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Abstract

The amount of power in different frequency bands of the electroencephalogram (EEG)

carries information about the behavioral state of a subject. Hence, neurologists treating

epileptic patients monitor the temporal evolution of the different bands. We propose a

covariance-based method to detect and characterize epileptic seizures operating on the

band-filtered EEG signal. The algorithm is unsupervised, and performs a principal compo-

nent analysis of intra-cranial EEG recordings, detecting transient fluctuations of the power

in each frequency band. Its simplicity makes it suitable for online implementation. Good

sampling of the non-ictal periods is required, while no demands are imposed on the amount

of data during ictal activity. We tested the method with 32 seizures registered in 5 pa-

tients. The area below the resulting receiver-operating characteristic curves was 87% for

the detection of seizures and 91% for the detection of recruited electrodes. To identify the

behaviorally relevant correlates of the physiological signal, we identified transient changes

in the variance of each band that were correlated with the degree of loss of conscious-

ness, the latter assessed by the so-called Consciousness Seizure Scale, summarizing the

performance of the subject in a number of behavioral tests requested during seizures. We

concluded that those crisis with maximal impairment of consciousness tended to exhibit an

increase of variance approximately 40 seconds after seizure onset, with predominant power

in the theta and alpha bands, and reduced delta and beta activity.
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1 Introduction

The last decades have witnessed an explosion in computational techniques aimed at automat-

ically detecting and characterizing epileptic seizures [Tzallas et al., 2012, Orosco et al., 2013,

Alotaiby et al., 2014, Ulate-Campos et al., 2016, Boubchir et al., 2017]. Some are based on

simple measures, that assess the amount of power in different frequency bands [Bartolomei et al., 2008].

These methods are easily implemented, but their performance is limited, since a single dimen-

sion, as the ratio of high-to-low frequency power, is often not enough to encompass different

types of seizures. Others focus on detecting some of the specific features that neurologists are

trained to look for, when scrutinizing a recording [Harner, 2009, Liu et al., 2013]. These meth-

ods can achieve a good detection performance, but are limited by the fuzziness of the definition

of the targeted features, since there is no precise consensus among experts of what exactly con-

stitutes a feature [Wilson and Emerson, 2002]. Other approaches decide in terms of the visual

properties of the EEG signal when plotted in the time-frequency domain [Boubchir et al., 2014,

Boubchir et al., 2015], or of the total amount of synchrony [Schevon et al., 2007, Warren et al., 2010,

Evangelista et al., 2015, Courtens et al., 2016, Bonini et al., 2016], or of the coherence [Wang et al., 2017,

Aggarval and Ghandi, 2017] or of the phase-to-amplitude coupling [Edakawa et al., 2016, Liu et al., 2017,

Cámpora et al., 2019, Dellavale et al., 2020]. Yet others [Kharbouch et al., 2011, Liu et al., 2012,

Donos et al., 2015, Heller et al., 2018, Hugle et al., 2018], make no assumptions on the dis-

tinctive features tagging seizures, and by means of supervised-learning algorithms, employ

machine-learning techniques to discover the function that maps EEG signals to an output that

distinguishes between “seizure” and “no seizure”.

Many of these methods, though sometimes effective in their detection precision and recall,

fit literally thousands of parameters, and are hard to interpret, since their outcome is not based

on quantities on which clinical intuition is based. Neurologists analyze EEG data in terms of

frequency bands, and they are able to associate specific features of the EEG signal with specific

changes in the behavioral state of the patient. Therefore, when developing a tool for automatic

analysis of EEG signals, it is important to first decide whether the aim is to produce an accurate

algorithm for seizure detection, or rather, to design a tool that assists neurologists to identify

the features that mark the onset of the seizure, to characterize its propagation, and to reveal

the features that co-vary with the clinical manifestations. This paper ascribes to this second

goal. We filter the EEG signal in the same frequency bands neurologists usually analyze them,

and we propose an unsupervised seizure-detection algorithm based on covariance analysis. The

approach is simple enough to be implemented online, and discloses the temporal properties of
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the EEG signal that are correlated with the degree of loss of consciousness, the latter, assessed

by a standard behavioral test.

