areZ

∂E
G∂ðu; τ; χ; τ0; χ0Þλðτ0; χ0Þdτ0dx0

¼
Z �

1

4π

X
l∈Z

X
m∈Z

sinðmτÞ sinðmτ0Þeilðχ−χ0Þfð−im; l; uÞ
�

× λðτ0; χ0Þdτ0dχ0; ð4:75Þ

Z
Σ�

G�ðu; τ; χ; u0; χ0Þϕ�ðu0; χ0Þdu0dχ0

¼
Z �

i
4π

X
l∈Z

X
m∈Z

sin

��
mþ 1

4

�
ðτ � πÞ

�

× eilðχ−χ0ÞϕmlðuÞϕmlðu0Þ
�
ϕ�ðu0; χ0Þdu0dχ0; ð4:76Þ

where both f and ϕml ≡ ϕω¼m;l are defined in (4.50) and
(4.49). Note that neither propagator are the standard ones
because by frequency quantization they are forced to meet
G∂ðτ ¼ �πÞ ¼ 0 and G�ðu → ∞Þ ¼ G�ðτ ¼∓ πÞ ¼ 0 in
agreement with condition (4.73). One can explicitly use
(4.75) and (4.76) to compute (4.70). For the sake of
simplicity we pick single mode sources

ϕ�ðu0; χ0Þ ¼ ϕm�l�ðuÞeil�χ
0

λðτ0; x0Þ ¼ ϵ sinðm∂τ0Þeil∂χ0

where again ϵ ≪ 1 controls the excitation, a straightfor-
ward computation leads to

hmþ; lþjKmatter
λm∂ ;l∂

jm−; l−i ¼ ϵδl∂ ;lþð−1Þm∂m∂
�Z

duu−1ϕmþlþðuÞfð−im∂ ; l∂ ; uÞ
�
þ δl−;lþδm−;mþðm− þ 1=4Þ

þ ϵδl∂ ;l−ð−1Þm∂m∂
�Z

duu−1ϕm−l−ðuÞfð−im∂ ; l∂ ; uÞ
�
þ δl−;lþδm−;mþðmþ þ 1=4Þ

þ ϵPm∂ ;l∂ þ ϵδl∂ ;l�
m∂ð−1Þm∂

ð1
4
þm�Þ2 −m2∂

CnlΔðαm∂ ;l;Δβm∂ ;l;Δ − α−m∂ ;l;Δβ−m∂ ;l;ΔÞ; ð4:77Þ

where

Pm∂ ;l∂ ¼
2ðΔ − 1Þ

4πi

�
−1

e2πm∂ − 1
αm∂ ;l;Δβm∂ ;l;Δ þ e2πm∂

e2πm∂ − 1
α−m∂ ;l;Δβ−m∂ ;l;Δ

�
; ð4:78Þ

and

αωlΔ ≡ ð−1ÞΔ−1 ð
2−Δ
2

þ i
2
ðω − lÞÞΔ−1ð2−Δ2 þ i

2
ðωþ lÞÞΔ−1

ðΔ − 2Þ!ðΔ − 1Þ! ; ð4:79Þ

βωlΔ ≡ −ψ
�
Δ
2
þ i
2
ðω − lÞ

�
− ψ

�
Δ
2
þ i
2
ðωþ lÞ

�
: ð4:80Þ

Here ðxÞy and ψðxÞ are the Pochhammer symbol and the
Digamma function respectively. We find the first, third and
last term in (4.77) the most relevant because they explicitly
show the excited nature of the state. Note also that these are
nondiagonal pieces of the operator. One can show that the

u integrals in brackets are convergent both at u ¼ 0 and
u → ∞, albeit u ¼ 0 requires careful regularization [61],
see footnote 5. Considering linearized Einstein gravity, the
computation of (4.69) is similar since it involves the same
structure and propagators that for the matter field.
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We can think the Eqs. (4.69) and (4.70) as providing the
natural candidate to the gravity dual of modular
Hamiltonians [up to oðG0

NÞ] for arbitrary regions A and
states jΨλi. Nevertheless, in absence of a Killing vector
associated to the modular evolution in the bulk, it is
difficult to meet the Tomita-Takesaki structure. In the
example studied here the τ-dependence of the source
λðτÞ manifestly breaks this Uð1Þ symmetry, however a
promising method was suggested for these cases in [67] by
considering the calculus for n-replicas, and then the
modular flow is determined by the analytical extension
of n to purely imaginary values.

