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Abstract 

The idea that cubic EoS’s are very primitive and limited models, quite extended at present 

among researchers working on fluid properties and phase equilibria, has different roots, 

including some limitations observed specifically for classic and popular equations like Peng-

Robinson (PR) or Soave-Redlich-Kwong (SRK). These are two-parameter models, i.e. they 

have only an attractive and a repulsive parameter to characterize each molecule, while other 

models like SAFT but also cubic –and still for non-associating molecules- introduce also a 

third parameter related somehow to the molecular structure or shape. One of the alluded 

limitations, actually a very clear one, is the complete failure in describing the non-ideality in 

nearly athermal mixtures, like those composed of n-alkanes with different chain lengths: SRK 

and PR predict positive deviations from ideality, which increase with the system asymmetry, 

while experimental measurements show exactly the opposite, i.e. increasing negative 

deviations from ideality. 

This provides an excellent opportunity to try to clarify whether such failure is due to the 

cubic nature of these classic models or to their two-parameter character and/or to the classic 

van der Waals one-fluid (vdW1f) mixing rules typically used. With that motivation, in this 

work we used models representing three different categories, in a completely predictive way: 

a two-parameter cubic EoS (PR), a three-parameter cubic EoS (RKPR) and a three-parameter 

SAFT EoS (PC-SAFT). Their predictions of infinite dilution activity coefficients were 

analyzed and compared, in contrast to available data for different mixtures of n-butane to n-

octane as the lighter compound and paraffins ranging from C16 to C36 as the heavier, in both 

extremes of dilution.  

The obtained results, and their analysis, allowed us to extract very clear conclusions which 

were not present in the literature so far, regarding the importance of a third parameter in any 

type of EoS. 

  



 

 

Introduction 

The idea that cubic equations of state are rough and limited models for describing the 

properties and phase behaviors of mixtures is quite extended in part of our research 

community. When we try to ascertain what the rational grounds behind such idea are, we may 

find two possible situations.  

Sometimes it is a specific comparison, having a classical cubic EoS like Soave-Redlich-

Kwong (SRK)[1] or Peng-Robinson (PR) [2] on one hand, and a SAFT [3] or some other 

advanced equation on the other side. This type of comparison, even without association, is 

unfair, just as much as a race between a car and an airplane. This is so since two-parameter 

models like SRK or PR are just slightly distorted corresponding states models [4], while 

SAFT models have not only repulsive and attractive parameters, but also the third parameter 

which is associated to the molecular structure or shape, completely breaking the 

corresponding states limitations. This is a basic and objective difference, independently of the 

quality of attractive and repulsive terms in each case, which can of course explain limitations 

for describing certain properties, but in order to have a serious and fair comparison focused 

on the implications or limitations of those terms, any three-parameter equation of state should 

be compared with other three- and not two-parameter models. 

In other cases, it is not a comparison, but a demonstration of a qualitatively incorrect trend or 

behavior predicted, again, by SRK or PR. This is the case with activity coefficients for n-

alkane nearly athermal mixtures, which is clearly exposed for example in the book of 

Kontogeorgis and Folas [5]. In this work, mixtures are considered ‘athermal’ when they 

present a heat of mixing or excess enthalpy value equal to zero, according to the typical use 

in books, like for example those by Elliot & Lira [6] and Kontogeorgis & Folas [5]. For real 

mixtures with negligible heat of mixing, like those formed by n-alkanes and such as the 

considered in this work, the expression nearly athermal is usually employed. The reader 

should be aware, however, that in some works like that of Vahid et al. [7] the term athermal 

is applied to a more specific class of mixtures, namely those formed by hard-core molecules 

with no attractive energy, which are sometimes used in molecular simulation as a reference.    

A useful way to assess the non-ideality of mixtures is through the “infinite dilution” activity 

coefficients (���), the limiting value of the activity coefficient when the concentration is close 

to zero (��� = lim�	→� ��). Infinite dilution activity coefficients are important and widely 

used in chemical, biochemical and environmental engineering [8,9]. Typically, for 



 

 

asymmetric ‘athermal systems’, such as solutions of alkanes, activity coefficients are below 

unity [10–13]. Solutions of n-alkanes do not present cross energy interaction effects between 

different molecules, then the nonideality of such mixtures is mainly attributed to size and 

shape differences of the components. 

Sacomani and Brignole [14] analyzed the limitations of classical cubic EoS (particularly the 

SRK model) to properly predict the activity coefficients of binary n-alkane nearly athermal 

mixtures. They found that the “non-residual” contribution of the expression for the infinite-

dilution activity coefficient, derived from the SRK equation for binary mixtures, provides 

very good predictions and allows for the reproduction of the observed trends for some linear 

and branched n-alkane asymmetric homologous series. Nevertheless, the residual or energetic 

contribution, which would be expected to be negligible but is not, worsens the quality of 

activity coefficient predictions in mixtures, leading to false positive deviations from ideality. 