Covariance analysis has long been used in neuroscience when analyzing electrophysiologi-

cal recordings of the activity of single sensory neurons that are selective to specific stimulus fea-

tures [Bryant and Segundo, 1976, de Ruyter van Steveninck and Bialek, 1988, Simoncelli et al., 2004,

Samengo and Gollisch, 2013]. The physiological signal is typically discrete (spike or no spike)

and the stimulus varies from trial to trial, testing the effect of a collection of features that are

are the candidate relevant dimensions to which the neuron might be sensitive to. The stimulus

dimension along which spiking probability is modulated maximally is identified as the most

relevant one. We here extend this technique to the study of time-continuous EEG signals, and

search for the temporal structures that are maximally modulated by seizures. We later use the

same idea to identify the temporal features in the signal that are modulated by the degree of loss

of consciousness in each seizure.

2 Materials and Methods

2.1 EEG data sets

Long-term intra-cranial EEG recordings were obtained from 5 hospitalized patients during 24-

hour video-EEG monitoring, lasting for 5 days. The electrodes were implanted as a pre-surgery

evaluation, and their anatomical targeting was decided for each patient on the base of available

non-invasive information about the localization of the epileptogenic zone. The ictal clinical

semiology was obtained from the videos of seizures. EEG signals were obtained at 2 kHz sam-

pling rate from 32 seizures of variable duration (mean: 78 seconds, SD: 41 seconds) recorded

from 5 patients with hypothesis of temporal epilepsy, each patient with a different number of

implanted macro electrodes (Ad-Tech depth electrodes, 0.86mm diameter, 5mm contact spac-

ing, between 5-10 contacts). The total number of analyzed segments was 1599. Each segment

contributing to this total number corresponds to a single patient, a single crisis, and a single

recording site on a single electrode. Segments also included non-epileptic activity, both before

and after the seizure. On average, the seizure took 9% (SD 5%) of each segment. The study has

been performed in accordance with the ethical standards as laid down in the 1964 Declaration

of Helsinki and its later amendments, and was approved by the ethics committee of the El Cruce

Néstor Kirchner and the Ramos Mejı́a Hospitals. All patients signed a written informed consent
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form before their voluntary participation in the study.

2.2 Identification of epileptic seizures by expert evaluation

Two experts trained and experienced in video-EEG interpretation reviewed all video-EEG record-

ings. Each seizure was reviewed 3 to 4 times in its entirety to identify pathological signs. The

onset of a seizure was established at the first electroencephalographic change. The termination

of the seizure was ascribed to the moment when rhythmic activity concluded, the EEG showed

a diffused attenuation or slowing, or more than 90% of the EEG channels were slow and the

patient’s stereotyped behavior ceased.

2.3 Assessment of the degree of loss of consciousness

In 29 of the 32 crisis, the degree of loss of consciousness was assessed by a clinical evaluation

performed by a trained examiner [Cámpora and Kochen, 2016]. The result was summarized by

a value on the Consciousness Seizure Scale (CSS) [Arthuis et al., 2009], derived on the base of

the degree and adequacy of responsiveness of the patient, visual awareness, identification of the

seizure as such, and the degree and type of induced amnesia. The index varies between 0 and 9,

with 0-1 representing full awareness, 2-5 moderate consciousness impairment, and 6-9, severe

loss of consciousness.

2.4 Representation of the signals

Neurologists typically inspect EEG signals visually, often filtering specific frequency bands.

Figure 1A shows the raw signal (top) obtained from a given recording site on a given macro-

electrode, and the same signal filtered in different frequency bands. We represented the signal

as a 5-dimensional vector

s
t = (sδ, sθ, sα, sβ, sγ),

where the supra-index t stands for vector transposition, and the components representing the

voltage traces in the delta (1-3.4 Hz), theta (3.4-7.4 Hz), alpha (7.4-12.4 Hz), beta (12.4 - 24

Hz) and gamma (24 - 97 Hz) bands, respectively. The variance of each filtered signal in a

one-second non-overlapping sliding window is shown in Fig. 1B.
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Figure 1: Representation of the EEG signal. A: Voltage traces. Top: raw recorded signal ob-

tained in a given contact. Rows 2-6: Same signal filtered in different frequency bands. Vertical

lines: Initiation and termination of the ictal activity. Insets: Detail of the signal in a 2-second

window outside the ictal period (seconds 88-90). Gray band on the left: temporal span of the

19-second window used to sample each covariance matrix. B: Power of each filtered signal as

a function of the position of the 1-second sliding window. The seizure is more evident on the

right panel, which represents the variance of the signals on the left.

