Influence of proline and β-Cyclodextrin in ketoconazole physicochemical and microbiological performance

Ariana Zoppi, Natalia Buhlman, Juan Pablo Cerutti, Marcela R. Longhi, Virginia Aiassa

PII: S0022-2860(18)31043-3
DOI: 10.1016/j.molstruc.2018.08.094
Reference: MOLSTR 25615
To appear in: Journal of Molecular Structure

Received Date: 18 May 2018
Accepted Date: 28 August 2018

Please cite this article as: Ariana Zoppi, Natalia Buhlman, Juan Pablo Cerutti, Marcela R. Longhi, Virginia Aiassa, Influence of proline and β-Cyclodextrin in ketoconazole physicochemical and microbiological performance, Journal of Molecular Structure (2018), doi: 10.1016/j.molstruc.2018.08.094

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
INFLUENCE OF PROLINE AND β-CYCLODEXTRIN IN KETOCONAZOLE

PHYSICOCHEMICAL AND MICROBIOLOGICAL PERFORMANCE

Ariana Zoppi a, b, Natalia Buhlman a, Juan Pablo Cerutti a, Marcela R. Longhi a, b, Virginia Aiassa a, b*

a Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina. Tel. +54 9 0351 5353865 int. 53355.

b Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina.

ariana@fcq.unc.edu.ar, natybuhlman@hotmail.com, juampi_94_cerutti@hotmail.com, mrlcor@fcq.unc.edu.ar, aiassa@fcq.unc.edu.ar.

*Corresponding author: Virginia Aiassa. Departamento de Ciencias Farmacéuticas. Facultad de Ciencias Químicas. Universidad Nacional de Córdoba. Haya de la Torre y Medina Allende, s/n. Ciudad Universitaria. X5000HUA Córdoba. Argentina. Tel.: +54-351-5353865

fax: +54-351-5353865. E-mail: aiassa@fcq.unc.edu.ar
Abstract

This investigation presents the characterization and evaluation of the physicochemical and microbiological properties of a new multicomponent complex of ketoconazole. Complex formation of the drug, with proline and β-cyclodextrin, was evaluated using nuclear magnetic resonance and phase solubility studies. The complex, in solid state, was prepared through kneading and physical mixture and then characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry and scanning electron microscopy. By means of confocal laser scanning microscopy, the effect of proline on the morphology of Candida albicans was evaluated. Microbiological assays were performed to evaluate the antifungal activity of the complex against C. albicans. The results obtained from phase solubility assays showed that the complexation of ketoconazole is an effective strategy to enhance its solubility. Confocal laser scanning microscopy demonstrated that proline severely affected Candida morphology, and microbiological studies established high antifungal activity for the complex, signifying an advantage, and therefore, a potential improvement in its application areas.

Keywords: ketoconazole, multicomponent complex, solubility, antifungal activity.

Chemical compounds studied in this article: Ketoconazole (PubChem CID: 47576), 46 β-cyclodextrin (PubChem CID: 444041), L-Proline (PubChem CID: 145742).
1. INTRODUCTION

Recently, an increase in the prevalence and incidence of invasive fungal infections has been reported, with *Candida* as one of the most common genera causing infections [1]. *Candida* is an opportunistic type of yeast that causes severe disease in immunocompromised individuals. For example, oropharyngeal candidiasis is a frequent infection of individuals undergoing immunosuppressive therapy for cancer, organ transplantation and in AIDS patients [2,3]. The common treatment of candidiasis is associated with several side effects that limit the dose and dosing frequency. Therefore, new drugs and drug formulations that permit the reduction in dose and mitigation of side effects are urgently required for the efficient management of *Candida* infections [4].

Ketoconazole (KET, Fig. 1A), a dibasic imidazole synthetic agent with a broad spectrum of antifungal activity, is used to treat mycotic infections, including candidiasis [5]. KET is classified as a class II drug in the Biopharmaceutics Classification System, because of its low solubility and high permeability. Its’ limited water solubility generates problems in the preparation of pharmaceutical formulations and limits its bioavailability and therapeutic applications.