In Chapter 3 of the book by Kontogeorgis and Folas [5], in an interesting section on 

advantages and shortcomings of cubic EoS, they show for asymmetric mixtures between 

n/alkanes, that the Peng-Robinson EoS with classical mixing rules also predicts infinite 

dilution activity coefficient values above unity (positive deviations from ideality) while 

measured values indicate the opposite. It is also shown that an a/b mixing rule gives values 

below unity, in agreement with experimental observation. Kontogeorgis and Folas [5] 

attribute these EoS limitations to the parameter estimation for pure compounds and especially 

their extension to mixtures; and they suggest the use of advanced mixing rules (as the Wong 

and Sandler [8,15] or of Huron and Vidal [16,17]) to overcome this issue.  

Vahid et al. [7], although from another perspective and following a different approach, also 

showed -as Sacomani and Brignole did for cubic EoS's- that the repulsive term from SAFT 

type models predicted the correct trends of negative deviations from ideal mixing for 

asymmetric homologous alkane mixtures. 

In previous works, we have already shown that a three-parameter cubic EoS can achieve clear 

improvements over two-parameter models like SRK or PR (Appendix A). See for example 

the original development of the RKPR model by Cismondi and Mollerup [4], with focus on 

PVT behavior for pure substances, and the most recent and evolved work on predictive 

correlations for high-pressure phase behavior of asymmetric hydrocarbon mixtures by Tassin 

et al. [18], considering also densities and solid-liquid equilibria. Then, we may wonder… Is it 

really the cubic nature, i.e. the van der Waals repulsion term, the reason behind this 



 

 

qualitatively incorrect trend for activity coefficients predicted by the SRK or the Peng-

Robinson equations? Is it really necessary to turn to more complex mixing rules (i.e., Wong–

Sandler or Huron–Vidal models), being impossible for the original van der Waals mixing 

rules to capture the right trend with a cubic EoS? Would three-parameter cubic equations of 

state suffer from the same limitations? How would their predictions compare to those from a 

three-parameter SAFT type equation? 

To provide clear answers to these questions is the goal of this work. 

It is not our intention to go deeper in the discussion of the theoretical correctness of each term 

in a model or to evaluate the behaviors at extreme conditions, e.g. infinite pressure limit, 

where simplified expressions can be used (for that, the reader is referred to some interesting 

books in the literature [5,9,19,20]). Instead, in order to answer the questions defined above, 

we simply need to evaluate the behaviors and trends predicted by different types of equations 

of state at near ambient conditions, where experimental measurements are available for 

asymmetric mixtures of alkanes. The specific choices we made, and some other details of the 

methodology are discussed in the next section. 

Methodology 

As a representative model of two-parameter cubic EoS’s we chose the Peng-Robinson 

equation (PR) in its original version [2], probably the most used cubic EoS. To study whether 

its limitations can be overcome or not, and how, by a third parameter, we will use the RKPR 

EoS originally developed by Cismondi and Mollerup [4], and then successfully adopted by 

other groups for different systems and applications [21–27]. Finally, among the different 

SAFT versions, we choose the PC-SAFT EoS developed by Gross and Sadowski [28], which 

is likely to be the most used SAFT model at present.  

When applied to specific compounds, a given equation of state can be parameterized 

according to different strategies, especially for three (or more) parameter models. Although it 

is beyond the scope of this work to review the different alternatives, it must be pointed out 

that various strategies and/or sets of parameters have been considered and published in the 

literature during the last two decades for both PC-SAFT and RKPR. For the first, in this work 

we will use the parameters by Tihic et al. [29]. Please note that pure compound parameter 

tables by Tihic et al. [29] can be used with either of both the original PC–SAFT [28] or the 

simplified PC-SAFT [30], since the latter only introduced changes in the mixing rules of the 



 

 

original version. In this work, calculations were performed with the original PC-SAFT EoS 

of Gross and Sadowski [28]. In the case of PR and RKPR, as usual, parameters were obtained 

from critical constants and acentric factor, using values for critical temperature (�
), critical 

pressure (�
) and acentric factor (�) from the DIPPR database [31]. Regarding the pure 

compound parameter �� in the RKPR EoS, our recently proposed correlation for alkanes [18] 

is used: 

�� = 2.70 + 0.4981(1 − ��� /"�.#"$)       (1) 

where CN is the Carbon Number of the n-alkane. 

In relation to mixing rules for the cubic EoS’s, note that, although we had previously 

achieved an excellent description of fluid phase behavior for these systems with the RKPR 

EoS and quadratic mixing rules for both the attractive and the repulsive parameters [32], 

some inconsistencies were detected later for the prediction of mixture volumes and solid-

liquid equilibria, but corrected based on the use of a linear mixing rule for the co-volume 

[18]. Therefore, in this work we adopt a quadratic mixing rule only for the attractive 

parameter (&), (Eqs. 2 – 4) and a linear mixing rule for the co-volume (') (as it has been the 

classic and most typically used approach with cubic EoS’s), as well as for the third parameter 

(��) (Eqs. 5 – 6). Moreover, for all alkane binaries studied in this work we adopt zero (�) 

values for PR and RKPR EoS’s. 

& = ∑ ∑ +�+)&�))�            (2) 

&�) = ,1 − (�)-.&��&))         (3) 

&�� = &
,� 0 "1234,	56	
          (4) 

' = ∑ +�'��            (5) 

�� = ∑ +���,��            (6) 

Where +� and +) are molar fractions of component i and j respectively; (�) is the attractive 

binary interaction parameter for the i and j binary system; �7,� is the reduced temperature for 

component i, (� is the constant defining the temperature dependence of the attractive 

parameter for component i. 