2.5 Covariance analysis

We define the mean vector 〈s〉 as the temporal average of the whole collection of vectors s(t),

and C0 as the 5× 5 covariance matrix with entries (C0)ij = 〈si sj〉 − 〈si〉 〈sj〉. The matrix C0

can be taken to its diagonal form D by a coordinate transformation D = Ot C0 O, where O

is an orthogonal matrix. Following [Samengo and Gollisch, 2013], in order to spot departures

from the normal state, all sampled vectors s are transformed into vectors s
′ = D−1/2Os. The

new coordinates are here referred to as the symmetric ones. The total covariance matrix of the

entire collection of points once transformed to the symmetric coordinates is the unit matrix.

To detect the seizures, we defined a sliding window lasting for 19 seconds, that was shifted

along the entire recording, one second at a time. For each position t of the window, the 19

symmetric data points contained in it were used to calculate a local covariance matrix C(t). The

largest eigenvalue of this local matrix defined a temporal sequence λ(t) capturing the variance

of the data along the direction of maximal variance inside each 19-second temporal window.
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Significantly increases of λ(t) above unity are candidates to tag the onset of seizures. In order

to avoid false positives due to transient fluctuations induced by limited samples, the departure

was required to last for at least an interval τ . This requirement was instantiated by defining a

temporally filtered signal

λ̄(t) =

∫ t+τ/2

t−τ/2

λ(t′) dt′.

Seizures were detected at those points in time where λ̄(t) surpassed a given threshold.The value

of τ = 54 s was chosen to maximize the agreement between our criterion and that obtained

from the trained neurologists.

3 Results

3.1 An unsupervised method based on PCA of the power in each band

Our first goal is to develop an unsupervised method for detecting seizures based on features that

physicians are accustomed to work with. First, the signal is filtered in the delta, theta, alpha, beta

and gamma frequency bands (Sect. 2.4). Covariance analysis is based on a principal-component

analysis of the filtered signals. Our first aim is to identify the direction in 5-dimensional space in

which the variance displays an anomalous behavior when entering into the seizure. Our second

aim is to reveal the dimension in which the variance varies systematically with the degree of

loss of consciousness.

In Fig. 2A we show the distribution of voltages of the 5-dimensional vectors st inside and

outside the seizure. The low- and high-frequency (A2) components are displayed in different

panels (A1 and A2, respectively) for better visualization. The α component appears in both.

In Fig. 2 A, the gray points (red online) correspond to the ictal period, and their values oc-

cupy a larger region of space than the black points (non-ictal), most particularly in panel A2.

The variance of the ictal distribution, hence, is larger than the non-ictal one, and the difference

is most evident in the high-frequency subspace (lower panel), where the black points cluster at

the center, and the red ones, lie at the periphery. Our goal is to design an algorithm that can

identify ictal from non-ictal activity by detecting transient increases in the variance. To that

end, in Fig. 2B we depict the ictal and non-ictal voltage distributions. The two conditions are

most clearly differentiated in the higher frequency bands, from alpha to gamma (Fig. 2B, lower
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Figure 2: 5-dimensional representation of the EEG signal. A: Distribution of filtered signals

of Fig. 1A. A1: Voltages of the delta, theta and alpha components. A2: Variances of the alpha,

beta and gamma components. Black: Non-ictal period. Gray (red online): Ictal period. The

same number of ictal and non-ictal data points is shown, though the ictal voltages have a smaller

variance, so the tend to appear more tightly clustered around the center of the distribution.