Many technologies that improve the solubility of drugs that are poorly water-soluble have been developed, such as the incorporation of cyclodextrins (CDs) [6]. CDs are, in fact, water soluble cyclic oligosaccharides composed of 6 (α-CD), 7 (β-CD, Figure 1B) or 8 (γ-CD) D-(+)-glucopyranose units, arranged in a truncated cone shaped structure. Different molecules can penetrate into the relatively hydrophobic cavity and form non covalent inclusion complexes, thus modifying their physical, chemical and biological properties [7-11]. In previous work, the preparation and characterization of KET complexes with CDs were reported. The researchers demonstrated that these inclusion complexes were an effective way to increase the solubility of KET [12-15]. In addition, in recent years the use of
multicomponent complexes with CDs and a third auxiliary substance has become more popular, in order to facilitate the therapeutic application of different drugs [6, 16-20]. With regard to KET, multicomponent complexes were prepared with acids compounds as the third compound and compared to a binary system demonstrating the multicomponent systems a better pharmaceutical performance [13, 21, 22]. Amino acids are widely used in chemical, microbiological and pharmaceutical fields, and their incorporation into CD complexes has been reported to be an effective technology for enhancing the solubility and bioavailability of compounds with poor water solubility [23]. We have previously reported that glycine and cysteine increase chloramphenicol solubility by formation of a multicomponent complex with β-CD that modulates reactive oxygen species production induced by this drug in leukocytes [24].

The aim of this study was to investigate the influence of the complexation of KET with β-CD and L-Proline (PRO) (Fig. 1C) on its solubility in aqueous solutions and antifungal activity. PRO was selected because it induces germ tube-forming cells in C. albicans cultures, which are more sensitive to azole-induced killing than the yeast cell itself, whereby a synergistic effect between KET and PRO could be observed [25]. Phase solubility analyses and nuclear magnetic resonance spectroscopy were used to determine the effects of complexation on drug solubility and affinity constant. The complexes, in solid state, were prepared by the kneading and physical mixture methods and then characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and thermal analysis. A microbiological in vitro assay of KET and the KET:β-CD:PRO multicomponent complex was performed using C. albicans, an important clinical pathogen. The inhibition zone diameter, in each case, was measured, and the obtained value served as a measure of the antifungal activity of KET. In addition, confocal laser scanning microscopy (CLSM) was used to evaluate the effect of PRO on C. albicans morphology.
2. MATERIALS AND METHODS

2.1. Chemicals and reagents

KET and PRO were obtained from Todo Droga (Argentina). β-CD (MW = 1135) was kindly supplied by Roquette (France). Dimethyl sulfoxide-D$_6$ (99.8 %) MagniSolv™ deuterated solvent was obtained from Merck (Switzerland). All other materials and solvents were of analytical reagent grade. A Milli-Q Water Purification System (Millipore, USA) generated the water used in these studies.

2.2. Phase solubility analysis

Experiments were carried out in stoppered glass tubes containing an excess amount of KET (15 mg) and 5 ml of increasing concentrations of β-CD (0–13.2 mM) in the presence of PRO (10 mM), according to the method reported by Higuchi and Connors [26]. The tubes were placed in a 37.0 (±0.1) ºC thermostatized shaker (Ferca) for 72 h at 130 rpm, until complexation equilibrium was reached. Each sample suspension was filtered through a 0.45 µm membrane (Millipore), and the concentration of KET in the filtered solutions was measured by UV spectrophotometry at 225 nm (Agilent Cary 50 spectrophotometer). Each experiment was repeated at least three times, and the results reported were the mean values.

