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We analyze the quantum entanglement between opposite spin projection electrons in the ground
state of the Anderson impurity model. In this model, a single level impurity with intralevel repulsion
U is tunnel coupled to a free electron gas. The Anderson model presents a strongly correlated many
body ground state with mass enhanced quasiparticle excitations. We find, using both analytical
and numerical tools, that the quantum entanglement between opposite spin projection electrons
is a monotonic universal function of the quasiparticle mass enhancement Z in the Kondo regime.
This indicates that the interaction induced mass enhancement, which is generally used to quantify
correlations in quantum many body systems, could be used as a measure of entanglement in the
Kondo problem.

Entanglement is a characteristic trait of quantum me-
chanics and a fundamental resource for quantum infor-
mation processing protocols. It is also a powerful tool to
analyze interacting many-body systems, able to detect
and characterize quantum phase transitions and topo-
logical phases [1–4], and plays a fundamental role in the
thermalization process [5]. Quantifying quantum entan-
glement in many body systems is, however, an experi-
mentally difficult task [6].

In this Letter we show that there is a one to one cor-
respondence linking the quantum entanglement between
opposite spin projection electrons and the interaction in-
duced quasiparticle mass enhancement in the Kondo cor-
related many-body ground state of the Anderson impu-
rity model. The Anderson model describes a single level
impurity with intralevel repulsion U tunnel coupled to a
free conduction electron band. It has been extensively
analyzed, together with other quantum impurity prob-
lems, to describe diluted magnetic impurities in a metal-
lic host [7–9], electronic transport through quantum dots
[10, 11], and to solve models of strongly correlated elec-
tron materials using the self-consistent dynamical mean
field theory (DMFT) equations [12]. Its most salient fea-
tures are associated with the magnetic moment behav-
ior at the impurity and the crossover to a spin-singlet
low temperature behavior. The Kondo effect, the screen-
ing of the local magnetic moment at the impurity by
the conduction electrons, leads to a strongly correlated
spin-singlet many-body ground state that dominates the
physics below a characteristic Kondo temperature TK .
For T < TK the low-energy properties, as the impurity
contribution the specific heat or the impurity magnetiza-
tion at low magnetic fields, are universal functions of the
relevant energy scale divided by kBTK .

Nozières successfully applied the Fermi liquid concept
to analyze the low energy excitations of the Anderson
model above the Kondo singlet ground state [13]. Fermi
liquid theory is based on the assumption of a one to
one correspondence between the low energy excitations
of an interacting electron system and those of a non-
interacting Fermi gas (see, e.g. Refs. [7, 14]). It al-

Figure 1. Sketch of the Anderson model, for an impurity with
Krammers degeneracy, including the two partitions of the to-
tal Hilbert space H considered to calculate the entanglement
entropy: a) H = Hi⊗Hbath. b) H = H↑⊗H↓. The Coulomb
repulsion U between opposite spin electrons at the impurity
and the tunnel coupling V between the impurity level and the
conduction electron bath, are indicated in the figure.

lows to describe the properties of a many-body electron
system through an effective theory of weakly interact-
ing quasiparticle excitations. The quasiparticles have a
renormalized mass m? = m/Z, where Z is the interac-
tion induced quasiparticle mass enhancement, and m the
effective electron mass in the absence of electron-electron
interactions in the conduction band. The quasiparti-
cle mass enhancement 0 < Z < 1 is generally used to
quantify electron-electron correlations and the coherence
scale in Fermi liquid systems [15]. In the Kondo problem,
Z ∼ πkBTK/NΓ(εF ), where the hybridization function
Γ(ε) characterizes the coupling between the impurity and
the conduction electrons, εF is the Fermi energy, and N
is the impurity level degeneracy [7].

We consider the ground state |ΨGS〉 of the Anderson
model and use the von Neumann entropy to quantify the
entanglement between two subspaces, HA andHB , of the
total Hilbert space H = HA ⊗HB :

S(ρA) = −Tr {ρA log2 ρA} = −
∑

i

λAi log2 λ
A
i , (1)

where ρA = TrB |ΨGS〉〈ΨGS| is the partial trace over HB ,
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and the λAi are the eigenvalues of ρA. This entanglement
measure has been successfully used to analyze the spa-
tial extent of the correlations, i.e. the size of the Kondo
screening cloud [16], in a variety of Kondo models [17–23]
including systems showing quantum criticality [24]. In
these works, the subspace A corresponds to the impurity
and a set lattice sites localized close to it, while subspace
B corresponds to the rest of the system [see Fig. 1a)].
These partitions present quantum entanglement even for
a noninteracting system (U = 0). To analyze the entan-
glement generated by the Coulomb repulsion U we focus
our analysis on the partition between opposite spin pro-
jection electrons [see Fig. 1b)] that are only coupled by
the local interaction U at the impurity. The resulting
entanglement entropy S↑ vanishes in the noninteracting
limit.

