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 Uncertainties of model parameters must be included in the estimation of PMI. 

 Bayesian inference increases the reliability of PMI estimation. 

 The posterior probability distribution of PMI is more useful than a time interval. 

 The Bayesian framework allows combining different methods of PMI estimation. 

Highlights (for review)

Jo
ur

na
l P

re
-p

ro
of



Abstract

In this work, the postmortem interval is estimated by means of Bayesian inference using rectal tem-
perature data from a published database. First, a systematic analysis of the uncertainties in each of the
model parameters is carried out in order to assess their relative influences on the postmortem interval
uncertainty. Then, the method is applied to the whole database and proves to be more reliable than
the well-established nomogram method. Moreover, the result of the Bayesian inference process is the full
posterior probability distribution of the postmortem interval, which provides more information than a
simple point estimate or a time interval. This distribution can be used to assign probabilities to specific
time intervals that may arise in a criminal investigation. The application of this statistical analysis can
be extended to any method of estimating the postmortem interval.

1 Introduction

In the context of finding a human corpse, the postmortem interval (PMI), or time since death, is defined as
the time elapsed between the death and the examination of the body. Its estimation is a common forensic
practice and is essential, among other things, to validate or refute a suspect’s alibi in criminal investigations.
Although there is a increasing variety of techniques to estimate the PMI, the method developed mainly by
Henssge [1, 2], known as the “nomogram method” (although nowadays the calculations are done by computer
rather than using a nomogram), is the most widely used in practice. This method is based on the model of
body cooling by Marshall and Hoare [3, 4], which describes the changes in the standardized temperature Q
as a function of time since death and has two parameters A and B. This method can be applied directly at
the crime scene and in a wide variety of settings. Although there are several studies questioning its precision
[5, 6, 7], it is still the current standard in determining the PMI [8].

In order to obtain an estimate of the PMI using the nomogram method, the following data must be
acquired at the scene: the rectal temperature of the body, the mean ambient temperature, the body mass
and a corrective factor c wich depends on the cooling conditions. The method assumes that the probability
distribution of the time since death is Gaussian, with mean value t̂ and standard deviation σt, and the result
is commonly expressed as t̂ ± 2σt, where the minimum and maximum times define the 95.45 % confidence
interval for the PMI [9] according to a frequentist statistical approach. However, there are a number of
drawbacks associated with this procedure, namely:

1. The mean value t̂ is obtained by performing the calculations considering all variables as being deter-
ministic (i.e. with a fixed value), and the error assigned to the estimation arises from a histogram of
residuals which was obtained using the same method in a series of experiments [9]. The only relation-
ship between the empirical error assigned to the estimation of the time since death in a specific case
and the evidence obtained at the scene is the standardized temperature value Q (related to the degree
of cooling progress). Therefore, measurement errors and uncertainty of the model parameters are not
directly taken into account by this method.

2. Even assuming that sufficient data are available to estimate the mean ambient temperature over an
adequate time interval (i.e. an interval large enough to contain the time since death, starting for
example at the time when the deceased has been last seen alive), the uncertainty of that estimate is not
taken into account. In cases where the ambient temperature varies considerably throughout the cooling
process, the solution proposed in the bibliography is to consider the extreme temperatures and make
two estimates of t̂ that finally define an interval [10]. The recommendation is to report this interval only
if it is greater than that obtained using the empirical error. However, in this case only the uncertainty
in the ambient temperature would be considered, ignoring the other sources of uncertainty.

3. While many examples have been published showing how the value of the corrective factor c is deter-
mined, there is no systematic way to “translate” the set of cooling conditions to a specific value of that
factor. The tabulated values of c were determined by fitting experimental data, but the fitting errors
are neither reported nor included in the calculations [10].

4. The functional dependence of the parameter B with the body mass and the corrective factor c was
empirically determined by fitting a data set, but the fitting error is neither reported nor included in
the calculations. A similar situation is observed for the parameter A and its functional dependence on
the mean ambient temperature.

5. The human core temperature is known to fluctuate naturally throughout the day (circadian cycles)
and depending on many factors such as health status, menstrual cycle, intense physical activity, etc.
[11, 12]. However, this method assumes a fixed initial temperature without uncertainty.

6. Rectal temperature is not constant throughout the entire rectum, but depends on the depth and
anatomy of the individual [13]. Although it is possible to standardize the insertion depth of the
thermometer, the interindividual variability in the dimensions of the rectum makes the location of a
representative point always be subject to error.

7. The uncertainty in the estimated time since death is taken as the standard deviation of a set of
experimental errors obtained in different ranges of standardized temperature Q. These empirical errors
informally encompass all the uncertainties previously mentioned, but are specific to the cases included
in their determination. The following question arises: are the samples used to obtain these errors
representative of the entire population of possible cases? In other words: do these empirical errors have
a universal quality?
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A couple of works were recently published analyzing the error in PMI estimation caused by “input errors”
(i.e. measurement errors) in the nomogram method. The authors performed error propagation calculations
and Monte Carlo simulations to quantify the effect of errors on rectal temperature, ambient temperature,
initial temperature, and time measurement [14], as well as the errors on body mass and corrective factor
[15]. They then used an experimental database of postmortem rectal cooling to determine the absolute error
between the estimated mean time since death according to the nomogram method and the actual time since
death [7], and their results show that the empirical errors used according to the nomogram method are in
many cases less than the real ones, and therefore the confidence interval of 95.45% obtained with this method
is not always reliable. The conclusion of this last work was that it is necessary to perform a recalibration
of the nomogram method, recalculating the corrective factors in a large number of samples (according to its
recommendations, at least 400 samples are required).

Another important flaw, inherent to the analysis of the data according to the nomogram method, consists
in the interpretation of the result. Formally speaking, a frequentist confidence interval of 95.45% in the
reported PMI is not an interval where the probability of finding the true PMI is equal to 95.45%. Indeed,
the only thing that can be assured from the frequentist perspective is that, if confidence intervals of 95.45%
are built from infinite samples1, 95.45% of these intervals will contain the true value of the PMI. However,
given a specific sample and the associated confidence interval, an important question arises: what is the
probability that the true value of the time since death is contained in this specific interval? Unfortunately,
it is not possible to answer this question from a frequentist perspective. In fact, following this approach, the
time since death is a fixed quantity and therefore the probability that it is contained in the interval will be
0 or 1, and this conclusion is not particularly useful.

In this work, we analyze the effect of the different variables and parameters involved in the nomogram
method from a different point of view, namely from the Bayesian perspective, using a published database of
postmortem rectal cooling [16]. The result of this approach is not a mean estimate of the PMI with an associ-
ated empirical error, but the full posterior probability distribution of the time since death. This distribution
is obtained, given a statistical model of the data, through an inference process in which all the uncertainties
associated with the model parameters are introduced. The use of conditional probability distributions has
been previously proposed to compute confidence intervals for the reported time since death by means of
the nomogram method combined with non-temperature-based methods [17, 18], but the uncertainties of the
model parameters were not taken into account. Bayesian methods have also been applied to the estimation
of PMI based on multiple temperature measurements and using mechanistic models [19]. Although these
complex models are very interesting from a theoretical point of view, they are not yet applicable in daily
forensic casework. The method we propose in this work is simple to implement and requires the same effort
at the crime scene as the nomogram method.