V. SUMMARY AND CONCLUSIONS

In this paper we studied the modular Hamiltonian and
modular flow of a family of excited states whose holo-
graphic description is precise in both sides of the AdS=CFT
duality and are related to bulk coherent states at large N
[30,37]. This analysis also captures the complete vacuum
sector of the Hilbert space, which are holographically
associated to global n-particle excitations.
These generating (holographic) states can be constructed

geometrically by analytically extending the spacetime to
Euclidean times in a Hartle-Hawking fashion, and sourcing
the theory with operators on these regions. In this setup, we
are able to find modular Hamiltonian candidates for these
systems using a path integral approach. By using TFD and
Schwinger-Keldysh techniques, we manage to frame our
excited system as a Tomita-Takesaki theory, allowing us to
find the correct Δ and J operator of our excited system,
matching the expressions derived via path integral methods.
We have shown that when one considers the (extended)
modular flow Δis, a nice geometric structure combining
both spacetime signatures emerges, and the Tomita-
Takesaki theory can be interpreted geometrically. In the
case of CFTs, our results can be extended to other bipartite
systems related to ours via a conformal map, e.g., a
spherical entangling region can be described via the
so-called CHM map [9], see Appendix B.
It is remarkable that the connection between the TT

theory and the TFD formalism, where the so-called thermal
state condition is a constraint defining the (thermal)
vacuum, can be generalized to the holographic states.
The vacuum constraint plays an important role in formulat-
ing the Unruh problem correctly, and to find the correct
Bogoliubov transformation between local and global
DOFs. The excited constraint then characterizes simulta-
neously the state and the action of the operators on it. In
terms of the TT theory, the excited constraint can be seen as
a deformation of both the vacuum state and modular
operator such that the constraint still holds. This suggests
an interesting way of interpreting the TT formalism as a
constraint between operators of an algebraA and Ã, as they
act on a specific state.

By using holography, we are able to study bulk modular
Hamiltonians and their modular flows while also retaining
the Tomita-Takesaki structure at large N. The modular
Hamiltonian for the excited states consists of certain
canonical transformation of the original fields and
momenta. The result (4.3) is in agreement with the result
(4.20) in [29], achieved by using AQFT techniques. We
present an AdS2þ1=CFT1þ1 example in which the explicit
modular flow can be computed and within the same
example we develop on the relation of the TT theory,
TFD formalism and the so called Unruh trick, in order to
provide deeper physical insight for the excited state
constraint. It is worth it to emphasize that this method
implicitly assumes the dual map between the objects
(operators) of the TT theorem; consequently, the TT
construction in aAdS spacetimes implies the one in the
strongly coupled CFT.
We also found a formula for the holographic dual of the

modular Hamiltonian for arbitrary spacelike regions A and
for an arbitrary coherent excitation λ. Interestingly, the
prescription does not rely on the existence of a timelike
Killing symmetry associated to the geometric flow and this
would be the natural candidate for the modular Hamiltonian
in the bulk at large N. The final expression is nonlocal,
involving special bulk propagators, quadratic in the field on
the bulk entanglement region ΣA and in the parameter λ,
which resembles some previous results for free QFTs on a
Minkowski spacetime, see [6] and references therein. In
this case, we also study the example on a bipartite AdS2þ1

system, where these special bulk propagators can be
explicitly obtained and the matrix elements (4.69) and
(4.70) can be computed.
Finally, the statement (4.67) allows to argue (using the

BDHM prescription [46]) that the formula (4.45) might be
considered a holographic prescription to compute modular
evolution of operators in a field theory. It would be
interesting to check if the results of Sec. IV C, agrees with
an explicit computation with the modular flow in the field
theory.
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APPENDIX A: TFD BASICS