The K_c value for the corresponding KET complex was calculated from the slope of the phase-solubility diagrams and intrinsic solubility (S_0) according to Eq. (1):

$$K_c = \text{slope} / S_0 \times (1 - \text{slope})$$

Eq. (1)

2.3. NMR studies

The NMR spectra of pure compounds and the multicomponent system were recorded on a Bruker Avance II high resolution spectrometer equipped with a broad band inverse probe (BBI) and a variable temperature unit (VTU). The spectra were measured at 298 K. DMSO
deuteration degree min 99.8% was used as solvent. Induced changes in the 1H chemical shifts for KET, β-CD and PRO, which originated due to their complexation, were calculated using the following equation Eq. (2):

$$\Delta \delta = \delta_{\text{complex}} - \delta_{\text{free}}$$ \hspace{1cm} \text{Eq. (2)}

2.4. **Preparation of complexes in solid state**

The solid complexes of KET with β-CD and PRO, in a 1:1:1 molar ratio, were prepared using the kneading (K) and physical mixture (PM) methods:

a) Kneading: KET, β-CD, and PRO powders, in a 1:1:1 molar ratio, were mixed and then crushed with a mortar and pestle, adding a water:ethanol solution (1:1 v/v). The mix was kneaded for 30 min and then dried at 45 °C for 24 h.

b) Physical mixture: was prepared by uniformly mixing KET with β-CD and PRO powders in a mortar in a 1:1:1 molar ratio.

2.5. **Fourier transform infrared spectroscopy (FTIR)**

FTIR spectra of KET, β-CD, PRO and the complex (KBr disks) were recorded on a Nicolet Avatar 360 FTIR spectrometer. The spectrum of the complex was compared with those of pure KET, β-CD, PRO and the corresponding physical mixture. All spectra were obtained and processed using EZ OMNIC E.S.P v.5.1 software.

2.6. **Differential Scanning Calorimetry (DSC) and Thermogravimetry (TG)**

The thermogravimetry (TG) test of sample was recorded on a TG Discovery series instrument (TA, USA), and the differential scanning calorimeter (DSC) test was recorded on a DSC Discovery series instrument (TA, USA). The thermal behaviour was studied by heating 1-2
149 mg of the samples in perforated aluminium capsules in a nitrogen atmosphere, in the
150 temperature range of 25-200°C (DSC) and 25-350°C (TG) at a heating rate of 10°C min⁻¹.
151
2.7. Scanning electron microscopy studies (SEM)
Microscopic morphological structures of the solid samples were investigated and
photographed using a Carl Zeiss Σigma scanning electron microscope, at the Laboratorio de
155 Microscopía y Análisis por Rayos X (LAMARX) of the National University of Córdoba. The
156 samples were fixed on a brass stub using double-sided aluminium tape, and to improve the
157 conductivity, they were gold/palladium-coated under vacuum, employing a sputter coater
158 Quorum 150. The magnification selected was sufficient to appreciate, in detail, the general
159 morphology of the samples under study.

2.8. Analysis of cell morphology of Candida albicans using confocal laser scanning
microscopy (CLSM)
To evaluate the effect of PRO on cell morphology, two clinical isolates of C. albicans (strains
165 216 and 256, identified by a battery of biochemical tests) were grown on 2% Sabouraud agar
166 (24 h at 37 °C), with and without PRO (at two concentrations 10 or 100 mM). A drop of the
167 suspended culture was transferred on a slide, fixed and stained with safranin. The samples
168 were examined by confocal laser scanning microscopy (Olympus OLS4100) with a sufficient
169 magnification to appreciate, in detail, the morphology of the C. albicans cells.

2.9. Microbiological assay
Antimicrobial susceptibility tests were performed by the agar diffusion method according to
172 Marzouk et al., [15] with some modifications. Microorganisms and inoculum cultures of C.
173 albicans were cultivated on 2% Sabouraud agar and maintained in test tubes in a refrigerator
at 4 ± 2 °C until use. The microorganisms were suspended in 0.9 % NaCl; the concentration of the obtained suspension was adjusted to 0.08-0.1 of absorbance at 600 nm, using a spectrophotometer analyser (~10⁷ colony forming units per millilitres, Shimadzu UV-Mini 1240 spectrophotometer). The surface of the agar plates was spread using a sterile swab soaked in the bacterial suspension. A 6-mm disk of sterile Whatman N°1 membrane filter resting on an agar culture medium was inoculated with 5 µl of solution containing free or complexed KET (7 µg) and KET:PRO. Aqueous solutions of pure β-CD and PRO were used as controls. The plates were incubated at 37 °C for 24 h. The resulting zone diameters of growth inhibition were then measured in mm. Each determination was performed in triplicate, statistics values were expressed as the mean ± the standard deviation of each group. The difference between three means was compared by a two-tailed unpaired Student's t test. P values of < 0.05 were considered significant.