In its simplest form, the Anderson model for an N
degenerate impurity readsH = Hi+Hcb+HV [25]: where

Hi =
∑

j

εjf
†
j fj + U

∑

j′>j

f†j fjf
†
j′fj′ , (2)

is the impurity Hamiltonian,

Hcb =
∑

kj

εkjc
†
kjckj , (3)

models the conduction electron band, and

HV =
∑

kj

Vk

(
c†kjfj + f†j ckj

)
, (4)

models the tunnel coupling between the impurity and
the conduction band. Here f†j and c†kj create an electron,
with quantum number j, at the impurity and at the
conduction band level k, respectively. For U = 0,
assuming a constant density of states and neglecting
the k dependence of Vk (Vk = V ), the impurity level
acquires a lifetime ~/Γ and an associated spectral width
Γ = πρ|V |2. For U > 0 and −U < εj < 0 the isolated
impurity has a single occupancy and it can be regarded
as magnetic impurity with a total angular momentum
J . In the absence of an external magnetic field, we set
εkj = εk and εj = ε, and the degeneracy of the isolated
impurity ground state is N = 2J + 1. In this parameter
regime, the tunnel coupling to the conduction bath leads
to the screening of the magnetic moment and to a singlet
ground state.

The U →∞ and N →∞ Anderson model.— In the
infinite-U limit, the impurity multioccupancy is blocked
(the impurity can be either empty or singly occupied)
and to lowest order in 1/N , the ground state is a singlet
of the form [25, 26]

|ΨGS〉 = a0


|F 〉+

1√
N

∑

kj

bkf
†
j ckj |F 〉


 (5)

where |F 〉 =
∏
εk≤εF

∏J
j=−J c

†
kj |0〉 is the Fermi sea

filled up to εF and has associated an energy E0 =
N
∑
εk≤εF εk. A variational calculation of the Kondo

singlet energy εK = E0 + ε − 〈ΨGS|H|ΨGS〉/〈ΨGS|ΨGS〉
leads to the equations (setting εF = 0):

bk =

√
NVk

−εK + εk
(6)

ε− εK =
N

π

∫ 0

−D
dω

Γ(ω)

−εK + ω
, (7)

where Γ(ω) = π
∑
k δ(ω−εk)V 2

k , and−D is the lowest en-
ergy of the conduction band. Deep in the Kondo regime
(−ε� NΓ, εK � D, |ε|) the integral in Eq. (7) is dom-
inated by the energies close to the Fermi level (ω ∼ 0)
which allows to approximate Γ(ω) ∼ Γ(0) = Γ. This re-
sults in εK ∼ De−πε/NΓ. In the N → ∞ limit, NΓ is
taken as constant, and Eq. (5) is the exact ground state
wavefunction [25].

We calculate the entanglement entropy S↑ in the
ground state wavefunction (|ΨGS〉) for the partition
Hj>0 ⊗Hj≤0 of the total Hilbert space. After an appro-
priate basis change (see Ref. [27]), the density matrix of
the positive projection electrons, associated with nonzero
eigenvalues can be written as

ρj>0 = Trj≤0|ΨGS〉〈ΨGS| = a2
0


1 +

b20
2

b0√
2

b0√
2

b20
2


 , (8)

where b20 = NΓ
π

∫ 0

−D
dω

(−εK+ω)2 ∼ NΓ
πεK

, and the normaliza-

tion of the wavefunction leads to a2
0 = (1 + b20)−1. The

entanglement entropy S↑ can be readily calculated from
the eigenvalues of ρj>0 using Eq. (1). S↑ depends on the
model parameters only through Z = πεK/NΓ and it is
a monotonic function of Z (see Ref. [27]). As a conse-
quence, systems with different model parameters but the
same Z have the same spin entanglement entropy. Deep
in the Kondo regime, Z � 1 we have:

S↑ ∼ 1− Z

ln(2)
. (9)