B1: Voltage histograms of each component in ictal (striped, pink online) and non-ictal (gray)

temporal windows. C: Ellipsoids describing the contour lines of the best Gaussian fit to the

data of 3 selected seizures of a single patient, in the delta, theta, alpha (C1) and the alpha,

beta, gamma (C2) subspaces. The ellipsoid marked as “Total” fits the whole collection of data,

including ictal and non-ictal activity. Numbers indicate the CSS of each crisis.

panels). From this example, one would be tempted to conclude that an adequate method to

detect ictal activity should be based on identifying anomalous increases in the variance in the

high-frequency bands. This conclusion, however, does not take into account the considerable

patient-to-patient variability in the statistical properties of seizures, nor the variability from cri-

sis to crisis in one given patient. Although the epileptogenic zone [Bancaud et al., 1965] (the

neural network responsible for seizure onset) is always the same for a given subject, the prop-

agation dynamics may vary from one seizure to the next. Therefore, there need not be such

thing as “a typical seizure”. Fig. 2C shows the contour ellipsoids corresponding to the best

Gaussian fit of the data points of 3 different seizures from the same patient. The gamma dimen-

sion is indeed convenient to identify one of the seizures (marked with “1” in Fig. 2C), but this

result cannot be generalized to other seizures. Based on this evidence, we here relinquish the
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aspiration to identify the seizures by their behavior in some fixed frequency band. Instead, we

focus on characterizing the statistical properties of the non-epileptic state. The aim is to con-

struct a reliable description of the so-called “normal” distribution, and then identify the seizures

as dramatic departures from normality, irrespective of the direction in which the abnormality

manifests itself. This strategy ensures that even a collection of seizures with highly variable

properties can be identified, as long as they all clearly deviate from the non-epileptic state.

In the full recording, the non-epileptic state contains a number of samples that is overwhelm-

ingly larger than that of the epileptic state. In our data, in which all segments contain a crisis,

seizures comprise about 9% of the signal. The statistical properties of the non-ictal activity,

hence, can be determined even when analyzing the whole collection of data, containing both

the ictal and the non-ictal time segments, since the latter vastly dominate. As a consequence,

we may calculate the first two moments of the normal state using the entire recorded signal.

The covariance matrix C0 of the whole collection of vectors s(t) can be easily calculated

(Sect. 2.5). The eigenvectors of C0 are the principal directions of the ellipsoid that encom-

passes the best Gaussian fit of the entire recording, and the eigenvalues are the variances of the

data along these directions. We have verified that typically, the eigenvectors are aligned with

the coordinate axes, and the eigenvalues decrease monotonously from the delta to the gamma

dimensions. In other words, in normal circumstances, both the mean value and the variance

along the low-frequency components are much larger than the mean and the variance along the

high-frequency components. This property is also evident in the range covered by the horizon-

tal axes of Fig. 2 B. Following [Samengo and Gollisch, 2013], in order to spot departures from

the normal state, we make a coordinate transformation that turns the ellipsoidal distribution of

the normal state into a spherical distribution, with unit variance in all directions. The resulting

symmetric distribution is seen as a gray sphere in Fig. 3A, and the regions of space occupied by

each crisis, as elongated (colored online) ellipsoids.

In order to detect the time windows where the data departed significantly from the normal

state (gray sphere of unit radio in Fig. 3A), we defined a sliding window lasting for 19 seconds,

that was shifted along the entire recording, one second at a time. For each position of the

window, the filtered signals (once transformed to the symmetric space) were used to calculate a

local covariance matrix. If the window fell on a non-ictal segment, the eigenvalues of the local

matrix should be approximately unity, coinciding with the spherical distribution–with some

unavoidable fluctuations, due to limited sampling. As the window enters into a seizure, the

eigenvalues are expected to differ from unity, since as shown above, seizures correspond to
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Figure 3: Detection of seizures as departures from the normal state. A: Ellipsoids describ-

ing the contour lines of the best Gaussian fit to the data of each crisis, in the symmetric space.

In A1, the coordinate axes are the first three eigenvectors of C0, and in A2, the 3rd, 4th and 5th.