One of the advantages of this approach is to avoid the error associated with the hypothesis that the PMI is
normally distributed around a mean value, since, as will be seen in Section 3, in some cases its distribution is
rather asymmetric. However, the greatest benefit of having the posterior distribution of the PMI is to be able
to make concrete claims about probabilities. In this sense, a credibility region of 95.45% can be calculated,
and its interpretation, in contrast to the frequentist approach, is precisely the probability that the true time
since death is contained in that region, given the prior information and the data obtained at the scene. On
the other hand, it is also possible to answer specific questions of the type: what is the probability that death
occurred in a specific time interval? This question may arise, for example, when analyzing a suspect’s alibi,
and it has a potentially enormous value as scientific evidence in court. In addition, this method allows new
information to be incorporated (e.g. the time at which the person was last seen alive, knowledge of a history
of fever, changes in cooling conditions prior to finding the body, etc.) in a systematic manner, and therefore
makes it possible to obtain posterior distributions of PMI specific to each case (instead of using an empirical
error that does not depend on the case, as in the nomogram method). Furthermore, Bayesian inference allows
combining distributions of PMI obtained with different techniques in order to achieve a final distribution that
reflects all the available knowledge about a case.

2 Materials and methods

2.1 PMI estimation using the nomogram method

The steps to estimate the postmortem interval using the nomogram method are summarized below:

1. The rectal temperature u is measured at the scene, usually employing the same procedure proposed by
Marshall and Hoare [3, 10, 20, 21].

2. The mean ambient temperature, uA, is calculated from data collected at the scene (or near it) in the
last hours previous to finding the body. If such a record of ambient temperature is not available, the
measured value at the time of discovery is used.

3. The body mass, m, is indirectly estimated at the scene. If possible, this value is more accurately
measured with a scale during the autopsy and the estimation of the time since death is corrected
accordingly.

4. The set of environmental conditions K in which the body was found is registered. This corresponds to
a verbal description of the clothing that the body had at the time of the discovery, the kind of surface
on which it was laying, its position (face up, sideways, etc.), the presence of moisture on the body
and/or clothing, the air flow, etc.

1In this case, this would be equivalent to repeating the death “experiment” on the same person infinite times, something
that defies common sense.
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5. Given K, the corrective factor c is determined by means of the recommendations given by Henssge,
which are based on the results of different analyzes carried out on experimental data. The values of c
are tabulated [2, 10, 22] and correspond to a standard mass of 70 kg.

6. Based on m and c, the value of the parameter B is calculated by means of an empirical equation
proposed by Henssge, which is based on an adjustment he made on an experimental data set [9], and
whose most complete version includes the corrections given in equation 6.10 of the book [10]:

B = b1.z
−5/8 + b2, (1)

where:

z =

[
b1(

m−5/8 − b2
)
. (b3 exp(b4c)) + b5

]8/5
,

b1 = −1.2815,

b2 = 0.0284,

b3 = −3.24596,

b4 = −0.89959,

b5 = −0.0354.

7. A value of the parameter A is chosen depending on the mean ambient temperature [9]:

A =

{
1.25, for uA ≤ 23

1.11, for uA > 23
(2)

8. An initial temperature value u0 = 37.2 ◦C is assumed.

9. The standardized temperature value Q is calculated:

Q =
u− uA
u0 − uA

. (3)

10. The time since death is calculated by solving the Marshall and Hoare equation for variable t:

Q = A. exp (Bt) + (1−A). exp

(
AB

A− 1
.t

)
. (4)

This equation cannot be explicitly solved for t, and therefore a nomogram or one of the existing
computer programs is used (e.g. the freeware developed by E. Friedlander, the online page developed
by W. Schweitzer or C. Henssge’s commercial software) [9, 10].

11. Depending on the value of Q, an uncertainty σt is assigned to the estimated time since death. This
uncertainty is taken from a histogram of absolute errors experimentally determined by Henssge [9, 10]:

σt =


1.3, for Q ≥ 0.5

2.2, for 0.3 ≤ Q < 0.5

3.4, for 0.2 ≤ Q < 0.3

. (5)

12. If Q < 0.2, this method is not used to estimate the PMI.

The result of the estimation is expressed as t̂ ± 2σt, where t̂ is the time value calculated with equation
(4) and σt is obtained from equation (5).

2.2 PMI estimation by means of Bayesian inference

In the context of Bayesian inference, each of the variables and parameters involved in the body cooling model is
considered to have an associated probability distribution. This means that none of the measured or estimated
quantities have an exact value, but all of them have an associated uncertainty that depends, among other
things, on the details of the procedure, the characteristics of the instrument and the inter-sample variability.
From this perspective, the resulting PMI will also have an associated probability distribution, which can be
obtained through an inference process based on the experimental data and prior information available on
the particular case. In this article we present the result of an estimation as the posterior probability density
of the time since death, p (t|D, I), which should be read as “the probability that the time since death is t,
given the data D and the prior information I” (this function is a density because t is a continuous variable).
Here, D is the set of all data (evidence) obtained at the scene and I is a proposition representing all the
information that is known and assumed about the case (the cooling model, the statistical model of the data,
the prior distributions of the parameters, etc.). In this way, Bayesian inference consists of an update of the
available information, and therefore the probability density function that is obtained is called posterior [23].

To correctly perform a Bayesian inference, it is important to clearly establish the relationships between
the different variables and model parameters. Figure 1 shows a diagram representing these links, based on
the description given in Section 2.1:
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Figure 1: PMI estimation model using Bayesian inference. The result is the posterior distribution of the time
since death given the data.

The data set obtained in a specific case for which the time since death is to be determined is D =
{ũ, ũ0, ũA, m̃, c̃}, where the tilde (∼) over a variable represents its observed value. Here, u, u0 and uA are
measured in [◦C], m is measured in [kg] and c is dimensionless. According to this scheme, the functions
f2 (u, u0, uA), f3 (uA) and f4 (m, c) allow us to obtain Q, A and B according to equations (3), (2) and (1),
respectively, which are deterministic relationships. Finally, the time since death t is calculated from Q, A
and B also in a deterministic fashion by means of f1(Q,A,B), which is obtained by numerically inverting
function (4).

The first step in this Bayesian inference process is to obtain the posterior densities of each of the parameters
u, u0, uA, m and c, and then make a series of variable transformations until finally obtaining the posterior
density of the PMI. Given this density, the probability that death occurred in the time interval (a, b) (with
b > a) is:

Pr (t ∈ (a, b) |D, I) =

∫ b

a

p (t|D, I) dt. (6)

Therefore, the Bayesian inference process allows obtaining time intervals that have a certain probability
value or, conversely, the probability that death occurred in a specific time interval. Finally, we define the
credibility region of 95.45% as the interval (a, b) with minimum amplitude2 that satisfies equation (6) for
Pr (t ∈ (a, b) |D, I) = 0.9545. Throughout this article, we will call this interval R95.