3. RESULTS AND DISCUSSION

3.1. Behaviour of the multicomponent complex in aqueous solution

3.1.1. Phase solubility analysis (PSA)

In order to determine the influence of β-CD and PRO on KET solubility, the phase-solubility diagram was determined. The phase solubility profile of KET with β-CD and PRO can be classified as A_L type, according to Higuchi and Connors. [26] These profiles showed a linear increase of drug solubility (data not shown), when the concentration of β-CD increased, which is indicative of the formation of soluble complexes. The corresponding stability constant value, calculated from phase-solubility diagram, was 4966 ± 93 M⁻¹, and the increases in drug solubility were of 65-fold (S₀ 0.0094 mg/ml and S_max 0.609 mg/ml).

3.1.2. NMR studies
NMR studies were performed to confirm the inclusion complex formation and to gain insight into the structure of the multicomponent complex. In Table 1, the assignments of the KET, β-CD and PRO peaks and the chemical shift displacement (Δδ) due to complexation (for NMR signal notation see Fig. 1) are shown. The changes observed in NMR signals clearly indicated the compound interactions (Fig. 2). In the case of β-CD, the inner protons (H₃ and H₅) undergo an upfield shift that can be attributed to magnetic anisotropy effects caused by the KET inclusion. Furthermore, OH₂ and OH₃ protons of β-CD showed a marked shielding effect that suggested that some moiety of KET and/or PRO molecules can interact with the macromolecule’s wide rim, possibly establishing hydrogen bond interactions. In addition, the protons of the dichlorophenyl (H₂₄ and H₂₆) and phenolic (H₁₀-₁₄ and H₁₁-₁₃) rings of KER exhibited significant upfield shifts, indicating its penetration inside the β-CD cavity. These observations are consistent with the existence of two different inclusion modes for the complex. The downfield observed for the KET imidazole ring (H₃₀, H₃₁ and H₃₃) and PRO (Hβ, Hγ and Hδ) protons, may be due to conformational changes produced by the interaction between compounds.

3.2. Behaviour of the multicomponent complex in solid state

3.2.1. Fourier transform infrared spectroscopy (FTIR)

In order to confirm whether KET could interact with PRO and β-CD, IR spectrum analysis of pure compounds, and systems prepared by kneading and physical mixture, were developed. As shown in Fig. 3A, the IR spectrum of pure KET was characterized by absorption peaks at 1645 cm⁻¹ (C=O stretching vibration), 1583 cm⁻¹ (aromatic C=C stretching vibration) and 1512 and 1457 cm⁻¹ (benzene cycle vibration). The IR spectrum of β-CD (Fig. 3B) showed prominent absorption bands at 3365 cm⁻¹, (O-H stretching vibration) while strong bands of pure PRO (Fig. 2C) appeared at 1619 cm⁻¹ (asymmetric COO⁻ stretching vibration) and 1401
cm\(^{-1}\) (symmetric COO\(^-\) stretching vibration). The spectra of multicomponent systems prepared by PM (Fig. 3D) or K (Fig. 3E) did not show any new peaks, indicating no chemical bond formation in these systems. The IR spectrum of the PM system did not significantly differ from those of the single components, indicating that there is almost no interaction between these compounds when physically mixed. On the other hand, in the IR spectrum of the system prepared by K, a widening and a marked shift of the characteristic absorption bands of KET was observed, compared with the pure drug. It was possible to observe that the bands of PRO are almost masked by the very intense and broad β-CD and KET bands although can be observed the modification that appear at 1619 cm\(^{-1}\) in pure PRO. These findings indicated the presence of interactions between the KET, β-CD and PRO in this system.