The inner gray sphere fits the whole collection of data, including ictal and non-ictal activity,

and the associated distribution has unit variance in all directions. Numbers indicate the CSS

of each seizure. Insets depict the spectra of eigenvalues of a local matrix encompassing each

crisis. Each eigenvalue is the square of the length of one of the principal axes of the corre-

sponding ellipsoid. B: Largest eigenvalue of the local matrix, as a function of the position of

the sliding window. Vertical lines indicate the initiation and termination of each crisis, as di-

agnosed by a trained neurologist. The dashed horizontal line marks the unit variance. C and

D: Receiver-operating characteristic (ROC) curves with the performance of the detection al-

gorithm in identifying seizures (C) and recruited electrodes (D), as compared with the ground

truth provided by neurologists. The dashed line represents random detection. Green and blue

areas: With and without transformation to the symmetric space.

collections of data points whose variance deviates from the normal state. In this paper, we

propose to identify the onset of an epileptic seizure in a single channel as the point in time in

which the largest eigenvalue of the local matrix is significantly larger than unity. In order to

avoid false positives due to local fluctuations, the deviation of the anomalous eigenvalue was

required to last for a time interval of duration τ (technical details in Sect. 2.5). The seizure was

assumed to last for as long as the local matrix sustained the significant departure.
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Figure 3B shows the temporal evolution of the largest eigenvalue of the local matrices com-

puted in each of the positions of the sliding window. The maximal eigenvalue increases dramat-

ically during the epileptic seizures diagnosed by trained neurologists (shaded rectangles). The

algorithm detects a seizure when the eigenvalue crosses a pre-defined threshold, and remains

above it for an interval of duration τ = 54 seconds. As the threshold is increased, the receiver-

operating characteristic (ROC) curves of Figs. 3C and D are traversed from right to left. The

local nature of the detection procedure can be used to identify the onset of the crisis in each of

the recording channels, and thereby provide a spatio-temporal description of the propagation of

the seizure.

3.2 Performance of the detection algorithm

Assuming that the detection performed by trained neurologists is the ground truth, receiver-

operating curves (ROC) can be constructed to assess the performance of the algorithm. ROC

curves are constructed by plotting the number of true positives as a function of the number of

false positives for each value of the detection threshold. A given crisis is detected when at least

one of the recording channels indicated by physicians produces an eigenvalue that surpasses the

chosen threshold inside the temporal window marked by physicians. A given electrode is iden-

tified if it produces an outlier eigenvalue inside the temporal window marked by neurologists.

Figures 3C and D display the ROC curves thus obtained.

The performance of the algorithm is assessed by the area beneath the ROC curve. The

optimal operating point is the value of the threshold for which the precision (number of true

detections / total number of detections) equates the recall (number of true detections / total

number of crisis). Table 1 summarizes the effectiveness of the detection procedure. We have

included the performance of the method when the traces are not symmetrized, to highlight the

relevance of the normalization step.

Of all the algorithms discussed in the literature, the only one that has been previously for-

mulated solely in terms of the amount of power in different frequency bands, that can be imple-

mented online, and that has been reported in intra-cranial signals is the so-called epileptogenic

index (EI) [Bartolomei et al., 2008], in which seizures are detected when the power in the high-

frequency bands increases with respect to that of low-frequency bands. We therefore compared

the performance of our algorithm with that of the EI using our corpus of signals. The results are

also included in Table 1, for comparison. The main differences between the two methods are
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Table 1: Comparison between the performance of the method proposed here (Normalized co-

variance) with the same method without normalization (Naı̈ve covariance), and with the Epilep-

togenic Index (EI)

.

Detection of Method Area below ROC curve True Positives False Positives

Crisis Normalized covariance 87% 83% 17%

Electrodes Normalized covariance 91% 81% 19%

Crisis Naı̈ve covariance 73% 63% 37%

Electrodes Naı̈ve covariance 71% 60% 40%

Crisis EI 75% 70% 30%

Electrodes EI 71% 60% 40%

that (a) our method makes no a priori assumptions about the frequency bands in which seizures

manifest themselves, and (b) our method requires a transformation to the symmetric space, so

that the asymmetry of the normal state is evened out.

Quite remarkably, the seizures that our algorithm fails to identify are those in which all

eigenvalues are notably smaller than unity, implying that there are some seizures in which the

power in all frequency bands is abnormally small. As far as we know, this is a novel result.