The impurity-bath entanglement entropy Si does
not lead to useful information on the nature of the
correlations induced by U in the large-N limit. The
impurity density matrix ρi has N eigenvalues equal to
nf/N , associated with the occupancies of the N possible
spin projections at the impurity and a single eigenvalue
1 − nf that corresponds to the empty state. Here

nf = 〈∑j f
†
j fj〉 ≤ 1 is the ground state expectation

value of the level occupancy. This leads to a diverging
Si ∼ nf log2N in the large-N limit, a behavior that is
also obtained in the noninteracting case.
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The finite U and N = 2 Anderson model.— To ana-
lyze the validity of the relation between the quasiparticle
mass enhancement and the spin entanglement entropy
S↑ in a more general case with finite U and finite N , we
resort to numerical calculations using the density matrix
renormalization group (DMRG) [28]. DMRG is a numer-
ical method, based on Wilson’s renormalization group
ideas, to solve strongly correlated models in finite size
systems. m states are selected at each renormalization
step according to their respective weight in the ground
state wavefunction. The results are exact for large m,
but m is limited by the increase of computational cost.
For the Anderson model, which can be mapped into a
linear tight binding chain with the impurity at one end,
the accuracy improves exponentially with m, and excel-
lent results are obtained for m < 1000 for a wide range
of model parameters [27].

We focus the numerical calculations on the N = 2
(J = 1/2) case and use the standard notation for the
magnetic quantum number j =↑, ↓ and the fermion oper-
ators cf,j ≡ fj . To model the electron band, we consider
a half-filled tight-binding chain of length L,

Hcb = −t
L∑

i=1

∑

j={↑,↓}

(
c†i,jci+1,j + H.c.

)
, (10)

which leads to a semielliptic local density of states ρ(ε) =
2

πD2

√
D2 − ε2 at site 1 for L → ∞ and t = D/2. The

tunnel coupling is given by

HV =
∑

j={↑,↓}

(
V c†f,jc1,j + H.c.

)
. (11)

The hybridization at the Fermi level (εF = 0) is Γ =
πρ(0)V 2 = 2V 2/D.

The reduced density matrices required to calculate the
entanglement entropy can be obtained for finite L using
the DMRG [28, 29]. We performed a finite size analysis
for L up to 4096 which restricts the model parameters
to regimes where εK � t/L in order to avoid finite size
effects [11, 30].

Figure 2 presents the spin entanglement entropy S↑
for a variety of model parameters. S↑ decreases mono-
tonically as the system is driven, by the model parame-
ters, to a less correlated ground state, i.e. increasing the
impurity-electron bath coupling, decreasing the Coulomb
repulsion U or shifting the level energy away from the
electron-hole symmetric situation. In Fig. 2a) the system
is in an electron-hole symmetric regime with ε = −U/2
and the average impurity level occupancy nf is 1. In-
creasing U/Γ leads to a reduction in the average double
occupancy [see inset to Fig. 2a)] which signals an increase
in the correlations between opposite spin projection elec-
trons at the impurity. In Fig. 2b) the local interaction
U and the hybridization Γ are fixed and the impurity
level energy is shifted. The larger values of S↑ are ob-
tained in the electron-hole-symmetric condition. As nf
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Figure 2. Spin entanglement entropy S↑ for a variety of the
model parameters. (a) S↑ vs. U for an electron-hole sym-
metric situation ε = −U/2. The inset shows the impurity
level double occupancy probability. (b) S↑ vs. ε for fixed
local interaction as indicated in the figure. The entropy is
symmetric under the transformation ε → −U − ε due to the
electron-hole symmetry of the electron bath. The inset shows
the level occupancy.

decreases from 1 the interaction is less effective creating
correlations between opposite spin projection electrons.
A decreasing nf < 1 implies a larger probability of find-
ing the system with an empty impurity level in which the
interaction is not active. The same argument is valid for
nf > 1 due to the electron-hole symmetry [31] .

To calculate the quasiparticle mass enhancement we
define the zero-temperature spin susceptibility [8].

χ =
dmf

dh

∣∣∣∣
h→0

, (12)

which measures the change in the spin polarization of the
impurity in the ground state mf = 〈(n̂↑ − n̂↓)〉 /2 when
a Zeeman energy splitting 2h = gµBB is applied at the
impurity. In the numerical calculations presented below
a small enough energy splitting δh is applied, such that
the response is linear [32]. In the Kondo regime the low
energy properties of the system are universal functions
when properly scaled by the Kondo energy εK ∝ 1/χ
[8] and the quasiparticle mass enhancement can be esti-
mated as Z ∼ (Γχ)−1 [7].