2.3 Determination of the posterior density of the time since death

To obtain the expression that allows calculating the posterior density of the time since death given the data,
we start from the functional relationship between t and the variables Q, A and B, given by f1(Q,A,B) (see
Figure 1). This relationship is deterministic and, therefore, following the guidelines given in [23], the sought
expression is:

p (t|D, I) =

∫∫∫
V1

δ (t− f1 (Q,A,B)) p (Q,A|D, I) p (B|D, I) dQdAdB, (7)

where δ(t) is Dirac’s delta function, p (Q,A|D, I) is the joint posterior density of Q and A, p (B|D, I) is
the marginal posterior density of B, and V1 is the integration region. The distributions appearing in the
integrand of equation (7) can be calculated by means of the following expressions:

p (Q,A|D, I) =

∫∫∫
V2

δ (Q− f2 (u, u0, uA)) δ (A− f3 (uA)) p (u, u0, uA|D, I) du du0 duA, (8)

p (B|D, I) =

∫∫
S

δ (B − f4 (m, c)) p (m, c|D, I) dmdc, (9)

where p (u, u0, uA|D, I) is the joint posterior density of u, u0 and uA, p (m, c|D, I) is the joint posterior
density of m and c, and the corresponding integration regions are V2 and S. Details of the derivation of
these expressions can be found in Appendix A. Using this calculation scheme, the uncertainty in the time
since death is completely determined by the uncertainties in the observed variables, which are contained in
the distributions p (u, u0, uA|D, I) and p (m, c|D, I).

2Formally, the region calculated in this way is called highest posterior density region, and it satisfies the condition that
p (t|D, I) is greater at all points inside the interval (a, b) than outside it. However, for unimodal distributions this is also the
interval with minimum amplitude containing the required probability [24].
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In practice, these equations are not solved analytically, but are used to obtain samples of the corresponding
distributions. The procedure for extracting a sample from the posterior distribution of the PMI is summarized
below:

1. Extract a sample of u, u0 and uA from their posterior distributions, which depend on the observed
values ũ, ũ0 and ũA, as well as their uncertainties. This is detailed in Section 2.4.

2. Use the samples obtained in 1 to compute Q = f2 (u, u0, uA) and A = f3 (uA), thus obtaining a sample
of the joint distribution p (Q,A|D, I).

3. Repeat step 1 with m and c and step 2 with B, to obtain a sample of the distribution p (B|D, I).

4. Extract a sample of the posterior distribution of the PMI, p (t|D, I), by computing t = f1 (Q,A,B)
using the samples of Q, A and B obtained in steps 1 - 3.

2.4 Posterior distributions of the parameters

Given a data point x̃ that represents the measured value of parameter x, Bayes’ theorem [23] states that:

p (x|x̃, I) =
p (x̃|x, I) p (x|I)∫

Dx

p (x̃|x, I) p (x|I) dx
, (10)

where p (x|x̃, I) is the posterior density of x, p (x̃|x, I) is the likelihood function and p (x|I) is the prior density
of x. In this work, for each of the data x̃ ∈ D we propose a normal likelihood of the form x̃|x, I ∼ N

(
x, σ2

x

)
,

with known uncertainty σx. Following the guidelines given in [25], to obtain the posterior density of x we
assume an improper normal prior density that reflects a state of total ignorance: p (x|I) ∝ 1. In this way,
the posterior distribution of parameter x given the unique data value x̃ is also normal: x|x̃, I ∼ N

(
x̃, σ2

x

)
,

and the corresponding density function is:

p (x|x̃, I) =
1√

2πσx
exp

(
− (x− x̃)

2

2σ2
x

)
. (11)

Although in this work we assume a prior information equivalent to a state of total ignorance about each of
the parameters involved, it is possible to incorporate here relevant information by modifying the distribution
p (x|I) accordingly. For example, if the deceased person was known to have a fever at the time of death, it
is possible to assign a prior density to u0 that reflects this knowledge.

2.5 Incorporation of non-temperature-based information

Given the availability of information about the distribution of PMI which is independent of that used in the
estimation by means of the body cooling model, it is straightforward to incorporate it using Bayes’ theorem
in a second inference process. Such information may come, for example, from other estimations carried out
with different methods or from witnesses that identify the time at which the person was last seen alive.

Let I1 = D, I be the statement that represents all the information, prior and posterior, corresponding to
the estimation of PMI by using the body cooling model. This proposition represents the prior information
in this second inference process. On the other hand, let D1 be the statement that represents the non-
temperature-based data. So, based on Bayes’ theorem, we have:

p (t|D1, I1) ∝ p (D1|t, I1) p (t|I1) , (12)

where p (t|I1) is the posterior density of the time since death obtained in the first inference process according
to equation (7) and p (D1|t, I1) is the new likelihood function, which represents the probability that the
statement D1 is true given the time since death t and the prior information I1. The nature of this latter
probability function depends on the format of the new information.

Consider the information given by the proposition D1 ≡ “the maximum and minimum possible values
for the postmortem interval are tmax and tmin, respectively”. In this case, tmax and tmin represent the
times elapsed since the last time a witness saw the person alive and since the body was found3, respectively,
with respect to the instant of the rectal temperature measurement, and therefore D1 represents valuable
information worth to be incorporated into the analysis. Given the nature of proposition D1, we have a
uniform likelihood, namely:

p (D1|t, I1) =

{
1, for tmin ≤ t ≤ tmax

0, elsewhere
,

and therefore:

p (t|D1, I1) =

{
k p (t|I1) , for tmin ≤ t ≤ tmax

0, elsewhere
, (13)

where k is a normalization constant. Thus, this new posterior density contains both the information provided
by the analysis of body cooling and the non-temperature-based information from witnesses. Of course, this
distribution can be used again as a prior in a new inference process that involves data associated with another
PMI estimation technique. In this way, different types of data associated with the estimation of the PMI can
be systematically combined, updating the degree of belief and obtaining a more reliable distribution.

3Although the PMI is defined as the time elapsed from death to the examination of the corpse, there is generally a delay
between discovery and examination.
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2.6 Parameter uncertainties

In this section we analyze each of the model’s parameters separately, in order to establish criteria to select
adequate values for their uncertainties.

2.6.1 Uncertainty in u

There are mainly two sources of uncertainty for the measured rectal temperature u. First of all, each
thermometer has a certain accuracy, which is given in ◦C, and this value generally varies between 0.1 and
0.5 ◦C depending on the manufacturer. Second, the body cooling model describes the temporal variation of
temperature at the same position (depth) in the rectum. Therefore, a temperature measurement made at a
different depth would imply a difference with respect to the value predicted by the model, introducing a source
of uncertainty. Lee and others [13] carried out a series of experiments in which they measured the rectal
temperature of living humans at rest at different insertion depths between 4 and 19 cm (measured from the
sphincter), and the mean value of the difference between the minimum and maximum recorded temperatures
was on the order of 0.5 ◦C. Although a standardized procedure for the insertion of the thermometer is used,
the measurement site will always be subject to inevitable human error and anatomical differences between
individuals, so these deviations must be taken into account.