Unfortunately, those seizures cannot be detected by identifying the eigenvalues that are smaller

than a given threshold, because in the normal state, small eigenvalues accumulate near zero.

Hence, detecting seizures by pinpointing abnormally small eigenvalues produces a huge number

of false positives.

3.3 Transient characteristics observed during the loss of consciousness

For each local matrix, the magnitude of the largest eigenvalue is a measure of the degree of

departure from normality. We therefore verified whether such magnitude co-varied with the

degree of loss of consciousness. In Fig. 4A we see that both quantities are indeed correlated,

and in Fig. 4B, the correlation is shown to be maximal at approximately 50 seconds after seizure

onset.

Interestingly, the seizures that the algorithm fails to detect have small CSS values. Since all

the eigenvalues of these crisis are small, if these crisis were included in Fig. 4A, the correlation

between the magnitude of the largest eigenvalue and the CSS would be even larger.
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Figure 4: Correlation between eigenvalues and CSS. A: Average of the magnitude of the

largest eigenvalue of all the local covariance matrices corresponding to all recording channels

involved in each seizure as a function of the CSS. Matrices were located at the 46th second

after seizure onset, as detected by our algorithm. The Pearson correlation coefficient is 0.68

(significantly different from zero, p = 7× 10−5). B: Pearson correlation coefficient (calculated

as in panel A) as a function of the temporal location of the window used to calculate the local

covariance matrices, measured with respect to the onset of the crisis, as determined by our algo-

rithm. The saturation of each data point represents the p-value obtained from a null hypothesis

of uncorrelated variables (inset). C: Temporal evolution of the Pearson correlation coefficient

between the CSS and the absolute value of each component of the eigenvector associated with

the largest eigenvalue (after transforming back to the original space and normalizing), averaged

between all the electrodes recruited by the seizure. The saturation of each data point represents

the p-value obtained from a null hypothesis of uncorrelated variables (inset). Scatter plots: Data

from which the chosen Pearson correlation values were calculated.

The eigenvectors associated with the largest eigenvalue, when transformed to the original

space, exhibited several transient features that were significantly correlated with the degree of

loss of consciousness (Fig. 4C). Inside the temporal window (40−60) seconds after seizure on-

set, when also the eigenvalue was significantly correlated with the CSS (Fig. 4B), the eigenvec-

tor associated with seizures with severe consciousness impairment tended to have particularly
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large components in the theta band, and to a lesser degree, also in the alpha band. In addition,

the power in the delta and the beta bands was significantly reduced.

4 Discussion

Many of the methods proposed so far for discriminating ictal from non-ictal activity require

extensive training iterations, due to the fact that the distinctive features of epileptic seizures

vary markedly from patient to patient, and sometimes, even from crisis to crisis in a single

patient. Here we propose to identify the seizures only by diagnosing a significant deviation of

the variance of the distribution of the filtered signals from the so-called “normal” distribution, no

matter the direction in which the anomaly arises. The performance of the detection algorithm

is around 90%. Although more precise methods exist [Tzallas et al., 2012], our method has

the advantage of being fully transparent, of requiring no training, of being amenable to online

implementation, and of imposing no requirements on the amount of data during the epileptic

state.

The crucial ingredient is the variance of the different frequency bands. In the normal state,

the delta band is the one with largest variance. For the method to work, the transient amount

of power in each band has to be compared with the baseline power. From the methodological

point of view, this means to work in the so called normalized or symmetric space, where the

variance of different frequency bands in the inter-ictal state is evened out. In the symmetric

space, “normality” appears spherical, and seizures are detected as departures from normality.