Figure 3 presents the spin entanglement entropy as a
function of the quasiparticle mass enhancement. For val-
ues of Z . 0.1 the data from Fig. 2 fall into a single curve
as expected from the large-N analysis. This universal
and monotonic behavior indicates that the spin entangle-
ment entropy is uniquely determined by the quasiparticle
mass enhancement Z.

There are several important differences between the
numerical results for N = 2 and the large-N limit. In
the latter S↑ ≤ 1 while in the N = 2 case it shows values
larger than 1. This is due to the N → ∞ limit and
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Figure 3. Spin entanglement S↑ as a function of Z for a variety
of model parameters. In the low Z regime, the data fall into
a universal curve.

already including terms to order 1/N leads to S↑ > 1 in
the strongly correlated regime [33].

The N = 2 Kondo model.— It is interesting to com-
pare the spin entanglement entropy S↑ with the impurity-
bath entanglement entropy Si to see whether they convey
similar information. To that aim we focus on the N = 2
case in the Kondo limit Γ� |ε|, U in which we can ignore
charge fluctuations at the impurity and only consider a
magnetic exchange interaction J between a local mag-
netic moment in the impurity and the conduction bath
HK = JSf ·S1, where Sα = 1

2{c
†
α↑, c

†
α↓} ·σ · {cα↑, cα↓}T ,

and σ is the Pauli vector. This is the Kondo model which
can be obtained from the Anderson model in second order
perturbation theory on the impurity-bath coupling [34],
and J is a function of the Anderson model parameters.
In this model, Si is trivially 1 for any value of J > 0,
as the impurity is in a maximally entangled state with
the bath, while S↑ ≥ 1 depends on the value of J as it
can be seen by numerical calculations or by perturbation
theory in D/J (see Fig. 4) [27]. In the J /D →∞ limit,
the hopping terms can be neglected and the ground state
is a spin singlet formed by a spin 1/2 at the impurity
and a spin 1/2 at site 1 of the tight binding chain. This
readily leads to S↑(J → ∞) = 1 and perturbation theory

in D/J leads to a positive correction ∝ D4

J 4 log2(J /D).
The numerical calculations show a monotonic increase
in S↑ as J is decreased. These results for the Kondo
model show that the spin entanglement conveys more
information about interaction induced correlations than
the impurity bath entanglement.

In summary, we have found through analytical meth-
ods in the large-N and large-U limits and by numerical
approaches in the finite U and N = 2 case, that the
spin entanglement is univocally associated with the in-
teraction induced quasiparticle mass enhancement in the
Kondo regime. The quasiparticle mass enhancement can
be obtained from spectroscopic transport measurements
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Figure 4. Spin entanglement entropy S↑ as a function of the
exchange coupling J in the Kondo model calculated using
DMRG. The solid line is a fit using the functional form ex-
pected from perturbation theory in D/J .

of the Kondo resonance [35, 36] which would allow ob-
taining the spin entanglement in the ground state wave-
function (see also Ref. [37]).

The quasiparticle mass enhancement plays also a cru-
cial role when characterizing strong electronic corre-
lations in heavy fermion materials and to assess the
proximity to a Mott’s metal-insulator transition, while
DMFT establishes a connection between the physics of
strongly correlated electron materials and quantum im-
purity problems [9, 12]. In DMFT the lattice problem
is reduced to an impurity problem with a self-consistent
electron bath, which in the case of the Hubbard model,
is the Anderson impurity model. It would be of interest
to exploit this connection to analyze if the quasiparticle
mass enhancement in the Hubbard model can be inter-
preted as characterizing the interaction induced entan-
glement in the ground state wavefunction.
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I. CALCULATION OF THE ENTANGLEMENT ENTROPY IN THE U → ∞ AND N → ∞ LIMITS

In these limits the ground state wave function is of the form (see main text for the notation)

|ΨGS〉 = a0


|F 〉+

1√
N

∑

kj

bkf
†
j ckj |F 〉


 (1)

which can be written as

|ΨGS〉 = a0|F 〉+
a0b0√
N

∑

j

f†j c̃j |F 〉 (2)

where c̃j = 1
b0

∑
εk≤εF bkckj and b20 =

∑
εk≤εF b

2
k is a normalizing factor.