2.6.2 Uncertainty in u0

It is known that the core temperature of a healthy person is not constant, but varies throughout the day
(circadian cycles) depending on metabolism, physical activity, age and many other factors, both endogenous
and exogenous [11, 12]. In addition to this physiological variation, cases of postmortem hyperthermia have
been reported [6] and there is also the possibility of hypo- or hyperthermia prior to death (e.g. caused by
disease). Furthermore, it is postulated that long periods of agony can strongly modify the central temperature
before death, both increasing and decreasing it [10]. All these factors contribute to the uncertainty in the
initial temperature. The typical mean core temperature value used in the estimation of PMI is û0 = 37.2 ◦C.
In cases where hypo- or hyperthermia can be ruled out, an uncertainty σu0 = 0.5 ◦C reflects the normal
fluctuations of a healthy body around this value [11]. On the other hand, if no information is available in
this regard, such ignorance should be reflected in a greater value of uncertainty. If the deceased person had
a history of fever or hypothermia, or if a long period of agony is suspected, a modification of the mean value
and standard deviation according to these situations should be considered.

2.6.3 Uncertainty in uA

The uncertainty in the mean ambient temperature value is mainly due to its variation throughout the cooling
process, and to a much lesser extent to the accuracy of the thermometer. The average ambient temperature
is calculated with the following formula:

uA =
1

n

n∑
i=1

TA(ti), (14)

where TA(ti) is the ambient temperature recorded at time ti, the subscript 1 corresponds to the first recorded
value of ambient temperature and n is the number of measurements between the first record and the exami-
nation of the body (when the rectal temperature measurement is performed). The value of uA thus depends
on the length ∆t = tn − t1 of the period considered. This is shown in Figure 2, using as an example data
from a meteorological station located in the city of San Carlos de Bariloche (Argentina) between 3:00 AM
on September 10, 2017 and 3:00 AM on September 12 of the same year (48 hours in total).

Figure 2: Temporal variation of ambient temperature (dotted black line) during two days of spring in 2017,
in the city of San Carlos de Bariloche, Argentina. The curves corresponding to the mean value of the ambient
temperature and the standard deviation of said mean value are also shown.
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As can be seen, during the last 16 hours prior to the discovery, the fluctuation in the ambient temperature
is such that uA varies considerably depending on how many values of TA(t) are used for its calculation. The
results of the PMI estimation depend in turn on the value adopted for uA, so it is important to assign an
adequate value to its uncertainty. In this example, we see that σuA

reaches values of up to 2 ◦C.
In cases where the ambient temperature record is not available throughout the considered interval, we

propose to use a value of σuA
that reflects the usual seasonal climatic conditions at the site of the discovery.

2.6.4 Uncertainty in m

Although the body mass is first indirectly estimated at the scene, its value is usually re-determined using a
scale at the autopsy, in which case its uncertainty is expected to depend solely on the instrument accuracy.
However, there are different reasons that could generate a variation in the mass from the moment of death
to its estimation at the scene to its measurement in the autopsy room (e.g. loss of blood and other fluids).
Therefore, in each particular case, a value of σm must be selected that contemplates this type of situation.
On the other hand, if a measurement of m is not performed with a scale before reporting the results of the
PMI estimation, a rather conservative value of σm should be considered that reflects the observer’s training
level.

2.6.5 Uncertainty in c

The corrective factor c is the most problematic parameter of the nomogram method, since its estimation is
made from a verbal description of the conditions at the scene (K) and using only a partially systematized
procedure. This means that the same “value” of K can be translated into different values of c depending
on the investigator’s interpretation. Furthermore, the tabulated values of c correspond to mean values
obtained from empirical adjustments, and therefore have an associated uncertainty that is not reported in
the bibliography. For instance, by using tables 6.18 and 6.19 of [10] the value c = 0.9 corresponds to a
body with the following description: K0 ≡ “one to two layers of fine clothing, dry, in still air and supported
on a thermally indifferent base, standard mass (70 kg)”. However, this value was obtained from a series of
experiments carried out under a set of conditions Ki similar to K0 but not identical, and it is only an average
value. Therefore, it is absolutely necessary to consider the uncertainty of parameter c in the estimation of the
PMI, especially considering its great influence on the shape of the cooling curve, as will be shown in Section
3.1.6.

In a reference work on the nomogram method [26], the authors recommend using two values of c that
represent the limits of an interval where the “true” value of said parameter is found. With these values, two
different estimates of time since death are obtained, and the authors recommend selecting the widest interval
among that obtained using the mean value of c and the one obtained using the two extreme values. However,
it is not clear how to objectively select that range of c.

In two other recent works that analyze the errors of the nomogram method, the authors make the following
statements regarding the corrective factor: (1) “The corrective factor c neither represents a continuous
variable nor can it be measured [...]” [14] and (2) “Actually, the variable c is defined on the class N × R
of ordered pairs (N,m) with N being any possible non-standard cooling condition and m being any possible
body mass, where N is an infinite space without a clear set definition and with no quantifiable mathematical
structure or even a topology [...]” [15]. We believe that these statements are imprecise and could lead to
confusion. In practice, each of the experimental corrective factors is obtained, for a certain set K of non-
standard conditions, according to the relationship c = mv/m, where mv is the “virtual mass” that a body
should have in order to cool in the same way under standard conditions, and m is the actual body mass.
Therefore, since m and mv are continuous variables, c is also continuous. While the tabulated values of c
correspond to a finite set of cooling conditions (represented by discrete variables), it is expected that two
slightly different conditions (e.g. clothes a little more or less fine, slightly different body positions, slightly
different air velocities [5], etc.) give two different values of c. It is impractical to define the cooling conditions
with continuous variables (e.g. clothing thickness, water mass, wind speed, thermal conductivity of the
supporting base, etc.); instead, the tabulated values of c are average values obtained from a series of similar
experiments, and this means that there is only a finite (discrete) set of corrective factors to select from in
the tables. In our opinion, the correct way to present the values of c would be by giving their probability
distributions: for example, instead of giving the value c = 0.9 as described in the example at the beginning
of this section, it would be much more significant to state c ∼ N (ĉ, σ2

c ), where ĉ = 0.9 and σc is the standard
deviation of the values obtained in the corresponding experiments.

2.7 Analysis of experimental data

To evaluate the Bayesian inference method, this study analyzes cases from the database published by Muggen-
thaler et al. [16], which consists of 84 postmortem cooling curves recorded under strictly controlled environ-
mental conditions. Because the information was given in form of cooling diagrams, we used the free software
Graph Grabber 2.0 to extract the data points from the figures. All calculations were performed with software
programmed in Python 3, and the number of samples in all simulations was 10000. In general, the larger
the number of samples, the better the description of the corresponding probability distribution. With N =
10000, the uncertainties introduced by the sampling process are negligible compared to the uncertainties in
the model parameters.

In the first part of this study, the influence of the uncertainties in the different parameters on the estimation
of the PMI is analyzed. Firstly, a specific case of interest is considered, namely case number 54 of the
mentioned database, which was classified by the authors as one of the “representative cases” and generated
discussions due to the great inaccuracy with which the nomogram method represents its cooling curve [27, 28].
From this experiment, the discovery of the body is simulated by choosing an arbitrary point on the cooling
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curve and the estimation of the PMI is carried out using Bayesian inference. The influence of parameter
uncertainties is analyzed first separately and then the combined uncertainty is studied. Different values are
assigned to σx in each case, using ranges according to the analysis of Section 2.6. Subsequently, similar
simulations of body finding are performed for all cases in the database and in different parts of the cooling
curves corresponding to 8 ranges ofQ, respectively: [0.95,0.90), [0.90,0.80), [0.80,0.70), [0.70,0.60), [0.60,0.50),
[0.50,0.40), [0.40,0.30) and [0.30,0.20]. The purpose of these simulations is to analyze the influence of the
parameter uncertainties as a function of the cooling progress. In all cases, the value of Q corresponds to the
experimental data (measurements).