It is worth noting that the δ1 parameter has not the same effect than introducing a volume 

shift parameter (typically called “c”) within a cubic EOS, as it was originally proposed by 



 

 

Péneloux et al. [33] and then it was extended by other authors [34–36]. A volume shift 

parameter modifies EoS predicted volumes without affecting the predicted phase equilibria, 

whereas δ1 acts as a true third parameter, which modifies both volume and equilibrium EOS 

predictions. When searching for systems to study, we encountered that important sets of 

measurements of infinite dilution activity coefficients were published a few decades ago for 

binary mixtures composed of n-butane, n-pentane, n-hexane, n-heptane and n-octane as the 

light component, and different heavier alkanes with carbon numbers ranging from 16 to 36 

[10,12,13]. Most of those measurements are in the temperature range of interest covering 

from ambient conditions to 100°C. Therefore, our study will be focused on those five series 

of binary systems. 

Finally, the activity coefficient logarithm value for the i species [89(��(�, �, +))] will be 

calculated based on the corresponding logarithm of fugacity coefficient in solution [89(;<�(�, �, +))] and the pure compound fugacity logarithm [89(;�(�, �))] coefficient at the 

same system temperature and pressure (�, �): 

89(��(�, �, +)) = 89(;<�(�, �, +) − 89(;�(�, �))       (7) 

In most conditions considered, both compounds in pure states, as well as their mixtures, are 

in liquid state. In the few cases where the pure light compound is in gas state, e.g. n-hexane at 

373.15 K, the metastable liquid at such temperature is considered in order to compute the 

fugacity coefficient in Eq. (7).  

Results 

In this section we compare experimental infinite dilution activity coefficients for n-alkane 

asymmetric mixtures with our predictions obtained with the following models: (a) original 

PC-SAFT with parameters by Tihic et al. [29], (b) PR-EoS and (c) RKPR-EoS, both with the 

pure compound properties from DIPPR [31]; and in the case of  RKPR with the third 

parameter �� correlated for alkanes by Tassin et al. [18]. PR and RKPR were both used with 

null interaction parameters ((�1=0 and 8�1 = 0) and classical mixing rules for & and ' 

parameters.  

Figures 1 and  3 show the predicted activity coefficients compared to the corresponding 

experimental data of Parcher et al. [12] and Kniaz [10] for binary mixtures of n-hexane and 

n-heptane infinitely diluted in heavier alkanes (with carbon numbers ranging from 16 to 36). 

Whereas, Figs. 2 and 4 illustrate the quality of predictions for heavy paraffins infinitely 



 

 

diluted in n-hexane and n-heptane respectively, and the corresponding experimental data 

[10,12].  

It is worth to mention that, while all measurements published by Parcher et al. [12] 

correspond to 373.15 K, for the binary systems containing n-pentane, n-hexane and n-heptane 

as the light compound, infinite dilution coefficients reported by Kniaz [10] have been 

measured at different temperatures from 250.8 K to 343.15 K (see Figs. 1 and 3).  

Additional figures to those shown in this work, can be found in the Supplementary Material 

(Figs. S1 – S4). The reader will be able to find the activity coefficient predictions for binary 

mixtures of n-butane, n-pentane and n-octane infinitely diluted in heavier alkanes, as well as 

the quality of predictions for heavy paraffins infinitely diluted in n-pentane. 

 

Figure 1. Experimental and predicted logarithms of activity coefficients at infinite dilution of n-hexane in n-

alkane solvents as a function of the alkane carbon number. Full black triangles: experimental data at different 

temperatures from Kniaz [10]; full green squares: experimental data at 373.15 K from Parcher et al.[12]; empty 

black dots and black lines: predictions with RKPR EoS with �� parameter correlated in [18]; empty red dots and 

red lines: predictions with PC-SAFT model with parameters according to ref. [29]; empty blue dots and blue 

lines: predictions with PR EoS. Thick and thin lines of the three models correspond to Parcher et al. [12] and 

Kniaz data [10] predictions, respectively. Notice that all predictions consider null interaction parameters. 



 

 

 

Figure 2. Experimental and predicted logarithms of activity coefficients at infinite dilution for n-alkane in n-

hexane binary systems at different temperatures. Full black triangles: experimental data from Kniaz [10]; empty 

black dots and black lines: predictions with RKPR EoS with �� parameter correlated in [18]; empty red dots and 

red lines: predictions with PC-SAFT model with parameters according to ref. [29]; empty blue dots and blue 

lines: predictions with PR EoS. Notice that all predictions consider null interaction parameters. 

  



 

 

 
Figure 3. Experimental and predicted logarithms of activity coefficients at infinite dilution of n-heptane in n-

alkane solvents as a function of the alkane carbon number. Full black triangles: experimental data at different 

temperatures from Kniaz [10]; full green squares: experimental data at 373.15 K from Parcher et al.[12]; empty 

black dots and black lines: predictions with RKPR EoS with �� parameter correlated in [18]; empty red dots and 

red lines: predictions with PC-SAFT model with parameters according to ref. [29]; empty blue dots and blue 

lines: predictions with PR EoS. Thick and thin lines of the three models correspond to Parcher et al. [12] and 

Kniaz data [10] predictions, respectively. Notice that all predictions consider null interaction parameters. 