Separating positive and negative values of j we have:

|ΨGS〉 = a0|Fj≤0〉 ⊗ |Fj>0〉+
a0b0√
N
|Fj≤0〉 ⊗

∑

j>0

f†j c̃j |Fj>0〉+
a0b0√
N


∑

j≤0
f†j c̃j |Fj≤0〉


⊗ |Fj>0〉 (3)

where |Fj>0〉 =
∏
εk≤εF

∏
j>0 c

†
kj |0〉 and |Fj≤0〉 =

∏
εk≤εF

∏
j≤0 c

†
kj |0〉.

The parity of N becomes irrelevant in the large-N limit (the contribution of j = 0 to the entropy vanishes) and we
may assume N to be an even number (i.e., no j = 0 projection). We define the normalized states:

|Ψj>0〉 =

√
2

N

∑

j>0

f†j c̃j |Fj>0〉, (4)

|Ψj<0〉 =

√
2

N

∑

j<0

f†j c̃j |Fj<0〉, (5)

which allow us to write the ground state wavefunction as:

|ΨGS〉 = a0|Fj<0〉 ⊗ |Fj>0〉+
a0b0√

2
|Fj<0〉 ⊗ |Ψj>0〉+

a0b0√
2
|Ψj<0〉 ⊗ |Fj>0〉 (6)

We use the orthonormal |Ψj<0〉 and |Fj<0〉 to construct an orthonormal basis of the states with all electrons having
j < 0, and calculate the partial trace of the density matrix.

ρj>0 = Trj<0|ΨGS〉〈ΨGS| = a20


1 +

b20
2

b0√
2

b0√
2

b20
2


 , (7)

which is Eq. (8) in the main text. The matrix elements of ρj>0 associated with states orthogonal to |Ψj>0〉 and
|Fj>0〉 are zero and do not contribute to the entanglement entropy.

The eigenvalues of ρj>0 are:

λ± =
1 + Z ±

√
2Z + Z2

2(1 + Z)
. (8)

Here we have used b20 = 1
Z and a20 = Z

Z+1 , where Z is the quasiparticle mass enhancement.

Using Eq. (1) in the main text we obtain the entanglement entropy which depends on the model parameters only
through Z as:

S↑ = −1 + Z −
√

2Z + Z2

2(1 + Z)
log2

(
1 + Z −

√
2Z + Z2

2(1 + Z)

)
− 1 + Z +

√
2Z + Z2

2(1 + Z)
log2

(
1 + Z +

√
2Z + Z2

2(1 + Z)

)
. (9)

In the strongly correlated regime Z ∼ 0, a series expansion leads to S↑ ∼ 1− Z
ln(2) .
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II. ACCURACY OF THE NUMERICAL CALCULATIONS

In the density matrix renormalization group (DMRG) calculations, there are two relevant parameters to consider:
the final size L of the system after the renormalization procedure and the maximum number m of states kept at each
iteration step.

In Fig. 1 we present the calculated spin entanglement entropy S↑ in the Anderson model as a function of m and for
different values of L. The dots are the numerical data and the lines are least squares fits (see below) using a function
of the form S↑(m) = Sm→∞↑ − c1e−m/c2 , with Sm→∞↑ , c1, and c2 the fitting parameters. As it can be seen in Fig. 2,
S↑ converges exponentially to Sm→∞↑ with increasing m. The m-extrapolated values Sm→∞↑ for each system size L

are then extrapolated to the L→∞ limit, assuming finite size corrections polynomial in 1/L (see Fig. 3). For all the
parameters presented in the main text the extrapolation corrections amounted to less than 2%.
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FIG. 1. Spin entanglement entropy S↑ in the N = 2 Anderson model as a function of the number of states m kept at each
renormalization group step. The calculation parameters are U = 3D, Γ = 0.32D, where D is the width of the conduction band.
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FIG. 2. Difference between the entropy for a given m with the m → ∞ extrapolated value. The parameters of the Anderson
model are N = 2, U = 4D, Γ = 0.405D.
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FIG. 3. Spin entanglement entropy S↑ as a function of the inverse DMRG chain length 1/L. The fitting function is of the form
S(1/L) = S(0) + a/L + b/L2. The parameters of the Anderson model are N = 2 and Γ = 0.32D.