In the second part of this work, a fixed value of uncertainty is selected for each parameter, according
to the experimental conditions described in [16], and the PMI is estimated in all the cooling curves of the
database and in three ranges of Q, namely: (1) Q ≥ 0.5, (2) 0.3 ≤ Q < 0.5 and (3) 0.2 ≤ Q < 0.3. These
ranges correspond to those used by Henssge in his analysis of error under non-standard conditions [10]. In
parallel with the estimation of the PMI using Bayesian inference, the estimation is also performed using the
nomogram method and both results are compared.

3 Results and discussion

3.1 Influence of parameter uncertainties on the estimation of the PMI

Characteristics of case number 54

The relevant information available about case number 54 in [16] is summarized below:

1. Delay between death and the first measurement: 1.83 h.

2. ũA = 19.4 ◦C.

3. m̃ = 158.4 kg.

4. Clothing: “briefs, undershirt, shirt, jeans, shoes, abdomen/thorax uncovered”.

5. Supporting base: steel trolley.

According to the description of the cooling conditions, the body had two layers of light clothing (only the
lower trunk is considered), it was dry and in an environment with negligible air flow, therefore a corrective
factor c̃ = 1.2 would be adequate according to table 6.18 of [10]. However, since the supporting base is
conductive and the clothing layer is thin, according to table 6.19 of the same reference it is appropriate to
subtract 0.2 from the corrective factor, finally obtaining a value c̃ = 1.0.

Simulation of discovery of the body

In the following, each PMI estimation is carried out using a single rectal temperature measurement,
corresponding to an arbitrarily selected point of the cooling curve. This discovery simulation allows estimating
the PMI in a specific case by performing different uncertainty analyzes. We will call the true time since death
τ .

For the analysis of case number 54, the selected point was (τ, ũ) = (10.7, 34.0). The data set is then:

D = {ũ, ũ0, ũA, m̃, c̃} = {34.0, 37.2, 19.4, 158.4, 1.0} .

In each of Sections 3.1.2 - 3.1.6, five different values of uncertainty in the corresponding parameter are
analyzed, while all other parameters remain fixed (i.e. without uncertainty). The values of uncertainty were
selected taking into account the analysis in section 2.6.

3.1.1 Empirical error

First, we analyze the estimation of PMI using the nomogram method with the empirical error suggested in
the bibliography. According to the data, the estimated time since death with this method is t̂ = 14.9 h.
Taking into account that Q = 0.82, then according to the equation (5) corresponds σt = 1.3 h. Therefore,
the confidence interval of 95.45% for the PMI estimated by the nomogram method is [12.3, 17.5] h (remember
the difference between this interval and the region R95 described in Section 2.2). Figure 3 shows the results
of this estimation, together with the experimental cooling curve and the simulated curve according to the
body cooling model with the parameters obtained from the data. Note that the experimental curve begins
at t = 1.83 h, corresponding to the delay between the discovery and the start of the measurements.
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Figure 3: Estimation of the time since death using the nomogram method. The experimental (black) and
simulated (blue) cooling curves are shown. The orange cross represents the point considered for the simulation
of the discovery. Green dashed lines indicate the 95.45% confidence interval for t.

As can be seen, there is a large difference between the experimental and the simulated curve. At first
glance, it is observed that the initial body temperature was above 37.2 ◦C, which is not taken into account
by the nomogram method. On the other hand, the cooling rate according to the model is clearly lower than
the actual cooling rate, so there is a large error in estimating parameter B. In turn, the possible sources of
error in estimating B are mainly the corrective factor c and, to a lesser extent, the mass m, as will be shown
in the next sections. As can be seen, the 95.45% confidence interval estimated with the nomogram method
does not contain the true PMI in this case.

3.1.2 Uncertainty in the rectal temperature

The selected range of σu was [0.1,0.5] ◦C. Figure 4 shows the results for the two extreme values of σu in the
range. Each upper panel shows the histogram created from the samples of the posterior distribution of t,
obtained according to the method described in Sections 2.2 - 2.3. Each lower panel shows the experimental
cooling curve (data), the simulated cooling curve according to the body cooling model (identical for all the
samples of u), the 95.45% confidence interval for the PMI computed with the nomogram method and the
region R95 determined by Bayesian inference, respectively. As can be seen, the dispersion in the estimated
PMI increases with the uncertainty in the rectal temperature, and thus the inclusion of τ in R95 becomes
more and more probable. It becomes evident that the consideration of the uncertainty in u has a noticeable
effect on the result of the estimation and, taking into account that the body was in an initial stage of cooling,
this result agrees with those obtained in another study [14].
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Figure 4: (Upper panels) Posterior distribution of PMI obtained by means of Bayesian inference for different
magnitudes of the uncertainty in the rectal temperature. The point under analysis corresponds to a simulation
of discovery based on the cooling data of case number 54 in the database. (Lower panels) Body cooling data
and simulations. The vertical dotted lines show the 95.45% confidence interval (nomogram method, green)
and the R95 (Bayesian inference, magenta).

The previous results correspond to a single case with Q = 0.82 (experimental value). Now considering all
the cases in the database, Figure 9(a) shows the amplitude of the R95 obtained as a function of the degree
of cooling progress (represented by the value of 1 − Q), using the fixed value σu = 0.2 ◦C. For each range
of Q, both the actual value 1 − Qi and the amplitude of the resulting R95i were computed for each sample
i, obtaining a distribution of 1 − Q values and R95 amplitudes whose median represent the horizontal and
vertical coordinate of each point in the figure, respectively. On the other hand, the error bars represent the
region of credibility of 95.45% for both variables, computed in the same fashion as the R95. As can be seen,
the amplitude of R95 tends to increase for extreme values of Q. This can be explained by taking into account
that the cooling curve of the model has a small slope |du/dt| at the beginning (Q ≈ 1), due to the relatively
slow establishment of a temperature gradient between the interior of the body and the surrounding air; on
the other hand, as the cooling progresses the curve tends asymptotically to uA and the slope decreases again
when Q→ 0. Given a small value of |du/dt|, even a small variation in the vertical coordinate u generates a
large variation in the horizontal coordinate t. Therefore, the uncertainty in determining rectal temperature
plays a more important role in situations where Q is very high or very low, its effect being more pronounced
in the second case. The minimum uncertainty was found in the range 0.7 ≤ Q < 0.9, with 95.45% of the
amplitudes of R95 between 0.2 and 2.3 h and a median equal to 0.9 h; on the other hand, the maximum
uncertainty was found in the range 0.2 ≤ Q < 0.3, with 95.45% of the amplitudes of R95 between 0.7 and 4.8
h and a median equal to 2.2 h.