The thermofield dynamics (TFD) formalism was origi-
nally built to study finite temperature QFT in real time
using zero temperature techniques [55]. In this Appendix
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we present the relevant aspects of the TFD formalism for
this work.
Consider a quantum field theory, whose states belong to

the Hilbert space H. In the TFD formalism, one builds a
second copy of the system, namely H̃, so that the total
system lives in the direct product of the original CFT times
its TFD copy,H ⊗ H̃. Thus, given an operator A, acting on
H, one builds [68] the corresponding operator Ã on H̃
using the so-called “tilde” conjugation map [50,56],

½A; B̃� ¼ 0 ðABÞ∼ ¼ Ã B̃

ðc1Aþ c2BÞ∼ ¼ c�1Ãþ c�2B̃ ðA†Þ∼ ¼ Ã†: ðA1Þ

Alternatively, one can denote the extended operators as AL
and AR respectively:

I ⊗ A≡ A≡ AR; ð̃I ⊗ AÞ ¼ Ã ⊗ I≡ Ã≡ AL: ðA2Þ

We will often use both notations alternatively throughout
this work.
One can now define the TFD vacuum, denoted jΨ0i ∈

H ⊗ H̃ as follows. We start from the identity state

j1ii≡X
n

jni ⊗ jni ¼ ea
†
La

†
R j0i ⊗ j0i

which is an auxiliary maximally entangled state of
the energy eigenfunctions of the spaces H and H̃ with
divergent norm. The (unnormalized) TFD vacuum can be
built as,

jΨ0i≡
X
n

e−
β
2
En jni ⊗ jni ¼ e−

β
2
Hj1ii ¼ e−

β
2
H̃j1ii: ðA3Þ

where β−1 ¼ T is the temperature of the system and H, H̃
and En are the system and copy Hamiltonians and its
energy eigenvalues respectively. Notice that jΨ0i is also a
maximally entangled state. The relevance of the TFD
vacuum resides in that it allows us to compute expectation
values at finite temperature of the original system H as
VEVs in the doubled space H ⊗ H̃. It can explicitly be
checked that [55],

hAiβ ≡ trfρAg ¼ hΨ0jA ⊗ IjΨ0i; ρ ¼ e−βH: ðA4Þ

The vacuum character of jΨ0i can be understood in terms of
the global Hamiltonian ðHR −HLÞ ∈ H ⊗ H̃, for which it
is immediate to check

ðHR −HLÞjΨ0i ¼ 0:

Notice that the systems are decoupled and its interaction is
entirely due to the maximally entangled character of the
theory vacuum jΨ0i. The equation above suggests a

physical interpretation in terms of two systems evolving
in opposite time directions. This interpretation has found
holographic support especially in the eternal BH solutions
[47]. It has also been observed that the DOFs splitting of a
system into two Rindler patches can be understood as a
TFD doubled space [69].
In this work, we exploit the fact that the TFD vacuum

can also be thought as an Euclidean time evolution operator
U0ð0; iβ=2Þ acting on the identity state,

jΨ0i ¼ U0ð0;−iβ=2Þ ⊗ Ij1⟫ ¼ I ⊗ U0ð0;−iβ=2Þj1⟫;

and study excitations of the TFD vacuum defined as
in (3.5),

jΨλi ¼ Uλð0;−iβ=2Þ ⊗ Ij1⟫ ¼ I ⊗ Uλð0;−iβ=2Þj1⟫:

This equation, projected into an energy eigenstate basis,
can be also geometrically understood as shown in Fig. 5:
Uλ is depicted on the left as an evolution operator on a
single Hilbert space, the corresponding TFD-ket jΨλi is
illustrated on the right with the two cylinder’s ends now
representing the doubled TFD DOFs at some spacelike
surface at a fixed time t. It is important to notice that the
excitation under study is created with an operator that can
be fully localized in only one of the factors of the Hilbert
space. Finally, a density matrix associated with the state
jΨλi can also be defined as

ρλ ¼ Uλðiπ; 0ÞU†
λðiπ; 0Þ≡Uλðiπ; 0ÞUλð0;−iπÞ

¼ TrfjΨλihΨλjg:

The relationship between the Tomita-Takesaki structure
and the TFD construction is well known in the literature,
see for example [70]. We would like to conclude this

(a) (b)

FIG. 5. (a) A piece of Euclidean evolution cut at regions Σ1 and
Σ2 understood depicted as the matrix element hnjρλjmi of a
density matrix ρλ. (b) The same geometry can be instead
understood as the coefficient ⟪nm̃jΨλ⟫ of a ket jΨλ⟫ defined
in the TFD Hilbert space H ⊗ H̃.
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section by showing that the states jΨλi are cyclic and
separating. It can be shown that jΨλi is cyclic and
separating if there are no nontrivial operators in either H
or H̃ such that BjΨλi ¼ 0, see [2]. These are both necessary
hypothesis for the Tomita-Takesaki theorem to hold which
we use throughout this work. A more formal introduction to
these properties can be found in [1].
Assume that there exists an operator B̃ ∈ H̃ such that

B̃jΨλi ¼ ðB̃ ⊗ UλÞj1⟫ ¼ 0; ðA5Þ

multiply this by U†
λ to get

U†
λðB̃ ⊗ UλÞj1⟫ ¼ ðB̃ ⊗ ρλÞj1⟫ ¼ 0: ðA6Þ

Since ρλ is Hermitian (and positive), it is invertible and can
removed from this equation, i.e.,

Bj1⟫ ¼ 0: ðA7Þ

Recalling that j1⟫ ¼ P
n jnijñi has been defined in terms

of a complete orthonormal basis ofH ⊗ H̃, we project this
equation on an arbitrary element hmjhk̃j and obtain
hk̃jBjñi ¼ 0 for all n, k, i.e., all the matrix elements of
the operator B vanish. This shows that jΨλi is cyclic.
Proving that the state is separable, i.e., that the state is

cyclic with respect to an operator B ∈ H, follows analo-
gously by recalling that the state can also be equivalently
written in terms of an operator Ũλ ∈ H̃. This concludes the
demonstration.

APPENDIX B: EXCITED STATES IN A BALL

We devote this Appendix to show in a concrete example
how our results for equipartite systems extend to other
bipartite systems related via a conformal transformation. In
particular, using the CHM map [9] we will obtain the
excited modular Hamiltonian for a ball shaped region. We
begin by briefly reviewing the sSK construction discussed
in Sec. III A. We then follow the CHM map to describe the
modular flow in the complexified sSK geometry and
conclude by obtaining the excited modular Hamiltonian
of the system.
In the case of the Rindler spacetime, the sSK extension is

built from the Rindler wedge as follows. One takes the
standard Minkowski spacetime that, covered by Rindler
coordinates, splits in four regions or patches. Then, let us
take only the left and right sides W ≡WL ∪ WR whose
boundaries Σ� are homologous to an extended foliation
ΣðtÞ ofW that corresponds to the parameter t → �∞.8 This
is the real time extended Rindler wedge in the complexified
geometry, but it is convenient to consider WðT−; TþÞ ⊂ W

between finite limits of the real time parameter. Take two
halves of the analytical extension of the Rindler spacetime
to purely imaginary time coordinate t → −iτ. The rank of
the coordinate τmust be ½0; 2π� in order to avoid the conical
singularity at the origin. Now we split this geometry in two
(past and future) halves E� by the intervals τ ∈ ½0; π� and
τ ∈ ½π; 2π� respectively so we can define the closed com-
plexified (Rindler) space time, denoted byWC by smoothly
gluing E� with W through the surfaces Σ�. This con-
struction is similar to [36,37] and the smoothness con-
ditions implies the continuity of the metric and the extrinsic
curvature along the parameter τ. The total geometry can be
seen as a fibration WC ¼ ΣR × C and is shown in Fig. 2.
We now turn to the analysis in the ball. Let us see, first in

a naive way, which should be the explicit form of the
modular Hamiltonian for the excited state on the spherical
entangling surface. The strategy will be to do the conformal
transformation that maps the Rindler wedge to the causal
development of a sphere of radius R: D≡DðVÞ, this is the
so-called CHM map [9]. First, for simplicity, suppose that
the source λ does not depend on the time coordinate, such
as in Eq. (3.12). Applying the CHM map (implemented by
an operator U) to both sides of (3.12) we obtain