3.2.2. Differential Scanning Calorimetry (DSC) and Thermogravimetry (TG)

The DSC and TG curves of pure components and multicomponent systems are shown in Fig. 4. It can be observed that KET presents a sharp endothermic peak at 149.8 °C, attributable to the melting process of the crystalline form of the drug, which begins to decompose at about 320 °C. PRO and βCD lost water at temperatures between 25–100 °C (Δm= 5% and 7.5%, respectively), with decomposition taking place above 200 °C (PRO) and 300 °C (β-CD), as evidenced by the mass loss observed in the TG curve. TG curves of KET:β-CD:PRO PM and K systems show a similar behaviour with three steps of weight loss, one due to dehydration (Δm= 7.1% PM and 4.6 % K), a second event related to PRO decomposition (Δm= 7% PM and K) and the third corresponding to the drug and β-CD decomposition taking place above 300°C. In the DSC curve KET:β-CD:PRO PM, it is possible to observe the endothermic event corresponding to the melting point of the drug at 148.2 °C. On the other hand, the thermal peak of the drug in the KET:β-CD:PRO K curve, appeared at a lower temperature (142.2 °C),
accompanied by a reduction in its fusion enthalpy, suggesting that a partial drug amorphization occurred in this system that can be related to the complexation.

3.2.3. Scanning electron microscopy (SEM)

The shape and structure of KET complexes prepared by the K method were assessed by SEM (Fig. 5), and were compared with the pure materials and KET systems prepared by PM. In SEM images of KET:β-CD:PRO K, it was observed that these products had a significantly different morphology, with respect to the pure materials and the PM, and it was not possible to differentiate the single components. These solids showed small size particles, compared with the pure compounds. On the other hand, the characteristic KET crystals, which were mixed with β-CD particles and PRO, were clearly detectable in the SEM images of the PM, thus confirming the presence of the crystalline drug and the absence of interactions.

3.3. Confocal laser scanning microscopy (CLSM) observation

The effect of PRO on *C. albicans* morphology was evaluated by CLSM after the incubation of the yeast strains with PRO at two concentrations (10 and 100 mM). The alteration on cellular morphology was visually confirmed by CLSM, which showed a unicellular, oval-shaped diploid fungus in both strains when not treated with PRO (control, Fig. 6 a and d). The dose-dependent interference of PRO with the morphology of *C. albicans* could be clearly seen in strain 216. In the case of treatment with PRO 10 mM (Fig. 6 b), it was possible to observe some cells with altered morphology, while for the treatment with PRO 100 mM (Fig. 6 c), a cell pattern with totally altered morphology was evident. In strain 256, only 100 mM of PRO altered its morphology (Fig. 6 f). This microscopic observation confirms the ability of PRO to induce germ tube formation and morphological changes in *C. albicans*. [25]
3.4. Microbiological assay

The antifungal activity of KET, β-CD, PRO, PRO:β-CD, KET:PRO, KET:β-CD and KET:β-CD:PRO was studied in *C. albicans* 216 and 256 clinical pathogen isolates. The diffusion agar method was used for this study. β-CD and PRO used as negative control did not show inhibition halos (data not shown). In Fig. 7, we can observe the microbiological data from KET, KET:PRO, KET:β-CD and the KET:β-CD:PRO complex. β-CD, PRO, PRO:β-CD. β-CD, PRO and PRO:β-CD were used as control and did not present inhibition halo.