3.1.3 Uncertainty in the initial temperature

Here we consider σu0
∈ [0.1, 1.0] ◦C. Analogously to Section 3.1.2, Figure 5 shows the results for the extreme

values of uncertainty in the range. In this case, however, different samples of u0 generate different cooling
curves, as can be seen in the lower panels of the figure, where 200 superimposed curves have been plotted.
This effect is noticeable: as the dispersion of u0 increases, there is a greater number of simulated curves
whose points are vertically displaced with respect to the simulation performed using the nomogram method
(Fig. 3), and the amplitude of this displacement decreases as time increases. This variability somewhat
compensates the error caused by assuming a fixed initial temperature, in the sense that it increases the
amplitude of the R95 and thus the probability that it contains the value of τ . Again, the dispersion in the
estimated time since death increases with the uncertainty in u0, and also a slight asymmetry is observed
in the posterior distribution of the PMI, with a greater tendency towards higher times. It is important to
note that the magnitude and type of asymmetry are specific to the case under study, since they depend
essentially on the shape of the cooling curve (which, in turn, depends on other parameters besides u0). The
results show a slightly lower impact of the uncertainty in u0 on the posterior distribution of t in comparison
with that observed when considering the uncertainty in u, for comparable values of uncertainty in both
quantities. However, it should be noted that in practice typically σu0 > σu, so that the uncertainty in the
initial temperature also plays an important role in the posterior distribution of the PMI, in agreement with
the results obtained in another study [14].
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Figure 5: Analysis of uncertainty in the initial temperature. See caption of Figure 4 for details.

The variation of the amplitude of the R95 with respect to the degree of cooling progress for all cases in the
database is shown in Figure 9(b), using the fixed value σu0

= 0.75 ◦C. In this case, a maximum amplitude
value is observed in the range 0.9 ≤ Q < 0.95, with 95.45% of the values between 0.9 and 9.5 h (median
equal to 3.8 h), followed by a monotonous decrease in the amplitude as the cooling progresses. This can be
explained considering that the effect of a variation in u0 is mainly reflected in the first part of the cooling
curve of the model, and therefore its uncertainty will have a greater impact on the estimate for high values
of Q. However, the amplitude of the R95 is not negligible for low values of Q, tending to a median of 2 h
(95.45% of the values between 0.6 and 4.5 h).

3.1.4 Uncertainty in the mean ambient temperature

Now we analyze values of σuA
in the range [0.1,2.0] ◦C, and Figure 6 shows the results for the extreme values

in this interval. As expected, the dispersion in the estimated time since death increases as the uncertainty in
the mean ambient temperature increases. As demonstrated in another study through an error propagation
analysis [14], the effect of varying this parameter on the cooling curve is more important for higher degrees
of cooling progress, because uA represents the asymptotic value to which the rectal temperature tends as
time increases. For this reason, it is expected that the effect of an uncertainty in the estimate of uA will be
greater for lower values of Q. In this particular case, the influence of the uncertainty in this parameter is less
than the influence of the uncertainties in u and u0, but it is important to clarify that this is mainly because
the simulated discovery corresponds to Q = 0.82. In other words, the body was in an initial stage of cooling,
where uncertainties in u and u0 exert a greater influence.
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Figure 6: Analysis of uncertainty in the mean ambient temperature. See caption of Figure 4 for details.

Figure 9(c) presents the results obtained for all cases in the database as a function of the degree of cooling
progress, using the fixed value σuA

= 0.5 ◦C. The behavior in this case is reciprocal to that corresponding
to the uncertainty in u0, showing a monotonous increase in the amplitude of R95 as the cooling progresses.
As explained in Section 3.1.2, for low values of Q the cooling curve becomes almost horizontal, and small
displacements thereof generate large deviations in the estimated PMI. This, added to the fact that a variation
of uA generates changes in the cooling curve that are more noticeable for low values of Q, explains that the
uncertainty in the estimation of the PMI becomes arbitrarily large as the body approaches thermal equilibrium
with the environment. The greatest amplitudes were obtained in the range 0.2 ≤ Q < 0.3, with a median of
4.3 h and 95.45% of the values between 1.4 and 9.4 h.

3.1.5 Uncertainty in the body mass

Here we study values of σm between 0.1 and 4 kg. As shown in Figures 7 and 9(d), the effect of uncertainty
on the mass increases with the degree of cooling progress, in accordance with results obtained in other studies
[15]. However, the effect of uncertainty in this parameter seems to be much lower than the others. The value
of m affects the cooling rate through its influence on parameter B, according to equation (1) and, given the
relative magnitudes of m and c, the contribution of the uncertainty in m to the total uncertainty is much
lower than the contribution of the uncertainty in the correction factor4.

4A linear error propagation for parameter B results in σ2
B ≈ E

2
m +E2

c , where Ex = (∂B/∂x)σx. Because both the corrective

factor and body mass influence only the computation of B, the quotient (Ec/Em)2 roughly indicates the relationship between
the contributions of these parameters to the total uncertainty. The quotient of the derivatives is (∂B/∂c) /(∂B/∂m) = m

c
. The

standard values of these variables are m0 = 70 kg and c0 = 1, so that the standard value of the quotient of derivatives is equal

to 70 kg. Therefore, (Ec/Em)2 ≈ 4900 (σc/σm)2. Considering reasonable uncertainties such as σc = 0.25 and σm = 0.4 kg, we
obtain (Ec/Em)2 ≈ 2000, and thus the contribution of the uncertainty in the corrective factor on the total uncertainty is three
orders of magnitude greater than the contribution of the uncertainty in the body mass.
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Figure 7: Analysis of uncertainty in the body mass. See caption of Figure 4 for details.

3.1.6 Uncertainty in the corrective factor

This section analyzes values of σc between 0.1 and 0.5. As can be seen in Figure 8, the magnitude of
this uncertainty has a very significant impact on the shape of the cooling curve. This is reflected in the
posterior distribution of t, the width of which increases dramatically as σc grows. In addition, the presence
of asymmetries is observed for high values of uncertainty. This result indicates that the determination of the
corrective factor represents one of the main sources of uncertainty in the PMI estimate. In fact, considering
σc ≥ 0.3 and the other parameters without uncertainty, the resulting R95 contains the value of τ , in contrast
to the result obtained using the nomogram method. It is also worth noting that many of the simulated curves,
obtained by considering the uncertainty in c, model the actual body cooling very accurately in contrast to
the curve obtained through the nomogram method.
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Figure 8: Analysis of uncertainty in the corrective factor. See caption of Figure 4 for details.

Figure 9(e) presents the results obtained for all cases in the database as a function of the degree of cooling
progress, using the fixed value σc = 0.25. As can be seen, the amplitude of R95 increases monotonically
as Q decreases, and this was to be expected considering the role of the corrective factor in computing
parameter B (eq. (1)), which is analogous to that of the body mass. However, the posterior distributions
of t obtained considering the uncertainty in c are much wider than the corresponding distributions obtained
when considering the uncertainty in m. Indeed, in this case the distribution of the lowest amplitudes of R95,
corresponding to the range 0.90 ≤ Q < 0.95, presented a median of 2.7 h, with 95.45% of the values between
1.0 and 4.9 h. On the other hand, the maximum uncertainties (corresponding to the range 0.2 ≤ Q < 0.3)
presented a median of 18.3 h, with 95.45% of the values between 8.9 and 30.2 h. These results indicate
that the most influential parameter in the uncertainty associated with the determination of the PMI by
the nomogram method is the corrective factor, since a reasonable uncertainty in its determination induces
amplitudes of the R95 much higher in comparison with those obtained considering the uncertainties of the
other parameters separately. On the other hand, the uncertainty in the corrective factor cannot be avoided
due to the imprecision of the method developed for its determination.
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a) b) c)

d) e)

Figure 9: Amplitude of R95 in all cases of the database for different ranges of standardized temperature,
considering only the uncertainty in a single parameter. (a) Rectal temperature: σu = 0.2 ◦C; (b) Initial
temperature: σu0

= 0.75 ◦C; (c) Mean ambient temperature: σuA
= 0.5 ◦C; (e) Body mass: σm = 0.4 kg;

(e) Corrective factor: σc = 0.25.