UKλU−1¼2π

�
UK0U−1þ

Z
Σ
λðXÞUOðXÞU−1 ffiffiffiffiffi

gΣ
p

dXd−1
�
:

ðB1Þ

Using that UOðXÞU−1 ¼ Ω−ΔðxÞODðxÞ, we obtain the
form of the modular Hamiltonian in the ball (capital X
stands for coordinates on the Rindler space and small x for
those on the transformed space),

KD ¼ 2πK0D
þ
�Z

V
λðxÞΩ−ΔðxÞODðxÞβðxÞ

ffiffiffiffiffi
gV

p
dxd−1

�
:

ðB2Þ

The symbols Δ and Ω here stand for the scaling
dimension of the operator and conformal factor introduced
by the map respectively, and K0D

was computed explicitly
in [9]. The factor βðxÞ comes from the dilatation of the time
coordinate due to the conformal map. This is in agreement
with results found in [27].
Let us derive this expression from a path integral

approach for a general source λðx; τÞ. The previous con-
struction of the sSK path allows to compute time ordered
n-point functions in arbitrary points of the extension WC,
and then one can also construct the corresponding sSK
extension for the ball, DC, by applying the CHM trans-
formation to each component of Wl, and glue them. Here
l ¼ WR, E−, WL, Eþ refers to all the pieces of the
symmetric SK complexified spacetime. In particular WR,
WL map into D;DðV̄Þ respectively (see Fig. 6). Since the
analytical extension of modular flow xð−isÞ is ill defined

8In this and other cases, the associated algebra of operators to
WL is the commuting of algebra of WR.
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for the center of the ball xi ¼ 0 i ¼ 1…d, it is convenient to
define DC as the foliation fV0ðθÞgC ∼ V0 × C where V0 is
the ball minus this point.
Consider then the sSK extension of the result (3.9)

ZðλÞ ¼ TrU U ≡ Pe−i
R
C
dθðK0þO:λðθÞÞ; ðB3Þ

then the n-points correlation functions in the Rindler wedge
can be computed from

hΨ0R
jOðX1ÞOðX2Þ…OðXnÞjΨ0R

i

¼ ð−iÞn ∂n

∂λðX1Þ∂λðX2Þ…
ZRðλÞ

����
λ¼0

ðB4Þ

for all set of (arbitrary) n points Xμ
1;…; Xμ

n ∈ WR.
Now wewill apply the CHMmap, which is nothing but a

conformal transformationWR → D≡DðBRÞ implemented
by the unitary transformation U on the Hilbert spaces. In
particular the (scalar) primary operators transform as

ODðxÞ ¼ ΩðXÞΔUOðXÞU−1; ∀Xμ ∈ WR: ðB5Þ

Using that Uj0i ¼ j0i we obtain

0hODðx1ÞODðx2Þ…ODðxnÞi0
¼

Yn
i¼1

ΩðXiÞΔ0hOðX1ÞOðX2Þ…OðXnÞi0 ðB6Þ

for any set of (arbitrary) n points Xμ
1ðθÞ;…; Xμ

nðθÞ, at the
same hypersurface θ ¼ constant. The left-hand side is
nothing but

ð−iÞn ∂n

∂λðx1Þ∂λðx2Þ…ZDðλÞ
���
λ¼0

; ðB7Þ

so one can think these relations as probing the generating
function for both theories in both extended spaces. In fact
they imply that the expansions (in powers of λ) of both
functionals coincide

ZDðλÞ ¼ ZRðλ → Ω−Δλ;WC → DCÞ; ðB8Þ

where

ZD ¼
Z

½Dϕ�ei
R
DC

dθ
ffiffiffiffiffiffi−gV

p
ddxðLCFTþΩ−ΔðxμÞλðxÞODðxÞÞ ðB9Þ

satisfies all the relations (B6). Since DC ¼ V0 × C, this is
defined on fields with periodic conditions in θ, and we can
also express this as