Finally, we present how the extrapolation of the quasiparticle mass enhancement Z to the m→∞ and L→∞ limits
was performed (see Fig. 4 and Fig. 5). The quasiparticle mass enhancement is calculated using Z ∼ (Γχ)−1, where χ
is the magnetic susceptibility and Γ the hybridization between the impurity and the conduction band. The magnetic
susceptibility is calculated applying a Zeeman energy splitting δ = 0.0001D at the impurity (χ is independent of the
value of δ if δ is smaller than kBTK and large enough to avoid numerical precision errors). Fig. 4 presents Z vs. m
for different values of L, the lines are least squares fits of Z(m) = Zm→∞ − b1e−m/b2 , with Zm→∞, b1, and b2 the
fitting parameters. In Fig. 5, the m-extrapolated values of Z for each DMRG chain size L are fitted using a second
degree polynomial in 1/L.

L

FIG. 4. Quasiparticle mass enhancement Z as a function of the maximum number of states m kept at each DMRG step. The
fits are a function of an exponential curve. The parameters of the Anderson model are N = 2 U = 3D and Γ = 0.32D.
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FIG. 5. Quasiparticle mass enhancement Z as a function of the inverse DMRG chain size 1/L. The fitting function is:
Z = Z(0) + a/L + b/L2. The parameters of the Anderson model are N = 2, Γ = 0.32D, and U = 3D.
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III. LARGE-J PERTURBATION THEORY FOR THE GROUND STATE WAVE FUNCTION

In the large-J limit the impurity and the first site of the tight-binding chain form a strong spin singlet and effectively
decouple from the rest of the tight-binding chain. The ground state of the system is a direct product of this spin
singlet |S〉 and a filled Fermi sea for the rest of the chain |Ω〉. The spin entanglement in this case is given by the
spin singlet and is simply S↑(J → ∞) = 1. To obtain the ground state in perturbation theory for finite t/J it is
convenient to write the Hamiltonian as H = HK +H ′ +He where

HK = JSf · S1, (10)

He = −t
L∑

i=2

∑

j={↑,↓}

(
c†i,jci+1,j + H.c.

)
, (11)

and consider

H ′ = −t
∑

j={↑,↓}

(
c†1,jc2,j + H.c.

)
(12)

as a perturbation. To first order in t/J the ground state wavefunction is:

|ΨGS〉(1) = |ΨGS〉(0) −
t√
L

∑

k

sin(ka)

− 3
4J − Ek

(
c†f↑c

†
k↓ − c

†
f↓c
†
k↑

)
|Ω〉

+
t√
L

∑

k

sin(ka)

− 3
4J + Ek

(
c†f↑c

†
1↑c
†
1↓ck↑ + c†f↓c

†
1↑c
†
1↓ck↓

)
|Ω〉,

(13)

with k = nπ
aL and n = {1, 2, ..., L− 2, L− 1}. To calculate the spin entanglement entropy it is convenient to define the

operators:

c̃α,j =
1

λα

2√
L

occ∑

k

sin(ka)

1− 4Ek

3J
ck,j (14)

and

c̃†β,j =
1

λβ

2√
L

unocc∑

k

sin(ka)

1 + 4Ek

3J
c†k,j (15)

where the sum over k is restricted to states occupied (unoccupied) in |Ω〉 and λ ∼ 1 is a normalizing constant. For
the half-filled case (electron-hole symmetry) we have λα = λβ = λ and λ = 1 to lowest order in t/J . Using these
operators to construct a basis, the reduced density matrix reads

ρ↑ =
1

1 +
(
4tλ
3J
)2




1
2 + 4

9
t2

J 2λ
2
√
2
3

t
J λ 0 0√

2
3

t
J λ

4
9
t2

J 2 0 0

0 0 1
2 + 4

9
t2

J 2λ
2
√
2
3

t
J λ

0 0
√
2
3

t
J λ

4
9
t2

J 2


 (16)

which has double degenerate eigenvalues:
{

2
(
2
3
t
J
)4
, 1

2 − 2
(
2
3
t
J
)4}

, to lowest non-trivial order in t/J . The entan-

glement entropy to lowest non-trivial order in D/J (D = 2t is the half-bandwidth) reads:

S↑ ∼ 1 +
2

81

(
D

J

)4

log2(J /D) (17)

Considering that we started from a first order correction to the wavefunction, higher order corrections in the wave
function would be needed to obtain the exact expression for the eigenvalues to fourth order. However, the expression

S↑ = 1+ c0
(
D
J
)4

log2(J /D) provides an excellent fit (using c0 as a fitting parameter) to the numerical data (see main

text).