 

 



 

 

 
Figure 4. Experimental and predicted logarithms of activity coefficients at infinite dilution for n-alkane in n-

heptane binary systems at different temperatures. Full black triangles: experimental data from Kniaz [10]; empty 

black dots and black lines: predictions with RKPR EoS with  �� parameter correlated in [18]; empty red dots 

and red lines: predictions with PC-SAFT model with parameters according to ref. [29]; empty blue dots and blue 

lines: predictions with PR EoS. Notice that all predictions consider null interaction parameters. 

 

Table 1. Percentage average absolute deviations in �� for binary mixtures of light n-alkanes at infinite dilution 

in heavier n-alkanes (Cx indicates an n-alkane with x carbon atoms). 

Binary system 
% AAD in =� 

for PR-EoS 

% AAD in =� 

for PC-SAFT 

EoS 

% AAD in =� 

for RKPR-EoS 

Experimental 

data from 

C4 infinite diluted in n-alkanes 109.7 12.8 13.9 [12] 

C5 infinite diluted in n-alkanes 40.9 8.6 4.1 [12] 

C6 infinite diluted in n-alkanes 36.1 6.8 2.3 [12] 

C7 infinite diluted in n-alkanes 30.4 6.4 1.6 [12] 

C8 infinite diluted in n-alkanes 32.0 7.0 1.8 [12] 

 

 

 



 

 

 

Table 2. Percentage average absolute deviations in �� for binary mixtures of heavy n-alkanes at infinite 

dilution in n-pentane-n-hexane and n-heptane (Cx indicates an n-alkane with x carbon atoms). 

Binary system 
% AAD in =� 

for PR-EoS 

% AAD in =� 

for PC-SAFT-

EoS 

% AAD in =� 

for RKPR-

EoS 

Experimental 

data from 

n-alkanes at infinite dilution in C5  746.5 33.8 34.1 [10] 

n-alkanes at infinite dilution in C6 318.4 18.4 14.6 [10] 

n-alkanes at infinite dilution in C7 360.6 16.9 23.4 [10] 

 

As Figs. 1 to 4 show, PR EoS yields positive deviations from Raoult’s law for all the studied 

systems and conditions, whereas experimental data show negative deviations from Raoult’s 

law (i.e. activity coefficient values below unity, or negative values for ln (��)), in a 

magnitude that increases with the system asymmetry (i.e., ln(��) values become 

progressively more negative, see Figs. 1-4 and Figs. S1-S4 in Supplementary Material). 

Moreover, �� values predicted with PR-EoS have the highest deviations, as become evident 

from calculated percentage absolute average deviations shown in Tables 1 and 2. This effect 

is more noticeable for the cases of heavy n-alkanes infinite diluted in C5, C6 or C7, where the 

% AAD are over 300% for all studied systems (see Table 2). 

PC-SAFT and RKPR models yield negative deviations from Raoult’s law for all cases, with 

the exception that RKPR predicts just a slightly positive deviation for C16 infinite diluted in 

C6 at 250.8 K, or ideal behavior in practical terms (see Fig. 2). In all cases (Figs. 1-4 and 

Figs. S1-S4 in Supplementary Material) PC-SAFT predictions go below those corresponding 

to RKPR and, based on the comparison with the experimental data, it seems that PC-SAFT 

tends to slightly exaggerate the negative deviations from ideality, while RKPR is in general 

closer to the observed behavior in these mixtures. This is confirmed by numbers in Tables 1 

and 2, with two soft and one clear exception. The first soft exception corresponds to n-Butane 

infinitely diluted in paraffins (see Fig. S1 in Supplementary Material and Table 1). In this 

case deviations are similar but with opposite sign for PC-SAFT and RKPR, with data points 

falling always between both models. For reasons of scale affecting differently the points 

closer to one or the other model, average deviation in ln(��) is slightly lower for RKPR 

while the AAD in �� -which is the one computed in Table 1- is slightly lower for PC-SAFT. 

Then, regarding the two other exceptions which involve systems with heavy n-alkanes 



 

 

infinite diluted in C5 and C7 (see Table 2), we need to call the reader’s attention about the 

following. When having a closer look at the data sets reported by Kniaz [10], one realizes that 

the activity coefficients measured for C32 are in all cases unexpectedly low (Figs. 2, 4 and S3 

in Supplementary Material). This leads us to think that the n-Dotriacontane used in those 

experiments might have been contaminated with heavier compounds or there could have been 

another reason for these systematic deviations from the trend observed based on the other 

measurements reported by the same author. If we treat those points for C32 as outliers and 

recalculate the %AAD based on the other points, then the number is lower for RKPR in all 

cases. 

From Table 1, and based on data from Pacher et al. [12], we see that for C5, C6, C7 or C8 

infinite diluted in heavier n-alkanes, % AAD for RKPR is around 5 % lower than for PC-

SAFT.  

In order to illustrate the implications on the complete behavior of mixtures and given that 

most readers might be familiar with this type of plot as they appear in different books, Figs. 