ZDðλÞ ¼ TrUD

UD ≡ Pe
−i
R
C
dθðK0D

þ
R
V0

ffiffiffiffiffiffi−gV
p

ddxβðxÞΩ−ΔðxÞODðxÞλðθ;xÞÞ;

ðB10Þ

where the exponent corresponds to the canonical energy for
each slice V0ðθÞ computed from the deformed Lagrangian
of (B9).9

(a) (b)

FIG. 6. (a) Under the CHM map U, one can also build a geometric interpretation of the modular operator and evolution for a ball in a
CFT. Notice that the Euclidean evolution resembles a circle near R but departs from this behavior at greater distances. (b) A closed
contour in complex modular evolution can also be geometrically interpreted.

9It is the component Tμν
V nμðθÞτðVÞν ðθÞ of the energy-momentum

tensor derived from (B9), where nμðθÞ is the unit vector, ortho-
normal to V0ðθÞ and recalling that θ is the analytically extended
Rindler time, βðxÞ is locally defined by β

2π τ
ðVÞ
ν ðθÞ≡ ∂νθ.
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The same argument holds for the matrix elements ofUðλÞ
(and UDðλÞ). In fact, one can remove the periodic boundary
condition from this path integral, and to consider the
evolution operator between two hypersurfaces Σðθ1Þ and
Σðθ2Þ by imposing arbitrary field configurations on eachone.
Then the (dynamical) evolution operators relate by

UDðθ1; θ2Þ½λ� ¼ UUðθ1; θ2Þ½λ�U−1 ðB11Þ
and the matrix elements can be computed with the
following path integral:

hϕ1jUDðλÞjϕ2i

¼
Z

ϕ2

ϕ1

½Dϕ�ei
R

θ2
θ1

dθ
R
V0ðθÞ

ffiffiffiffiffiffi−gV
p

ddxðLCFTþΩ−ΔðxμÞλðxÞODðxÞÞ

where ϕ1, ϕ2 are two arbitrarily specified configurations of
the fields on the surface V0ðθ1Þ, V0ðθ2Þ respectively. Since
the CHM conformal transformation maps one-to-one the
points of BRðθÞ into ΣRðθÞ (and V̄ð¼ V0ð−iπÞÞ into ΣL)
these correspond to the configurations on Σðθ1Þ, Σðθ2Þ of
the sSK extension of the Rindler wedge. Finally, by taking
θ1;2 to be the red points in Fig. 2(a), and taking trace we
obtain the main formula (B8).
By virtue of (B11), we have

Ul
DðλÞ ¼ UUlðλÞU−1 ðB12Þ

where l ¼ WR, E−, WL, Eþ label the pieces of the
symmetric SK complexified spacetime. The reduced matrix

density of excited global (pure) states can be obtained by
taking the limit jTþ − T−j → 0 and removing the real time
components of the geometry, then the entire sSK geometry
is nothing but E≡ Eþ ∪ E−. In fact, the analytical exten-
sion to purely imaginary values of the parameter t → −iτ,
τ ∈ ½0; 2πÞ evolves the operators in the manifold Σ × S1.
The (pure) global state is built with the evolution operator
on the interval ð0; πÞ, so the excited states can be system-
atically constructed by deforming the CFT action with a
source λðX; τÞ, therefore by virtue of (3.6), we must extend
the source to all the manifold E demanding λðX; τÞ ¼
λðX;−τÞ. Because of the CHM map, all these remarks can
be transplanted to the description of the CFTonDC with the
DOF within a sphere V, see Fig. 6(b).
Using the result (3.6), and using (B12), we obtain the

(unnormalized) reduced density matrix for any λ-state in
the ball shaped region

ρDðλÞ ¼ UDð0; 2πÞðλÞ; ðB13Þ

whose matrix elements are, by virtue of (B11),

hϕ1jρDðλÞjϕ2i

¼
Z

ϕ2

ϕ1

½Dϕ�e−
R

2π

0
dτ
R
V0ðτÞ

ffiffiffiffiffiffi−gV
p

ddxðLCFTþΩ−ΔðxμÞλðxÞODðxÞÞ

A similar formula and construction can be obtained for
any region obtained from the Rindler spacetime by some
conformal mapping.
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