3.1.7 Uncertainties in all parameters

In this section, the joint effect of the uncertainties in all parameters on the estimation of the PMI for the
simulated discovery based on case 54 is analyzed. Here we assign values to each uncertainty taking into
account that the experiment was carried out under controlled conditions [16]. First, although the accuracy
of the thermometer used for the rectal temperature measurement was 0.1 ◦C, considering the analysis of
Section 2.6.1 we propose σu = 0.2 ◦C as an adequate value. On the other hand, the ambient temperature
and the cooling conditions remained fixed throughout the experiment, but the delay between death and
the start of the measurements was 1.8 h (which is not negligible) and no accurate information is available
regarding these variables during that interval. Furthermore, although the conditions in the laboratory sought
to replicate the conditions in the scene, they are at least slightly different. In particular, the corrective factor
c must be different (different air flow, different humidity, different supporting base). Taking both these
considerations and the analysis of Section 2.6 into account, we chose a fixed value σuA

= 0.5 ◦C for the
uncertainty in the mean ambient temperature and a range of variation 0.05 ≤ σc ≤ 0.3 for the uncertainty in
the corrective factor. Regarding body mass, following the considerations of Section 2.6.4 we selected a fixed
value σm = 0.4 kg. Finally, we considered a range of variation 0.1 ≤ σu0

≤ 1.0 ◦C for the uncertainty in the
initial temperature. We then selected a total of 5 sets of values, which are labeled with an index j and are
detailed below:

j σu [◦C] σu0 [◦C] σuA
[◦C] σm [kg] σc

0 0.20 0.10 0.50 0.40 0.05
1 0.20 0.33 0.50 0.40 0.11
2 0.20 0.55 0.50 0.40 0.17
3 0.20 0.78 0.50 0.40 0.24
4 0.20 1.00 0.50 0.40 0.30

Table 1: Sets of parameter uncertainties for the estimation of PMI in the simulated discovery of case number
54 by means of Bayesian inference.

The results are presented in Figure 10. As can be seen, the combined effect of uncertainties in all
parameters strongly affects the shape of the cooling curves, even for relatively low values of individual
uncertainties. Indeed, for j = 2 the resulting R95 contains the value of τ , something that does not occur in any
of the results obtained considering each of the respective uncertainties individually. This again demonstrates
one of the advantages of Bayesian inference, namely, that it allows different sources of uncertainty to be
systematically incorporated into the analysis.
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Figure 10: Analysis of the combined uncertainty of all parameters. The index j corresponds to the first
column of Table 1. See caption of Figure 4 for details.

The results become more clear when looking at Figure 11. For each value of j, this figure shows the
distribution of the PMI (shaded area) superimposed with the R95 (thick vertical line). It can be seen that
the amplitude of the R95 increases very rapidly as the individual uncertainties of the parameters increase, and
therefore there is a compromise relationship: on the one hand, if the individual uncertainties are underesti-
mated, the resulting R95 will likely not contain the true PMI and, furthermore, excessively low probabilities
will be assigned to intervals that are slightly away from the median (which could be misinterpreted in court
as an impossibility, leading, for example, to the decision of dismissing an important suspect); on the other
hand, if very conservative individual uncertainties are assigned, the resulting R95 will have an amplitude so
large that it may not be useful for the cause. However, the latter situation more consistently reflects the low
reliability of the method, and allows more realistic values to be assigned to the probabilities of time intervals
far from the median of the distribution, reducing the probability of taking incorrect decisions based on an
estimate of the PMI with an overestimated accuracy.

Figure 11: Postmortem interval estimated for different values of uncertainty in all parameters. Each blue
shaded region represents the posterior distribution of the PMI obtained by Bayesian inference, and each
thick blue vertical line represents the corresponding R95. On the other hand, the black dotted horizontal
lines represent the limits of the estimated PMI according to the nomogram method. The index j corresponds
to the first column of Table 1.
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3.2 Reliability of PMI estimation using Bayesian inference

The results of the previous sections illustrate the implementation of Bayesian inference in determining the PMI
and its associated uncertainty for different values of uncertainty in the model parameters. In this section, we
implement Bayesian inference in the complete database using a fixed set of parameter uncertainties, namely
σu = 0.2 ◦C, σuA

= 0.5 ◦C, σu0 = 0.75 ◦C, σm = 0.4 kg and σc = 0.25. These values were selected on the
basis of the discussion in Section 2.6 and the specific experimental conditions described in [16]. The objective
of this analysis is to determine the reliability of this method as a function of cooling progress, as was done
by Henssge in his study of empirical errors [9].

Table 2 summarizes the results obtained by the nomogram method and by Bayesian inference for the
ranges 0.5 ≤ Q < 1.0, 0.3 ≤ Q < 0.5 and 0.2 ≤ Q < 0.3, respectively, for all cases in the database. The
results are presented in terms of “correct estimations”, i.e. estimations in which the true time since death
was contained in the R95 (Bayesian inference) or in the 95.45% confidence interval (nomogram method).
Since not all of the cooling curves in the database have temperature records in all ranges of Q, the number
of samples N varies in each case.

Q range N Correct estimations, NM Correct estimations, BI
[0.5,1.0) 84 47 (56%) 58 (69%)
[0.3,0.5) 75 41 (55%) 52 (69%)
[0.2,0.3) 53 29 (55%) 39 (74%)

Table 2: Proportion of correct estimations according to the nomogram method (NM) and the Bayesian
inference method (BI), for different ranges of Q.

The results indicate that, for this database, the R95 obtained through Bayesian inference by assigning
adequate uncertainties to the parameters is more reliable than the interval reported by using the empirical
errors of the nomogram method in all ranges of Q. Although the proportion of correct estimations is relatively
low, it could be significantly improved through a recalibration of the method (as proposed by the authors in
[7]), by using a more complex statistical model (which takes into account, for instance, the uncertainties that
arise when fitting equation (1) to experimental data) and by combining this technique with other methods
of estimating PMI, always in the context of Bayesian inference, as explained in Section 2.5.

4 Practical application in casework

In this section we present a step-by-step application example to estimate the postmortem interval using the
method of Bayesian inference based on rectal temperature measurements. For this purpose, we will use the
data corresponding to a point on the cooling curve of case number 72 in [16].

Step 1: Collect the data and select the corrective factor

• Rectal temperature: ũ = 34.8 ◦C.

• Ambient temperature: ũA = 21.9 ◦C.

• Body mass: m̃ = 73.3 kg.

• Clothing: “T-shirt, trousers, front of abdomen/thorax uncovered”.

• Supporting base: steel trolley.