5a – 5b show complete predictions of activity coefficients for both compounds in a binary 

system. Two of the systems considered in this study and with available data points at both 

extremes are included, namely C6+C36 and C7+C28. Despite the fact that in the two systems 

the temperature corresponding to both experimental points differ in around 100 degrees (see 

Fig. 5 caption for experimental data details), we still included them given the soft effect of 

temperature on these activity coefficients, and for illustrative purposes, and we perform our 

calculations at an intermediate temperature of 325 K. 

  



 

 

 

Figures 5a-5b. Complete curves of predicted activity coefficients at 325 K and 1 bar (in logarithmic scale) for 

the binary systems C6+C36 and C7+C28. Full black square: experimental data from Parcher et al.[12] (at 1 bar 

and 373.15 K); full black triangle: experimental data from Kniaz [10] (at 1 bar and 280.1 K for C6+C36; and 

279.4 K for C7+C28); black lines: predictions with RKPR EoS with ��  parameter correlated in [18]; red lines: 

predictions with PC-SAFT model with parameters according to ref. [29]; blue lines: predictions with PR EoS. 

Notice that all predictions consider null interaction parameters. 

  



 

 

 

Summarizing, both PC-SAFT and RKPR are able to predict the proper behaviors for 

experimentally observed infinite dilution activity coefficients in the studied (nearly) athermal 

mixtures, and also their trends along asymmetric homologous series, whereas PR-EoS clearly 

fails. RKPR was used in this work with classic vdW1f mixing rules, and it performs 

comparably or better than PC-SAFT model to predict ��. In other words, it seems there was 

nothing wrong the classic vdW1f mixing rules, when a third parameter takes into account the 

evolution of shape in a family of compounds like n-alkanes, similarly to what the m 

parameter does in SAFT models, since RKPR and PC-SAFT models have demonstrated to be 

able to properly predict �� behavior in the studied systems. Note, although, that the third 

parameter is only present in the attractive term of the RKPR EoS, while for SAFT models it 

also appears in the repulsive term. Nevertheless, despite this specific difference, we know 

from the works of Sacomani and Brignole [14] and Vahid et al. [7] that both repulsive terms, 

either the van der Waals or the SAFT one based on hard chains of spheres, correctly predict 

the trends of negative deviations from ideal mixing for asymmetric mixtures of n-alkanes. 

Then, the picture changes when an equation of state is completed for real fluids: It was 

already known that the coupling with the attractive term in cubic EoS's like SRK or PR 

worsens the quality of activity coefficient predictions in mixtures, leading to false positive 

deviations from ideality [14]. Now, from the results presented in this work, we see that is not 

the case with PC-SAFT, which provides good predictions and a correct trend when the full 

equation is applied to real mixtures in near room conditions of temperature and pressure. 

Moreover, our results have also clearly shown the same with a cubic EoS, the RKPR, for 

which the essential difference with SRK or PR is having a third parameter that interpolates 

between their structures or density dependences and also go beyond. Therefore, we see that 

the same parameter that broke the limitation of a unique universal @
 value for pure 

compounds (see Appendix A), corrects for the deviations from ideality when applied to 

mixtures. 

Here, a question may naturally arise: How is it that this third parameter in a cubic EoS 

corrects these behaviors? In what follows, we provide some detailed insight and elements for 

an answer. For cubic EoS's, the logarithms of fugacity coefficients in Eq. (7) can be 

decomposed into different terms, as it is explained in detail in Appendix B, leading to the 

following decomposition for the logarithm of the activity coefficient: 

ln(��) = A�7BC + A�DEE1F + A�DEE"F + AG	        (8) 



 

 

The decomposition is done in such way that each term is functionally valid either for a 2P-

EoS (SRK, PR) or a 3P-EoS (RKPR), the only formal difference being that a constant δ1 

parameter makes the A�DEE"F term vanish in a 2P-EoS.   

Fig. 6 shows how the curves in Fig. 5a, for n-C6 + n-C36, are decomposed into these terms. 

The curves in Fig. 6, considering both components, reveal a higher complexity than one may 

expect in advance, but there are some important observations to make: 

- In accordance with Sacomani and Brignole [14], we see that the non-residual contribution 

for the activity coefficient of the lighter compound would show the right behavior or type of 

deviation, but it is worsen and even inverted by the attractive term. Nevertheless, the picture 

is very different for the heavy compound. 

- It is interesting to note that the attractive contributions of the RKPR EoS have low or 

moderate values, and may even neutralize each other, while the A�DEE1F term in the PR EoS 

diverges to important magnitudes, either positive or negative, for both components. 

- Moreover, for n-C6 with the RKPR EoS, the 2-P attractive term is nearly zero in the whole 

range of composition, and it is very clear how the third-parameter term is the one that drives 

the logarithm of gamma to its position. The contributions are different for n-C36, but the 

result is also the right one. 

- Overall, and considering the very different curves that both models show for the same term 

-in particular the repulsive one-, it becomes clear that what makes the difference is not only 

the presence of the extra term related to the third parameter compositional dependence, but 

also the different parameterization induced by different δ1 values, in particular for the co-

volume of the heavy compound (83.1 and 78.9 cc/mol in this case). 