Deviations in the variance of slow and intermediate frequencies becomes relevant when as-

sessing the degree of loss of consciousness, as revealed by the components of the most relevant

eigenvector. Several studies have started to characterize the spatio-temporal features of those

seizures that diminish or abolish consciousness [Bonini et al., 2016, Cámpora and Kochen, 2016,

Arthuis et al., 2009, Blumenfeld, 2012]. In particular, in [Blumenfeld, 2012], loss of conscious-

ness was associated with increased synchronization in the alpha band. In addition, an increase

of power in the theta band has been previously associated with states of minimal consciousness

[Blumenfeld, 2012, Schiff et al., 2014]. Hence, some previous studies seem to indicate that in-

termediate frequency bands are correlated with impaired consciousness. Our method confirms

this result, since loss of consciousness is maximal in those seizures with large power in the

range of 3-12 Hz, some 50 seconds after seizure onset.
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The components of the eigenvectors in different bands fluctuate rapidly, implying a complex

dynamics, dominated by transient phenomena. The prominence of each band lasts for only a

few tens of seconds, a time scale that is slower than the induced loss of consciousness. Seizures

are therefore confirmed to be a highly non-stationary process, structured into several phases.

Our analysis reveals that those seizures with significant compromise of consciousness are

represented by eigenvectors that display larger amounts of theta power 30-50 seconds after

seizure onset. To a lesser degree, the same effect was observed with the amount of alpha power.

Contrastingly, in the same temporal window, the delta and the beta components of the eigenvec-

tor manifested the opposite trend: Higher CSS was associated with lower power. To relate these

findings with the present theories of consciousness, we note that temporal lobe complex partial

seizures often involve abnormal theta spike-wave activity [Blumenfeld, 2012]. The network

inhibition hypothesis postulates that loss of consciousness is induced by selective inhibiting

subcortical arousal systems leading to depressed function of the higher order association cor-

tex, including the default-mode network areas [Danielson et al., 2011]. As a consequence, slow

activity emerges, with the typical pattern observed in slow-wave sleep [Englot et al., 2010]. The

association between loss of consciousness and high theta + alpha components reported here, if

confirmed in a larger population of patients, is compatible with the hypothesis that initial focal

activity in the temporal lobe triggers anterior thalamic nuclei [Norden and Blumenfeld, 2002] to

produce polyspike epileptic discharges that propagate the seizure to several cortical regions, and

simultaneously inducing ventral posteromedial nuclei to produce sleep-like spindles interrupt-

ing thalamo-cortical information flow [Feng et al., 2017]. Our results, however, do not confirm

the hypothesis that the amount of delta power can serve to discriminate between seizures with

high and low compromise of consciousness, at least not with intracraneal electrodes, after aver-

aging over all recruited channels. Visual inspection of seizures with different CSS values reveals

that delta power evolves significantly throughout the crisis, but is not exclusively enhanced in

those with high CSS. Therefore, though slow activity may indeed be required to inhibit the

default-mode network, as hypothesized by other studies [Englot et al., 2010], our results sug-

gest that, if such is the case, some other source of slow activity is likely to exist, which is present

in seizures with low CSS.

The alpha rhythm has long been known to be suppressed during the acquisition of bottom-up

sensory information [Berger, 1929], as well as during semantic information processing [Klimesch et al., 1997,

Klimesch et al., 1999], directed attentional shifts [Sauseng et al., 2005, Sauseng et al., 2011],

and conscious stimulus detection [Romei et al., 2007]. Indeed, during the normal, physiologi-

cal state, alpha synchronization is often seen as a functional correlate of inhibition of cognitive
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and motor tasks [Klimesch et al., 2007]. In turn, beta activity has long been associated with

sensory events and information processing during wakefulness. Our results, in which alpha

power increases and beta power diminishes during the seizures that induce unconsciousness, is

consistent with these findings.

Finally, in the late 80-ies and early 90-ties, several studies proposed that consciousness

requires the synchronization of populations of neurons via rhythmic discharges in the gamma

range [Cauller and Kulics, 1988, Gray et al., 1989, Crick and Koch, 1989]. Our results do not

confirm a prominent role of gamma power, at least, not in the time window where the anomalous

variance is maximal. This negative result is aligned with more recent findings, in which gamma

power is more linked to the process of reporting conscious information processing, than to

actually experiencing it [Koch et al., 2016, Redinbaugh et al., 2020].

To our knowledge, this is the first study that not only reports the performance of an algorithm

in the detection of the crisis, but also, in the detection of the individual electrodes involved in the

onset and the propagation of the crisis, and to correlate the variance of each frequency band with

the CSS. We therefore believe that the method has the potential to characterize the temporal,

the spatial and some of the cognitive properties of seizures.
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