The antifungal activity of the KET:β-CD:PRO multicomponent complex was significantly higher than KET and that of KET:β-CD and KET:PRO, suggesting a synergistic effect between PRO and KET, solubilized by the presence of β-CD. It is known that the formation of inclusion complexes is able to increase, decrease or maintain the biological activity, depending on the balance between microscopic or macroscopic effects. Indeed, on the microscopic scale, inclusion leads to the reduction of free drug, whereas on the macroscopic scale, complexation of slightly soluble drug considerably improves its water solubility, which can increase the available drug concentration. In this work despite the high Kc value obtain for the complex (4966 ± 93 M⁻¹), the microbiological activity was increased assessing the ability of β-CD to release the drug. Moreover, it was suggested that CD molecules might destabilize the outer membrane of the microorganisms, which eventually leads to an increase of the diffusion rate of antimicrobials [27]. Furthermore, this synergy may be attributable to the presence of PRO that altered the *C. albicans* morphology, as could be observed by CLSM. This increase in the antifungal activity of the KET:β-CD:PRO multicomponent complex is the most favourable aspect of the development system.

4. Conclusions
In this work, the KET:β-CD:PRO multicomponent complexes were prepared in solution and solid state and characterized by PSA, NMR, FTIR, SEM and DSC studies. The results obtained showed that the formation of a multicomponent complex of KET with β-CD and PRO produces an important increase in the aqueous solubility of this antifungal drug. Moreover, PRO induces alterations in the cellular morphology of *C. albicans*. It can be suggesting that the synergy of both effects results in the highest antifungal activity observed for the KET:β-CD:PRO complex. Thus, this multicomponent complex is an interesting candidate for the preparation of KET dosage forms, with improved antifungal activity.

ACKNOWLEDGMENTS

The authors wish to acknowledge the assistance of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), the Universidad Nacional de Córdoba, Fondo para la Investigación Científica y Tecnológica (FONCYT) Préstamo BID PICT 2013-2150, and the Secretaría de Ciencia y Técnica de la Universidad Nacional de Córdoba (SECyT) which provided support and facilities for this investigation. We also thank Ferromet S.A. (agent of Roquette in Argentina) for its donation of β-cyclodextrin. We are grateful to Dr. Gloria Bonetto for NMR measurements and for her helpful discussions on the ^1^H NMR spectra.
References

Figure legends

Figure 1: Chemical structure and proton atom assignment scheme of: (A) KET, (B) β-CD, (C) PRO.

Figure 2. ¹H NMR Spectra of (A) KET, (B) βCD, (C) PRO and (D) KET:βCD:PRO system.

Figure 3. IR spectra of: a) KET, b) β-C, c) PRO, d) KET:β-CD:PRO K, e) KET:β-CD:PRO PM.

Figure 4. DSC and TG curves of KET (fuchsia), β-CD (green), PRO (black), KET:βCD:PRO K system (blue) and KET:βCD:PRO PM system (turquoise).

Figure 5. Scanning electron microphotographs of: (a) KET, (b) β-CD, (c) PRO, (d) KET:βCD:PRO K (e) KET:βCD:PRO PM.

Figure 5. Confocal laser scanning microscopy of: (a) strain 216 control, (b) strain 216 with PRO 10 mM, (c) strain 216 with PRO 100 mM, (d) strain 256 control (e) strain 256 with PRO 10 mM and (f) strain 256 with PRO 100 mM.

Figure 7: Histogram of the mean values of the inhibition zones diameters of KET, KET:PRO, KET:β-CD and KET:β-CD:PRO. White column, *Candida albicans* 256; black column, *C. albicans* 216. *p < 0.05 with respect to KET, * p < 0.05 compared to KET:PRO, ~ p < 0.05 compared to KET:β-CD
Highlights

• KET complex with β-cyclodextrin and Proline was prepared and characterized

• The water solubility of KET was improved

• The antifungal activity was increase by multicomponent complex formation

• The multicomponent complex results a good candidate to optimize KET formulations
KTN

\[\text{KTN:}\beta-\text{CD:PRO multicompoment complex} \]

C. albicans altered morphology

SEM image

Increase water solubility

\(K_c = 4966 \pm 93 \text{ M}^{-1} \)

Significant increase in antifungal activity

Kneading EtOH:H_{2}O

Treatments

KET

KET:PRO

KET:BCD:PRO

Inhibition zone (mm)
Table 1: Chemical shifts for the protons of KET, β-CD and PRO in the free and complex form.