 

 

 

 

Figure 6. Complete curves of predicted logarithm of activity coefficient, and its terms (as defined in Eq. 8 and Appendix B) at 325 K and 1 bar for the binary system C6+C36. Predictions with 

PR EoS are found in the two images at the top, while the corresponding predictions with RKPR EoS are at the bottom. Notice that all predictions consider null interaction parameters. 



 

 

Conclusions 

In this work we have used three different EoS models in a completely predictive way, 

evaluating their performance to model asymmetric mixtures of n-alkanes based on activity 

coefficients, especially through infinite dilution values, for which an important collection of 

data is available in the literature. The three models included two cubic EoS, representative of 

the two-parameter (PR) and three-parameter (RKPR) categories, and the PC-SAFT EoS 

which, as every SAFT model in its non-associating version, has (at least) three parameters. 

Confirming trends already observed in the literature, and contrary to what experimental 

measurements show, PR predicted positive deviations from ideality in all cases. In turn, both 

PC-SAFT and RKPR predicted the right qualitative trends of negative deviations from 

ideality, with a magnitude that increases with molecular size asymmetry, and varying degrees 

of quantitative agreement with experimental data. 

First of all, and coming back to our original questions inspired on observations by 

Kontogeorgis and Folas, we can now conclude that the simple and classic van der Waals 

mixing rules can perfectly capture the right trends of activity coefficients in asymmetric 

nearly athermal mixtures with a cubic EoS. Therefore, it is not necessary to turn to more 

complex mixing rules. The only requisite is that the model has the flexibility to consider 

different shapes of molecules, and their mixtures, and this is provided by a proper third 

parameter. Based on a detailed decomposition in different sub-terms for the system n-C6 + n-

C36, and comparing these curves for the PR and RKPR EoS’s, we could see how the fixing 

of the analyzed two-parameter pitfall is explained partially by the third-parameter 

composition dependence itself and partially by how the other pure-compound parameters are 

affected by a different δ1 value in the RKPR. 

Moreover, we have shown that when the comparison between a cubic and a SAFT model is a 

fair one, i.e. using a three-parameter EoS in both cases, performances are similarly good in 

describing the behavior of asymmetric mixtures, and it can be even better with the cubic EoS, 

as it has been observed in this work. 

Third parameters have been present in SAFT EoS models since their origin, but this does not 

apply to the historical development of cubic EoS’s. We hope that this contribution helps in 

convincing our colleagues in the research community that a third parameter is as necessary in 

cubic EoS’s as it is in SAFT ones. 



 

 

  



 

 

Appendix A. Equations of state with two and three parameters: PR, RKPR 

and PC-SAFT 

Although the use of two and three-parameter cubic equations of state to describe the phase 

behavior of asymmetric mixtures has been previously discussed [32,37], the purpose of this 

appendix is to provide a summary of these types of equations and their main differences. In 

particular, we focus on those EoS used in this work: Peng-Robinson equation of state [2] (PR 

EoS) with two parameters, Generalized Redlich Kwong-Peng Robinson equation of state [4] 

(RKPR EoS) with three parameters and PC-SAFT, also of three-parameter type, but non-

cubic. Mollerup & Michelsen [20] proposed the following general expression, shown in Eq. 

A1, in which all of the well-known cubic EoS are contained for particular pairs of values (δ1, 

δ2): 

 � =  H3I�J − D (3)(I2 KLJ) (I2 KMJ)         (A1) 

When δ1 and δ2  constants are (1 + √2, 1 – √2) respectively the PR equation is obtained [2], 

whereas (0, 0) leads to the van der Walls EoS (vdW) [38] and (1,0) to the Redlich Kwong 

EoS (RK) [39]. In Eq. A1, ' and & are, respectively, the size (co-volume) and cohesive 

energy parameters; and the two parameters considered for PR, RK or vdW EoS, for example.  

Furthermore, if we add the following restriction: −���1 = ��+ �1 − 1 = O        (A2) 

and transform the constant δ1 into a compound specific parameter, then we have a three-

parameter equation of state which connects the RK (c=0) and PR (c=1) density dependences 

through the following expressions for the compressibility factor (Eqs. A3, A4 and A5): 

PHQFH = ���#R − #RS(�2#TLR)U�2#LVWLLXWLRY       (A3) 

Z = DH3J          (A4) 

[ = J#\             (A5) 

As it has been widely studied and discussed previously [4,22,32], the intrinsic limitations of 

two-parameter cubic equations of state to reproduce volumetric and derived properties in 

some cases, rather than from their empirical character, come from the fact that every two-



 

 

parameter equation of state for which the compressibility factor can be expressed in terms of 

two dimensionless variables that are direct or inversely proportional to the molar volume 

and/or the temperature, is a corresponding states model. This was demonstrated by Mollerup 

[20] and its details can be consulted in appendix A of the original work of the RKPR EoS [4].  

Thus, @O results a characteristic constant for each particular two-parameter EoS, e.g. 3/8 for 

the vdW EoS [38], 0.307 for the PR EoS [2], or 1/3 for the RK EoS [39]. 