According to this data, the body had one layer of light clothing on the lower trunk, it was dry and in an
environment with negligible air flow, therefore a corrective factor c̃ = 1.1 is first selected from table 6.18 of
[10]. Then, since the supporting base is conductive and the clothing layer is very thin, according to table
6.19 of the same reference we subtract 0.2 from the corrective factor, finally obtaining a value c̃ = 0.9. The
complete data set is then:

D = {ũ, ũ0, ũA, m̃, c̃} = {34.8, 37.2, 21.9, 73.3, 0.9} .

Step 2: Define the uncertainties

Taking into account the considerations detailed in Section 3.1.7, we choose the following values for the
different uncertainties involved in the computation: σu = 0.2 ◦C (rectal temperature), σuA

= 0.5 ◦C (ambient
temperature), σu0 = 0.75 ◦C (initial temperature), σm = 0.4 kg (body mass) and σc = 0.25 (corrective factor).

Step 3: Sample the posterior distribution of the PMI

Given the data and the uncertainties, we use a script5 programmed in Python 3 to extract N = 10000 samples
from the posterior distribution of the PMI, following the inference scheme described in Figure 1. The steps
involved are listed below:

1. We extract N samples of variables u, uA, u0, m and c from their posterior distributions given by
Equation (11).

5A copy of the script can be obtained upon email request from the authors.
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2. From the samples obtained in the previous step, we compute the N corresponding values of standardized
temperature Q and the parameters A and B using Equations (3), (2) and (1), respectively.

3. For each of the N triplets (Q,A,B) calculated in the previous step, we determine the value of t
that satisfies Equation (4). These are the samples of the posterior distribution p (t|D, I) given by
Equation (7). Since non-temperature-based information is not available, these samples represent the
best probability distribution that we can obtain for the time since death given the evidence in this case.

In this example, the computation took approximately 36 s on a standard office laptop.

Step 4: Compute the 95.45% credibility region

In this final step, we calculate the interval R95 defined in Section 2.2:

R95 = (6.6, 16.0) hpm.

Although this interval is the traditional way of presenting the results, we want to emphasize the importance
of preserving the posterior distribution p (t|D, I) computed in Step 3, since it can be used to perform other
inferences (eg, compute the probability of death in a specific time interval) and can also be combined with
other PMI estimation techniques to obtain a more precise distribution based on all the available evidence.

5 Conclusions

Using the body cooling data published by Muggenthaler et al., we applied the Bayesian inference method
to assess the influence of uncertainties in the different parameters involved in the estimation of PMI. An
adequate assignment of these uncertainties results in a posterior distribution of the PMI that assigns greater
probabilities to intervals containing the true time since death, compared to the use of empirical errors proposed
by the nomogram method. Moreover, this approach facilitates an in-depth understanding of the main sources
of uncertainty in a formal and systematic fashion.

The result of the inference process is the posterior probability density of the time since death, which
provides more information than a simple point estimate or a time interval. This distribution can be used to
assign probabilities to specific time intervals that may arise in a criminal investigation.

Despite the improvements brought about by using Bayesian inference in this context, some of the hy-
potheses considered are simplistic, and it is necessary to modify them to obtain more representative results of
the underlying physical phenomenon. First, it is necessary to introduce a statistical model for parameter B
that includes the uncertainties in the parameters b1, b2, b3 and b4 (equation (1)). Second, the discrete model
of parameter A as a function of the mean ambient temperature (equation (2)) is very limited, considering
its role in the body cooling model (equation (4)), and in this sense a simple continuous function would give
more versatility to the method. Finally, the corrective factor should be very carefully analyzed. On the
one hand, in this work we assigned a normal distribution to c, centered on the tabulated value c̃ and with
fixed uncertainty σc. However, each tabulated value c̃ comes from a curve fit that has a specific uncertainty.
This implies that the uncertainty σc must be a function of c̃ (each cooling condition has its own associated
curve fit, and therefore its own uncertainty). On the other hand, the set of conditions K determined at the
scene should uniquely define the value c̃. However, in many cases there may be an ambiguity in the inter-
pretation of the tabulated conditions, leading to an error in the determination of c̃ and consequently to an
incorrect estimation of the posterior distribution of c. It is therefore of immense importance to systematize
the determination of the corrective factor c̃ to reduce (and, if possible, eliminate) these ambiguities.

The application of this statistical analysis can be extended to any method of estimating the postmortem
interval. Furthermore, Bayesian inference allows different sources of information to be systematically com-
bined to obtain a more reliable probability distribution of PMI. To achieve this, a posterior density of the
PMI must be determined by one method and then used as the prior density in the inference process carried
out with data from another method.
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Appendices

A Derivation of the expression for p (t|D, I)

Given two continuous variables x and y, a data set D and a prior information I, the marginal posterior
distribution of x is obtained by integrating the joint posterior distribution p (x, y|D, I) with respect to y:
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p (x|D, I) =

∫
Dy

p (x, y|D, I) dy,

where Dy represents the region of variation of y. Applying this concept, we can express the marginal posterior
distribution of the time since death from the joint posterior distribution of t, Q, A and B:

p (t|D, I) =

∫∫∫
V1

p (t, Q,A,B|D, I) dQdAdB, (15)

where the integration region is V1 = DQ ×DA ×DB . Applying the product rule, we can write the integrand
of equation (15) as:

p (t, Q,A,B|D, I) = p (t|Q,A,B,D, I) p (Q,A,B|D, I) (16)

Because t is completely determined by the values of Q, A, and B through a deterministic relationship
(function f1 (Q,A,B)), we have [23]:

p (t|Q,A,B,D, I) = δ (t− f1 (Q,A,B)) . (17)

where δ(t) is Dirac’s delta function. The other factor in equation (16), which corresponds to the joint posterior
density of Q, A and B, can be expanded by applying the product rule again, and taking into account that Q
and A are not independent (since both depend functionally on variable uA):

p (Q,A,B|D, I) = p (Q,A|D, I) p (B|D, I) . (18)

The posterior density of the time since death according to equation (9) is then obtained by combining
equations (15), (16), (17) and (18). On the other hand, following the scheme given in Figure 1 and again
applying the marginalization process and the product rule, we have:

p (Q,A|D, I) =

∫∫∫
V2

p (Q,A, u, u0, uA|D, I) du du0 duA

=

∫∫∫
V2

p (Q,A|u, u0, uA, D, I) p (u, u0, uA|D, I) du du0 duA

=

∫∫∫
V2

δ (Q− f2 (u, u0, uA)) δ (A− f3 (uA)) p (u, u0, uA|D, I) du du0 duA, (19)

p (B|D, I) =

∫∫
S

p (B,m, c|D, I) dmdc

=

∫∫
S

p (B|m, c,D, I) p (m, c|D, I) dmdc

=

∫∫
S

δ (B − f4 (m, c)) p (m, c|D, I) dmdc, (20)

where the integration regions are V2 = Du ×Du0
×DuA

and S = Dm ×Dc.
Taking into account that the uncertainties in all the observed variables are independent of each other,

the joint distributions that appear in the integrands of equations (19) and (20) can be written as the prod-
uct of the marginal distributions of the variables involved. In this way, we obtain p (u, u0, uA|D, I) =
p (u|D, I) p (u0|D, I) p (uA|D, I), and similarly p (m, c|D, I) = p (m|D, I) p (c|D, I). These latter distribu-
tions are described in Section 2.4 and are the starting point for calculating the posterior distribution of the
PMI.
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