<table>
<thead>
<tr>
<th></th>
<th>δ (ppm)</th>
<th>δ (ppm) KET:β-CD:PRO</th>
<th>Δδ (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KET protons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₁</td>
<td>2.0312</td>
<td>2.0298</td>
<td>-0.0014</td>
</tr>
<tr>
<td>H₄-8</td>
<td>-</td>
<td>overlapped</td>
<td>-</td>
</tr>
<tr>
<td>H₅-7</td>
<td>-</td>
<td>overlapped</td>
<td>-</td>
</tr>
<tr>
<td>H₁₆</td>
<td>-</td>
<td>overlapped</td>
<td>-</td>
</tr>
<tr>
<td>H₂₁</td>
<td>-</td>
<td>overlapped</td>
<td>-</td>
</tr>
<tr>
<td>H₁₇</td>
<td>4.3359</td>
<td>4.3359</td>
<td>0</td>
</tr>
<tr>
<td>H₂₈</td>
<td>4.5262</td>
<td>4.5253</td>
<td>-0.0009</td>
</tr>
<tr>
<td>H₁₁-₁₃</td>
<td>6.7956</td>
<td>6.7926</td>
<td>-0.0003</td>
</tr>
<tr>
<td>H₃₁</td>
<td>6.8136</td>
<td>6.8140</td>
<td>0.0004</td>
</tr>
<tr>
<td>H₁₀-₁₄</td>
<td>6.9113</td>
<td>6.9086</td>
<td>-0.0027</td>
</tr>
<tr>
<td>H₃₀</td>
<td>7.0083</td>
<td>7.0093</td>
<td>0.0010</td>
</tr>
<tr>
<td>H₂₆</td>
<td>7.4523</td>
<td>7.4509</td>
<td>-0.0014</td>
</tr>
<tr>
<td>H₃₃</td>
<td>7.4728</td>
<td>7.4779</td>
<td>0.0051</td>
</tr>
<tr>
<td>H₂₇</td>
<td>7.5657</td>
<td>7.5657</td>
<td>0</td>
</tr>
<tr>
<td>H₂₄</td>
<td>7.6837</td>
<td>7.6811</td>
<td>-0.0026</td>
</tr>
<tr>
<td>β-CD protons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H₁</td>
<td>4.8241</td>
<td>4.8276</td>
<td>0.0035</td>
</tr>
<tr>
<td>H₂</td>
<td>-</td>
<td>overlapped</td>
<td>-</td>
</tr>
<tr>
<td>OH₂</td>
<td>5.7216</td>
<td>5.7943</td>
<td>0.0727</td>
</tr>
<tr>
<td>H₃</td>
<td>3.6284</td>
<td>3.6347</td>
<td>-0.0063</td>
</tr>
<tr>
<td>OH₃</td>
<td>5.6699</td>
<td>5.7437</td>
<td>0.0738</td>
</tr>
<tr>
<td>H₄</td>
<td>-</td>
<td>overlapped</td>
<td>-</td>
</tr>
<tr>
<td>H₅</td>
<td>3.5576</td>
<td>3.5569</td>
<td>-0.0007</td>
</tr>
<tr>
<td>H₆</td>
<td>3.6284</td>
<td>3.6347</td>
<td>-0.0063</td>
</tr>
<tr>
<td>OH₆</td>
<td>-</td>
<td>overlapped</td>
<td>-</td>
</tr>
<tr>
<td>PRO protons</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hα</td>
<td>-</td>
<td>overlapped</td>
<td>-</td>
</tr>
<tr>
<td>Hβ</td>
<td>1.9691</td>
<td>1.9834</td>
<td>0.0143</td>
</tr>
<tr>
<td>Hγ</td>
<td>1.7205</td>
<td>1.7427</td>
<td>0.0222</td>
</tr>
<tr>
<td>Hδ</td>
<td>-</td>
<td>overlapped</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>3.2057</td>
<td>3.2078</td>
<td>0.0021</td>
</tr>
</tbody>
</table>