In order to overcome the limitations of a two-parameter cubic equation of state, a third 

compound-specific parameter in the density dependence of the equation of state is necessary 

to model different types of fluids and their asymmetric mixtures. In the case of RKPR EoS, 

this third parameter is δ1, a structural parameter, which increases with non-sphericity (and 

also with polarity, but polarity is not present in alkanes). This parameter comes from Eq. 11 

in the “Pure compound parameters” section of our previous work [18], also reproduced as Eq. 

(1) in this work. 

The expressions for the residual Helmholtz energy (]7B^) and pressure in the RKPR EoS are 

the following (Eqs. A6, A7 and A8):  

_4`aH3 =  − ln U1 − J\Y − DH3JUKL�LVbLLXbLY ln c \2KLJ\2LVbLLXbLJd      (A6) 

& = &
 U "1234Y6
           (A7) 

� =  H3\�J − DeU fMXg4Yh
(\2KLJ)U\2LVbLLXbLJY         (A8) 

The covolume and the critical value of the attractive parameter for a pure substance are 

calculable from the following expressions: 

' = ΩJ H3eFe                         (A9) 

&
 = ΩD (H3e)MFe           (A10) 

Note that for simplicity, and in the context of pure compounds, only in this Appendix the “i” 

subscript is omitted for the different parameters and pure compound properties. 

ΩD and ΩJ are functions of the third parameter �� 



 

 

ΩD = "jM2"jkL2kLM2kL��("j2kL��)M         (A11) 

ΩJ = �"j2kL��          (A12) 

Where l and m� are intermediate variables defined as: 

l = 1 + [2(1 + ��)n�/" + U #�2KLY�/"
        (A13) 

m� = �2KLM�2KL           (A14) 

Further details of the deduction of these expressions can be found in the original reference of 

the RKPR EoS [4].  

It is well-known that a temperature dependence for the attractive parameter a is required to 

achieve a reasonable quantitative agreement with experimental data, especially vapor 

pressures. Although with different coefficients, both the SRK [1] and PR [2] equations use: 

o =  D(3)De = U1 + p ,1 − .�7-Y1
      (A15) 

known as Soave's classic α function, which works quite well for subcritical temperatures but 

is known to lead to inconsistencies in the supercritical region. Instead, the RKPR EoS 

employs another α function:  

o =  DDe = U "12 34Y6
           (A16) 

Adopting the two classical restrictions (�O and �O) for the determination of the three 

parameters at the critical point and having also adopted a standard procedure to determine the 

temperature dependence of a (adjusting k such that the vapor pressure implied by the acentric 

factor is reproduced), the RKPR EoS provides one extra degree of freedom (δ1) in 

comparison to classic two-parameter cubic EOS (a and ') like SRK or PR. Different 

approaches were followed in previous articles: In the original RKPR development, Cismondi 

and Mollerup [4] proposed the relation Zc  = 1.168 Zc
exp as the default setting for non-

associating fluids, which was latter followed by other authors [22,23,27]. Remember that Zc 

for RKPR-EoS is related to δ1 through Eq. A3. In other works, Cismondi et al. decided to 

impose the reproduction of the liquid density at a specified temperature, either at the triple 

point [22] or at Tr = 0.70 [25].  



 

 

In recent works [18,32,37] it was found that predictions of phase equilibria for asymmetric 

mixtures were quite sensitive to the values of δ1, and therefore it was proposed that this third 

parameter of the RKPR model could be defined based not only on properties of pure 

compounds, but also on the basis of properties of binary systems, particularly of the most 

difficult series to model among hydrocarbon mixtures: the asymmetric series of methane + n-

alkanes. In summary, the approach adopted here was that the parameters of pure compounds 

come from reproducing �O, �O and ω, and imposing a value of δ1. 

As PC-SAFT EoS [28] was also applied in the present work, it is also worth noting that, as in 

any three parameter EoS, its compressibility factor (Zc) varies with its third parameter value. 

This has been detailed in [40], and we make here just a general and brief explanation. The 

compressibility factor of a three or a two parameter EoS can be expressed as follows: 

@ = F(D,J,
,q,3)qH3           (A17) 

In the general context of Eq. A17, ' and & are, respectively, any pair of size and cohesive 

energy parameters in an EoS, particularly r and s/( in the PC-SAFT EoS. Accordingly, O 

denotes the dimensionless third parameter, which in PC-SAFT equals p. Moreover, the pure 

component critical conditions can be expressed as: 

UqMH3 tF(D,J,
,q,3)tq Y
 = 0         (A18) 

UqfH3 tMF(D,J,
,q,3)tMq Y
 = 0         (A19) 

In the case of any two-parameter EoS, considering that O is a universal constant, there is a 

unique solution to Eqs A18 and A19, and @
 is characteristic constant for such cases, as it 

was previously explained in this appendix. Otherwise, from Eq. A17, there is a different 

value of @
 corresponding to each value of the third parameter of PC-SAFT (as well as for 

any three parameter EoS like RKPR EoS). 

 

  



 

 

Appendix B. Decomposition of the uv(=w) expression in different 

contribution terms 

In order to get a deeper understanding of the effect of the third parameter in a cubic EoS and 

how it corrects the behavior predicted for �� and ���, we propose here to decompose the 

logarithm of the fugacity coefficient in Eq. (7), and analyze its terms. For cubic EoS's, we 

first consider the general formulation for the ln(;<�), following the approach proposed by 

Michelsen and Mollerup [20] as shown in Eq. B1: 

ln(;<�) = −x + yJ	z�{ − |H3 Ut}t{Yy,z,KL '� − }H3 U t|ty	Y3,y~ − |H3 U t}tKLYy,z,{ UtKLty	Yy~ − ln(@)        

(B1) 

It is worth noting that in Eq. B1, the term containing the δ1 parameter derivative disappears in 

a 2P-EoS (SRK, PR). In Eq. B1 the variables 9, x, �, �, � and  �� are defined as: 

9 = ∑ 9��                      (B2) 

x = 89 U1 − {zY             (B3) 

� = ∑ 9�� ∑ 9)  &�)(�))         (B4) 

� = �{UKL�LVbLLXbLY 89 c z2KL{z2LVbLLXbL{d           (B5) 

� = ∑ 9�'��                  (B6) 

�� = ∑ y	KL		 y            (B7) 

Equation B7 defines the mixture �� parameter for RKPR EoS. Still, if applied to the PR EoS, 

one gets the same value as for every pure compound, i.e. 1 + √2 (see appendix A). 

In Eq. B1, the derivatives U t|ty	Y3,y~, Ut}t{Yy,z,KL, U t}tKLYy,z,{ and UtKLty	Yy~ are calculable as: 



 

 

U t|ty	Y3,y~ = 2 ∑ 9)&�)(�))           (B8) 

Ut}t{Yy,z,KL = − �}2z� VL(�XbL�)(�XLVbLLXbL�)��
{       (B9) 

U t}tKLYy,z,{ = �KL�LVbLLXbL � �z2KL{ + 1Uz2LVbLLXbL{Y(�2KL)M − � U1 + 1(�2KL)MY�   (B10) 

UtKLty	Yy~ = KL	�KLy          (B11) 

Now, considering Eq. 7 of this paper, we can obtain ln(��) by subtracting the logarithm of the 

pure compound “i” fugacity coefficient (ln(;�)) to the logarithm of the fugacity coefficient 

of compound “i” in solution, given by Eq. B1. Furthermore, such equation can be 

decomposed into different terms that are functionally valid either for a 2P-EoS (SRK, PR) or 

a 3P-EoS (RKPR), as stated in Eq. (8), and which we have rewritten here: 

ln(��) = A�7BC + A�DEE1F + A�DEE"F + AG�       (B12) 

Its detailed terms are:  

A�7BC = −x + yJ	z�{ − �−89 01 − y	�J	z	� 5 +  y	�J	z	��y	�J	�     (B13) 

A�DEE1F = − |H3 Ut}t{Yy,z,KL '� − }H3 U t|ty	Y3,y~ − �− y	�MD		H3 Ut}t{Yy,z,KL
� '� − }	�H3 29��&���    (B14) 

A�DEE"F = − |H3 U t}tKLYy,z,{ UtKLty	Yy~          (B15) 

AG	 = − ln(@) − [− ln(@��)n        (B16) 

Considering that: 

��� = �y	�J	UKL�LVbLLXbLY 89 c z	�2KLy	�J	z	�2LVbLLXbLy	�J	d         (B17) 



 

 

Ut}t{Yy,z,KL = − �}	�2z	�� VLU�	�XbL�	��	Y0�	�XLVbLLXbL�	��	5��
y	�J	       (B18) 

Note that in Eq. B15 no pure-compound term appears being substracted to the mixture term. 

The reason for that is that, due to its definition in Eq. B11, the composition derivative of the �� parameter becomes zero when valued for the “i” compound in pure state. 

In the results section of this paper, we numerically analyze the contribution of each term in 

Eq. B12 to the final value of ln(��). It is worth mention that the proposed decomposition is 

valid for a 2P-EoS (SRK, PR) or a 3P-EoS (RKPR), being the only formal difference that a 

constant δ1 parameter makes the A�DEE"F term vanish in a 2P-EoS.   

  



 

 

List of symbols 

]   Helmholtz energy 

&   cohesive or energy parameter in an equation of state  

'   general notation for the size-related parameter in an equation of state; co-volume in a cubic EoS 

O   general notation for the dimensionless third parameter in an equation of state 

(   constant defining the temperature dependence of the attractive parameter in the RKPR EoS 

m   third parameter in SAFT-type equations of state: number of segments 

      (also, the characteristic constant in Soave’s alpha function) 

9   mole number 

�   absolute pressure 

�   universal gas constant (R = 0.08314472 bar L mol-1 K-1) 

�   temperature 

V   total volume 

+   molar fraction 

@   compressibility factor 

 

Greek letters 

;<   fugacity coefficient in solution 

�    activity coefficient  

��   infinite dilution activity coefficient  

�1   third parameter in the RKPR EoS 

�2   non-adjustable parameter defined in terms of �1    

ε/k     energetic parameter in PC-SAFT: square well potential depth 

 [   dimensionless variable relating the size parameter and the molar volume 

�    molar density 

σ    size parameter in PC-SAFT: segment diameter 

Z    dimensionless variable relating the energetic parameter and the temperature 



 

 

�   acentric factor 

 

Subscripts 

O    critical property 

�     component   

�    reduced property 

 

Superscripts 

0      pure compound  

���   residual property 
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